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Objective/background: The search for new vaccines more efficacious than bacille Calmette–

Guérin for tuberculosis prevention is of paramount importance for the control of the dis-

ease. The expression of Mycobacterium tuberculosis antigens in Mycobacterium smegmatis is

one of the current strategies for the development of new-generation vaccines against

tuberculosis. The objective of this study was to evaluate the immunogenicity in mice of

M. smegmatis expressing epitopes from Ag85B antigen.

Methods: M. smegmatis expressing three T cell epitopes from M. tuberculosis Ag85B (P21, P26,

and P53) was constructed (rMs064). rMs064 was used to immunize BALB/C mice for

immunogenicity evaluation. The present study investigates the capacity of rMs064 to

induce specific cellular and humoral immune responses against the expressed epitopes.

Cytokine production upon stimulation with Ag85B peptides and specific total immunoglob-

ulin G and immunoglobulin G subclasses were determined.

Results: The results showed a significant production of interleukin-12 and interleukin-23

when splenocytes were stimulated with P21, P26, and P53 peptides, and interferon-c after

stimulation with P21 in animals immunized with rMs064 compared with controls. The total

immunoglobulin G and its subclasses showed significant increases against the Ag85B epi-

topes in the sera of rMs064-immunized mice compared with the control groups.

Conclusion: The results of this study support the future evaluation of rMs064 as a vaccine

candidate against tuberculosis in challenge experiments.

� 2015 Production and hosting by Elsevier Ltd. on behalf of Asian African Society for

Mycobacteriology.
Introduction

Tuberculosis (TB) remains one of the primary infectious-

disease burdens in most part of the world [1,2]. One-third of
the world’s population is already infected with Mycobacterium

tuberculosis, in which 10% of infected individuals carry a life-

time risk of developing the disease [1]. The use of the bacille

Calmette–Guérin (BCG) vaccine shows variable efficacy
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against pulmonary TB, and confers protection only against

the severe forms of the disease in children [3,4]. The develop-

ment of an effective vaccine has been highlighted as one of

the most effective means toward the control of TB [2].

Mycobacterium smegmatis is a nonpathogenic, rapidly grow-

ing, and commensal strain of Mycobacterium species. The

most important advantage ofM. smegmatis as a vaccine vector

is due to the genetic and structural homology of this strain

with M. tuberculosis [5,6]. M. smegmatis also has similarities

in cell-wall lipid moiety, and shares the same mechanisms

of cell-wall synthesis with those of M. tuberculosis [6]. In addi-

tion, M. smegmatis is superior in activating and inducing the

maturation of dendritic cells (DCs) compared to BCG [7]. In

terms of activating adaptive immunity, M. smegmatis is a

strong inducer of effector and memory T cells [8,9]. Autop-

hagy has been described as an important mechanism in the

defense against TB; in this regard, a recent study has showed

that the lipid components of M. smegmatis have the capacity

to initiate and modulate autophagy in murine macrophages

independent of mammalian-target-of-rapamycin signaling

pathway [10].

Experimental vaccines based on the cell-wall components

of M. smegmatis elicited cross-reactive responses against

M. tuberculosis antigens in mice [11–13]. RecombinantM. smeg-

matis expressing the 6-kDa early secreted antigen (ESAT-6)

and culture-filtrate protein (CFP)-10 has been shown to reduce

the bacterial load in the lungs of immunized mice challenged

with a virulent M. tuberculosis strain [14]. These antecedents

support the interest in the evaluation ofM. smegmatis as a live

vaccine vector for the expression of recombinant proteins, in

particular those fromM. tuberculosis as a potential strategy for

the development of new-generation vaccines against TB.

Ag85 complex consists of highly homologous 30–32 kDa

CFPs (85A, 85B, and 85C) of M. tuberculosis [15]. These antigens

are associated with mycolyl-transferase activity in vitro, and

catalyze the synthesis of the glycolipid of mycobacterial cell

wall [16]. The Ag85 components, also known as fibronectin-

binding proteins, interact with fibronectin at a specific

fibronectin-binding motif of the host cell [17]. Fibronectin

plays an important role in bacteria–host interactions by

binding with microbial surface components, leading to the

initiation of infection [18]. Ag85B has been shown to promote

excellent immunogenicity in experimental animal models,

and it is essential in the induction of cellular and humoral

immunity [19,20].

The reports related with the potential importance of the

humoral immune response in protection against TB have

opened a new avenue in the development of new-

generation vaccines against TB [21,22]. Ag85B is considered

among the M. tuberculosis antigens, which can potentially

induce protective antibodies based on reports of a better

prognosis in TB patients with circulating immunoglobulin

G (IgG) antibodies against M. tuberculosis Ag85 complex [23].

Taking into consideration these antecedents, the possibility

to express Ag85B epitopes in M. smegmatis to induce protective

immune responses against TB is an interesting possibility; in

this study, epitopes fromAg85B antigen (P21, P26, and P53) were

cloned into M. smegmatis (rMs064), and the cellular and

humoral immunogenicity was evaluated in mice.
Materials and methods

Construction of rMs064

Strain
M. smegmatis mc2155 strain was used. Cultures were grown in

Middlebrook 7H9 supplemented with 0.2% (volume/volume

[v/v]) glycerol, 0.5% (v/v) Tween 20, and 10% (v/v) oleic–albu

min–dextrose–catalase for 48 h with agitation (200 rpm)

at 37 �C. The purity of the culture was evaluated by Ziehl–

Neelsen staining [24].

Selection of Ag85B epitopes
Epitopes P21101–115 (LTSELPQWLSANRAV), P26126–140 (SMAGS-

SAMILAAYHP), and P53261–275 (THSWEYWGAQLNAMK) were

selected from M. tuberculosis Ag85B protein based on previous

reports [25], and the presence of B epitopes in these

sequences was demonstrated using the ABCpred Bioinfor-

matics prediction tool (http://www.imtech.res.in/raghava/

bcepred/) [26].

Genetic transformation
A multi-epitope construct including P21, P26, and P53 epi-

topes from Ag85B with codon usage optimized for mycobacte-

ria was synthesized by Geneart (Bavaria, Germany). The DNA

fragment was fused to the MTB8.4 protein gene, into the

pNMN012 mycobacterial shuttle plasmid under the control

of the M. tuberculosis Hsp65 antigen promoter, followed by

the M. tuberculosis MPT63 signal sequence. The genetic trans-

formation of M. smegmatis was carried out by electroporation

[27]. A negative control strain was obtained by the transfor-

mation of M. smegmatis with pNMN012 (rMs012). The expres-

sion of the epitopes was determined by Western blotting

using anti-6� His antibodies (Abcam, Cambridge, UK).

Peptides
Peptides corresponding with the Ag85B epitopes P21, P26, and

P53 were commercially synthesized (1st BASE Laboratories,

Singapore Science Park II, Singapore).

Evaluation of cellular and humoral Immunogenicity

Immunization schedule
Male BALB/c mice (6–8 weeks), supplied by the Animal

Research and Service Centre, Universiti Sains Malaysia, were

used in the experiments. All procedures were carried out

according to the standard international regulations and

guidelines of laboratory animal experimentation [28], and

approved by the Ethical Committee for Experimentation in

Animals of the Universiti Sains Malaysia. Three groups of ani-

mals (n = 5 per group) were inoculated subcutaneously with

2 � 106 CFU of rMs064, rMs012 (both strains were suspended

in 100 lL of phosphate-buffered saline [PBS]), or PBS alone.

Two doses were administered in a 2-week interval. Blood

samples were taken at 35 days after the first immunization.

The blood was centrifuged and the serum stored at �20 �C
until use. Subsequently, the mice were sacrificed, and the

spleens were aseptically removed to assess the cellular

immune response.

http://www.imtech.res.in/raghava/bcepred/
http://www.imtech.res.in/raghava/bcepred/
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Determination of extracellular cytokine production
The splenocytes from immunized mice were cultured

(2 � 105 cells/mL) in Dulbecco’s modified Eagle’s medium

(Invitrogen, Carlsbad, USA) supplemented with 10% heat-

inactivated fetal calf serum, 100 U/mL penicillin, and 100 lg/

mL streptomycin at 37 �C. The cultures were stimulated with

10 lg/mL of P21, P26, and P53 peptides. Following the 72-h

incubation, cell-free supernatant was harvested and assayed

for the presence of interferon (IFN)-c, interleukin (IL)-12 (IL-

12p70), IL-23, and IL-4 by enzyme-linked immunosorbent

assay (eBioscience, San Diego, USA) according to the manu-

facturer’s instructions.

Determination of specific total IgG and IgG subclass antibodies
The specific total IgG and IgG subclass levels were determined

by enzyme-linked immunosorbent assay against P21, P26, and

P53 peptides. Briefly, 96-well MaxiSorp plates (Nunc,

Rochester, USA) were coated with each peptide (1 lg/mL) in

coating buffer, incubated overnight at 4 �C, washed five times

with PBS containing 0.1% Tween 20, and blocked with

blocking buffer (Roche, Mannheim, Germany) for 1 h at 37 �
C. The plates were incubated with the mice sera (in

triplicates) at a dilution of 1:50, and incubated for 2 h at 37 �
C. The plates were washed five times, and horseradish-perox

idase-conjugated goat antimouse IgG or anti subclass IgG1,

IgG2a, and IgG2b (Dako, Carpinteria, CA, USA) were added at

1:1000 dilution for 1 h at 37 �C. The enzyme reaction was

developed with 2,20-azino-di(3-ethyl-benzothiazolesulfonate)

(ABTS; Roche). The reaction was stopped after 30 min

with 2 N H2SO4 and the optical density determined with a

microplate reader (Tecan, San Jose, USA) at 405 nm.

Statistical analysis

The results were analyzed using one-way analysis-of-variance

test and the differences between groups were determined by

Tukey’s post-test. A p value was considered significant.

Results

The replicative plasmid pNMN064 was electroporated into M.

smegmatis mc2 155 to produce rMs064, and the expression of
Fig. 1 – Expression of 85B epitopes in Mycobacterium

smegmatis by Western blotting. (1) Prestained protein

marker; (2) rMs012 cell lysate; (3) rMs064 cell lysate. SDS–

PAGE = sodium dodecyl sulfate–polyacrylamide gel

electrophoresis.
the recombinant protein was detected as a 22-kDa band by

Western blotting (Fig. 1).

To assess the induction of specific cellular responses, the

splenocytes obtained from mice immunized with rMs012

and rMs064 were stimulated with P21, P26, and P53 peptides.

The production of IFN-c, IL-12, IL-23, and IL-4 cytokines was

then evaluated. A significant IL-12 production was observed

in P21-, P26-, and P53-stimulated splenocytes in rMs064-

immunized mice compared with the other groups (Fig. 2A).

A significant increase in the production of IL-23 upon stim-

ulation with all three epitopes was observed in rMs064-

immunized mice (Fig. 2B).

Splenocytes from rMs064-immunized mice showed signif-

icant highest production of IFN-c when stimulated with P21

peptide compared to the other groups (Fig. 2C).

Regarding IL-4, therewas no increase of this cytokine upon

stimulation with any of the epitopes (data not shown).

A significant increase was observed in the level of total IgG

against all Ag85B epitopes after the immunization of mice

with rMs064 compared to the other groups (Fig. 3A). Enhanced

levels of specific IgG1 subclass were detected against P21, P26,

and P53 epitopes of Ag85B (Fig. 3B). However, specific IgG2a

antibodies showed a significant increase only against P26 epi-

tope (Fig. 3C), while specific IgG2b production was signifi-

cantly increased against P53 (Fig. 3D). The subclass

responses against the individual Ag85B epitopes indicate that

rMs064 stimulated both the T helper cell type 1 (Th1)- and T

helper cell type 2-associated IgG subclasses (IgG2a, IgG2b,

and IgG1, respectively).
Discussion

Ag85B epitopes designated as P21, P26, and P53 were success-

fully cloned into pNMN012 vector and expressed in M. smeg-

matis. These three Ag85B epitopes overlapped with regions

of the Ag85B protein recognized by guinea pigs and purified-

protein-derivative-positive individuals [25]. It has been

demonstrated that these epitopes were immunogenic in mice

when expressed in BCG [29], and contain predicted B cell

epitopes as determined with the ABCpred Bioinformatics pre-

diction tool (data not shown), which support their evaluation

as vaccine candidates.

M. smegmatis has several advantages, which make it an

attractive carrier for the expression of M. tuberculosis anti-

gens/epitopes. M. smegmatis is a fast grower, nonpathogenic,

has genetic and antigenic homology with M. tuberculosis,

and, as such, has the possibility to express M. tuberculosis

antigens in their native conformation. Furthermore, induc-

tion of DCmaturation with increased expression of major his-

tocompatibility complex class I and class II molecules,

induction of autophagy, and strong generation of effector

and memory T cells have been previously proposed [5–10].

M. smegmatis overexpressing whole Ag85B protein protects

mice in a challenge model with M. tuberculosis [30]. The same

effect was obtained in guinea pigs with recombinant BCG

overexpressing Ag85B, and this vaccine candidate showed

cross-protective responses against Mycobacterium leprae

[31,32]. The expression of a fusion protein of Ag85B and

ESAT-6 in M. smegmatis produced an immunotherapeutic
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effect against TB in mice [33]. M. smegmatis vaccine candi-

dates expressing Ag85C, MPT51, and HspX (designated as

mc2 CMX) also induced both specific IgG2a and IgG1, and pro-

tect mice against M. tuberculosis [34].

The capacity of M. smegmatis expressing epitopes of Ag85B

to stimulate specific cellular immune response was demon-

strated by the production of IL2, IL23, and IFN-c after the stim-

ulation of splenocytes from rMs064-immunized mice.

IL-12 is produced by phagocytic cells and plays a key role in

host defense against M. tuberculosis infection [35]. The

production of IL-12p70, cytokine made up of p35 and p40

heterodimer chains, is mainly produced upon the phagocyto-

sis of M. tuberculosis [36]. IL-12 mediates the activation and

development of Th1 CD4 and CD8 T lymphocytes [37]. IL-12

exerts its protective roles against mycobacterial infection

mainly through the induction of IFN-c; thus, it acts as a link

between the innate and adaptive host response [38].

IL-23 is produced by activated monocytes, macrophages,

and DCs in response to mycobacterial infection, and is

considered an important cytokine for the protection against
M. tuberculosis after natural infection or vaccination [39,40].

The synergistic action of IL-12 and IL-23 promotes the recruit-

ment of antigen-specific CD4+ T cells in the draining lymph

nodes of M. tuberculosis-infected lungs [41]. Mice deficient in

both IL-12- and IL-23-secreted cytokines are susceptible to

infection with M. tuberculosis [36]. Other groups expressing a

fusion protein of heparin-binding hemagglutinin and human

IL-12 have reported prophylactic and/or therapeutic effect

against TB in mice [42]. The expression of IL-12 and gran-

ulysin in M. smegmatis produced a therapeutic effect against

TB in a model of infection in mice [43].

IFN-c is a dominant cytokine involved in antigen-specific T

cell immunity in response to M. tuberculosis infection [44]. The

importance of IFN-c and tumor necrosis factor-a as major

cytokines in mycobacterial infection is proven by the activa-

tion, under the influence of these cytokines, of the inducible

form of nitric oxide synthase and the production of reactive

nitrogen intermediates in murine macrophages, which is a

potent antimycobacterial effector mechanism [45]. Wang

et al. [33] reported an increase in the production of IFN-c in
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C57BL/6 mice immunized with rMs expressing Ag85B-ESAT-6

fusion protein.

The humoral immunogenicity of the Ag85B epitopes

expressed in rMs was evident in the study of total IgG and

subclasses.

The induction of specific antibodies has been reported fol-

lowing immunization with rMs expressing a fusion protein of

the ESAT-6 and CFP-10 proteins from M. tuberculosis [14]. It has

been reported that antigen Ag85B is highly expressed during

mycobacterial multiplication, as indicated by messenger

RNA copy number in mouse lung tissue infected with virulent

M. tuberculosis [46]. In this regard, the induction of specific

humoral responses recognizing Ag85B epitopes after the

immunization with rMs064 could be an important considera-

tion according to the potential role of antibodies in the protec-

tion against TB [47–49].
It has been reported that specific antibodies against M.

tuberculosis antigens could contribute to the protection by

different mechanisms, among them interference with

mycobacterial adhesion, toxin neutralization, growth inhibi-

tion, opsonization, agglutination of the pathogen, enhance-

ment of cytokine release, complement activation, promotion

of phagosome–lysosome fusion, activation of cell-mediated

immunity, antibody-dependent cellular cytotoxicity, and

enhancement of antigen presentation [50,51].

Proteins of the Ag85 complex, including Ag85B, have enzy-

matic mycolyl-transferase activity related with the biogenesis

of cord factor, and bind to fibronectin and elastin, which are

associated with the survival and virulence of M. tuberculosis

[52]. In this regard, the elicitation of antibodies against

epitopes of Ag85B could interfere with important functions

of M. tuberculosis. It is important to note that epitope P53
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contains an essential amino acid for the mycolyl-transferase

enzymatic activity [52].

The elicitation of humoral cross-reactive immune

responses against M. tuberculosis has been reported with

proteoliposomes and liposomes obtained from M. smegmatis

[11–13]. Liposomes containing lipids of M. smegmatis induced

protective immunity against M. tuberculosis in mice [53].

Considering these antecedents, the specific humoral immune

response induced by rMs064 against the Ag85B epitopes

could be reinforced by additional responses elicited by other

cross-reactive components of the carrier strain.

Conclusion

The demonstration of the cellular and humoral immuno-

genicity of rMs064 expressing selected epitopes from Ag85B

stimulating Th1 immune responses supports the further eval-

uation of this vaccine candidate in challenge experiments

with M. tuberculosis in mice.
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