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A multivariate polynomial is stable if it is non-vanishing whenever
all variables have positive imaginary parts. A matroid has the weak
half-plane property (WHPP) if there exists a stable polynomial with
support equal to the set of bases of the matroid. If the polynomial
can be chosen with all of its non-zero coefficients equal to one
then the matroid has the half-plane property (HPP). We describe
a systematic method that allows us to reduce the WHPP to the HPP
for large families of matroids. This method makes use of the Tutte
group of a matroid. We prove that no projective geometry has the
WHPP and that a binary matroid has the WHPP if and only if it is
regular. We also prove that T8 and R9 fail to have the WHPP.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction and main results

For undefined matroid-terminology we refer to [6]. The multivariate spanning tree polynomial,
TG(z), of a connected graph G = (V , E) enjoys two analytical properties corresponding to physi-
cal characteristics of the electrical network determined by G and the edge weights (conductances)
z = (ze)e∈E :

(1) Unique solvability when conductances have positive real parts: T G (z) �= 0 whenever Re(ze) > 0 for all
e ∈ E;

(2) Rayleigh monotonicity: Let e, f ∈ E . Then

∂T G(z)

∂ze
· ∂T G(z)

∂z f
� T G(z) · ∂2T G(z)

∂ze∂z f
,

whenever zk � 0 for all k ∈ E .
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Recently efforts have been made to generalize these characteristics to the level of generality of ma-
troids, and to investigate which matroids satisfy the corresponding properties; see [1–3,7,8].

Let E be a finite set and let z = (ze)e∈E be a vector of variables labeled by the elements of E . Let
further H ⊂ C be an open half-plane with boundary containing the origin. A polynomial P (z) with
complex coefficients is H-stable if P (z) �= 0 whenever ze ∈ H for all e ∈ E . If H is the open upper
half-plane we simply say that P is stable. The support of P (z) = ∑

α∈NE a(α)
∏

e∈E zα(e)
e is the set

supp(P ) = {α ∈ N
E : a(α) �= 0}. Choe, Oxley, Sokal and Wagner proved in [2] that if a polynomial

P (z) =
∑
S⊆E
|S|=r

a(S)zS ∈ C[z], where zS =
∏
e∈S

ze,

is stable, then the support of P is the set of bases of a matroid of rank r; see also [1]. Note that
a homogeneous polynomial is H0-stable for one half-plane H0 if and only if it is H-stable for all
half-planes. Hence property (1) alone implies the matroid structure of graphs. A matroid with ground
set E and with set of bases B has the half-plane property (HPP) if its basis generating polynomial

P B(z) =
∑
B∈B

zB

is stable. It has the weak half-plane property if there is a weight function a : B → C \ {0} such that the
polynomial

∑
B∈B

a(B)zB

is stable. These properties were introduced in [2], and it is a challenging problem to determine
whether a given matroid has the HPP, or the WHPP, or neither. In [2] it was proved that 6

√
1-matroids

are HPP-matroids. Moreover

Proposition 1.1. (See [2].) A binary matroid has the half-plane property if and only if it is regular.

Proposition 1.2. (See [3].) No finite projective geometry has the half-plane property.

All matroids representable over C have the weak half-plane property [2], but prior to this work
the only non-WHPP matroids known were the Fano matroid F7, its dual F ∗

7 and the matroids that
have them as minors. That F7 does not have the WHPP was proved in [1], and stability is preserved
under taking duals and minors; see [2].

Our main results are the following.

Theorem 1.3. No projective geometry has the weak half-plane property.

This is a common generalization of [1, Theorem 6.6] which says that F7 is not a WHPP-matroid,
and Proposition 1.2.

Theorem 1.4. A binary matroid has the weak half-plane property if and only if it is regular.

The method of proof is to reduce the degrees of freedom of the choice of the weights (a(B))B∈B
by using relations on the coefficients of a stable polynomial derived in [1, Lemma 6.1]. The number of
free variables after this reduction turns out to be the free rank of the Tutte group (based on the set
of bases of a matroid), introduced by Dress and Wenzel [4].
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2. Reducing the number of free variables

Let B be the set of bases of a matroid. We say that B1, B2, B3, B4 ∈ B form a degenerate quadrangle
if

(B1, B2, B3, B4) = (
S ∪ {i,k}, S ∪ {i, �}, S ∪ { j, �}, S ∪ { j,k})

for some set S with i, j,k, � /∈ S , and at most one of S ∪ {i, j} and S ∪ {k, �} is a basis.

Theorem 2.1. (See [1].) Suppose that B is the set of bases of a matroid and that there is a weight function
a : B → C \ {0} such that P (z) = ∑

B∈B a(B)zB is stable. If B1, B2, B3, B4 ∈ B form a degenerate quadrangle,
then

a(B1)a(B3) = a(B2)a(B4). (2.1)

Let B be the set of bases of a matroid M and suppose that we want to determine if M has the
WHPP. Hence we seek a weight function a : B → C\{0} such that P (z) = ∑

B∈B a(B)zB is stable. In [2,
Theorem 6.1] Choe et al. proved that all non-zero coefficients of a homogeneous stable polynomial
have the same phase. Hence, without loss of generality, we assume from now on that all weights
are positive reals. Define ν : B → R by ν(B) = log(a(B)). By Theorem 2.1 we get a system of linear
equations

ν(B1) + ν(B3) − ν(B2) − ν(B4) = 0

for all degenerate quadrangles B1, B2, B3, B4. (2.2)

Let V M denote the linear subspace of R
B defined by the system of equations (2.2).

The following lemma is an immediate consequence of the homogeneity of (2.2).

Lemma 2.2. Let (ve)e∈E be a vector of real numbers. Then the vector ν ∈ R
B defined by ν(B) = ∑

e∈B ve , for
all B ∈ B, is a solution to (2.2).

Let W M be the subspace of V M consisting of all solutions as in Lemma 2.2.

Theorem 2.3. Let M be a matroid. If dim(W M) = dim(V M), then M has the weak half-plane property if
and only if it has the half-plane property.

Proof. Suppose that M has the WHPP and that (ν(B))B∈B ∈ R
B is such that

∑
B∈B eν(B)zB is stable.

Then ν ∈ V M by Theorem 2.1. Since dim(W M) = dim(V M) we have in fact W M = V M . Thus there
is a vector (ve)e∈E ∈ R

E such that ν(B) = ∑
e∈B ve for all B ∈ B. Make the change of variable z j 
→

z j/ev j for all j ∈ E . This change of variables preserves the stability of the polynomial and the support.
Moreover the coefficients of the new polynomial are zeros and ones. �

Since the dimension of the solution in Lemma 2.2 is at most n, we immediately know that if
dim(V M) > n we cannot apply Theorem 2.3 for M. This is a good start to identify candidates for the
above reduction. Table 1 shows some matroids for which dim(V M) has been computed. The matroids
for which dim(V M) = n are highlighted.

To derive a simple formula for dim(W M) we find it convenient to express connectedness in terms
of the bases of the matroid. The following elementary lemma is probably well known.

Lemma 2.4. Let M be a matroid. For a non-empty subset S ⊆ E the following are equivalent:

(i) S is a connected component;
(ii) S is maximal with respect to the property that for each pair e, f ∈ S there are B1, B2 ∈ B such that

B1 � B2 = {e, f }.
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Table 1
Dimension of V M for some matroids.

Matroid n = |E| dim(V M) |B|
M(K4) 6 6 16
W 3 6 8 17
F7 (Fano) 7 7 28
F −

7 (non-Fano) 7 8 29
F −−

7 7 10 30
F −3

7 7 13 31
F −4

7 7 17 32
F −5

7 7 22 33
F −6

7 7 28 34
U3,7 7 35 35
M(K4) + e 7 13 31
W 3 + e 7 17 32
V 8 8 18 63
W 4 8 24 52
S8 8 8 48
T8 8 8 59
AG(3,2) 8 8 56
AG(3,2)′ 8 9 57
R8 8 10 58
F8 8 10 58
Q 8 8 11 59
L8 8 17 62
AG(2,3) 9 9 72
R9 9 9 69
Pappus 9 16 75
nP (non-Pappus) 9 17 76
Non-Desargues 10 27 111
PG(2,3) 13 13 234

Proof. Since the lemma for the case of S being a loop is trivial, it is enough to prove that for
any e, f ∈ E there exists a circuit C containing {e, f } if and only if there are B1, B2 ∈ B such that
B1 � B2 = {e, f }. Assume first that for e, f there is a circuit C ⊇ {e, f }. Since C \ {e} is independent
there is a basis B such that C \ {e} ⊆ B . Now, B ∪ {e} contains a unique circuit C(e, B) and since
C ⊆ B ∪ {e} we have in fact C(e, B) = C . However, B \ { f } ∪ {e} contains no circuit. Hence it is a basis
and B � (B \ { f } ∪ {e}) = {e, f }.

Assume that for e, f ∈ E there are B1, B2 ∈ B such that B1 � B2 = {e, f }. Then B1 = T ∪ {e} and
B2 = T ∪ { f } for some T ⊆ E . Now B1 ∪ { f } = B2 ∪ {e} = T ∪ {e, f }. Hence C( f , B1) = C(e, B2) = C
and {e, f } ⊆ C . �
Corollary 2.5. For a matroid M the following are equivalent:

(i) M is connected;
(ii) For any pair e, f ∈ E there exist B1, B2 ∈ B such that B1 � B2 = {e, f }.

Lemma 2.6. Let M be a matroid with z connected components. Then dim(W M) = n − z + 1, where n = |E|.

Proof. Let φ : R
E → R

B be the linear operator defined by

φ
(
(ve)e∈E

) =
(∑

e∈B

ve

)
B∈B

.

To identify the kernel of φ assume that
∑

e∈B ve = 0 for all B ∈ B. Suppose that e, f ∈ E belong to
the same non-loop connected component of M. Then, by Lemma 2.4, there are bases B1 and B2 such
that B1 � B2 = {e, f }. Hence B1 = S ∪ {e} and B2 = S ∪ { f } for some set S ⊂ E and

∑
t∈S vt + ve =∑

t∈S vt + v f = 0. Thus ve = v f whenever e and f are in the same connected component of M.
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Express M as M = M1 ⊕· · ·⊕ Mz , where the Mi ’s are the connected components of M. It follows
that (ve)e∈E ∈ ker(φ) if and only if ve = v f whenever e and f are in the same connected component
of M and all coordinates of φ((ve)e∈E) are equal to

rank(M1)[v]1 + · · · + rank(Mz)[v]z = 0,

where [v] j denotes the common value of ve for all e in ground set of M j . Hence dim(ker(φ)) = z − 1
and thus dim(φ(RE )) = n − z + 1. �

It is easy to see that a matroid has the HPP (or the WHPP) if and only if all its connected compo-
nents have the HPP (or the WHPP).

Corollary 2.7. Let M be a connected matroid on n elements. Then dim(W M) = n.

From Table 1, Theorem 2.3, Corollary 2.7 and the corresponding results for the HPP in [2] we
deduce that the matroids F7, AG(3,2), S8, T8, PG(2,3) and R9 (see Fig. 1) fail to have the weak
half-plane property.

3. The Tutte group of a matroid

To apply Theorem 2.3 and prove Theorems 1.3 and 1.4 we need to compute dim(V M). To do
this we will make use of the Tutte group of a matroid. This group and other related groups were
introduced by Dress and Wenzel [4] and further studied in a series of papers. We will only state the
definitions and results concerning the Tutte group that are essential for our purposes.

Definition 3.1. Let M be a matroid of rank r with set of bases B. Let further F
B
M denote the free

abelian group generated by the symbol ε and the symbols X(b1,...,br) where (b1, . . . ,br) is any r-tuple
such that {b1, . . . ,br} ∈ B. Let K

B
M be the subgroup of F

B
M generated by all the elements of the form:

(T1) ε2;
(T2) εX(b1,...,br) · X−1

(bτ (1),...,bτ (r))
, where {b1, . . . ,br} ∈ B and τ is an odd permutation in the symmetric

group Sr ;
(T3) X(b1,...,br−2,i,k) · X−1

(b1,...,br−2,i,�) · X(b1,...,br−2, j,�) · X−1
(b1,...,br−2, j,k)

, if ({b1, . . . ,br−2, i,k}, {b1, . . . ,br−2,

i, �}, {b1, . . . ,br−2, j, �}, {b1, . . . ,br−2, j,k}) form a degenerate quadrangle.

The Tutte group based on B, T
B
M , is defined as the quotient

T
B
M := F

B
M/K

B
M.

There is a subgroup of T
B
M which is of particular interest for us. This is the inner Tutte group, T

(0)

M .

Since the definition of T
(0)

M is not important for our purposes we refer to [4].

Proposition 3.2. (See [4].) Let M be a matroid of rank r with ground set of size n, and with z connected
components. Then

T
B
M ∼= T

(0)
M ⊕ Z

n−z+1.

Recall that the (free) rank, r0(G), of a finitely generated abelian group G is defined as the unique
number r ∈ N for which G ∼= Tor(G)⊕Z

r , where Tor(G) is the torsion group of G . Equivalently, r0(G) is
the dimension of the real vector space Hom(G,R) = {φ : G → (R,+): φ is a group homomorphism}.

Theorem 3.3. Let M be a finite matroid with z connected components and ground set of size n. Then

dim(V M) = r0
(
T

B
M

) = dim(W M) + r0
(
T

(0)
M

) = n − z + 1 + r0
(
T

(0)
M

)
.
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Fig. 1. Matroids considered in this paper.
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Proof. Any homomorphism in Hom(TB
M,R) is identified with a unique homomorphism φ ∈

Hom(FB
M,R) for which φ(KB

M) = (0). By (T1) we have φ(ε2) = 2φ(ε) = 0, from which it follows that
φ(ε) = 0. From (T2) it now follows that φ(X(b1,...,br)) = φ(X(bτ (1),...,bτ (r))) whenever {b1, . . . ,br} ∈ B
and τ is any permutation in Sr . Hence φ does not depend on the ordering of the bases so the only
non-trivial restrictions on φ are those enforced by the degenerate quadrangles (T3). It follows that
Hom(TB

M,R) ∼= V M which by Proposition 3.2 verifies the theorem. �
Corollary 3.4. Let M be a matroid. If T

(0)

M is a torsion group then M has the half-plane property if and only
if it has the weak half-plane property.

Proof. Combine Theorem 2.3, Lemma 2.6 and Theorem 3.3. �
The inner Tutte group is known to be a torsion group for all matroids in two important families:

Proposition 3.5. (See [5].) Let M be the projective geometry M = PG(r − 1,q). Then T
(0)

M
∼= GF(q) \ {0}.

Proposition 3.6. (See [9].) If M is binary then

T
(0)
M

∼=
{ {0} if the Fano matroid or its dual is a minor of M;

Z/2Z otherwise.

Now Theorems 1.3 and 1.4 follow from Corollary 3.4 and Propositions 1.1 and 1.2.

4. Further directions

The results in this paper are restricted to the matroids for which the inner Tutte group is a tor-
sion group i.e., dim(V M) = dim(W M). It would be interesting to see the techniques in this paper
developed to the case when r0(T

(0)

M) is small but not necessarily zero.

Example 4.1. Consider the non-Fano matroid F −
7 in Fig. 1, which is a relaxation of the Fano ma-

troid F7. The non-Fano matroid is representable over C by the matrix

A =
⎡
⎣

1 1 0 0 0 1 1

0 1 1 1 0 0 1

0 0 0 1 1 1 1

⎤
⎦ ,

and the polynomial det(A Z AT ), where Z = diag(z1, . . . , z7), is stable and its support is F −
7 ; see [2].

In fact

det
(

A Z AT ) = P B(F7)(z) + 4z2z4z6,

where P B(F7)(z) is the basis generating polynomial of F7. From Table 1 we see that dim(V F −
7
) =

dim(W F −
7
) + 1. This implies that, modulo scalings of the variables, any stable polynomial with sup-

port F −
7 will be of the form

P B(F7)(z) + μz2z4z6,

where μ is a positive real number. However [2, Example 11.5] shows that such a polynomial is stable
only if μ = 4. Hence, up to scaling of the variables, this is the only realization of F −

7 as a WHPP-
matroid.

It is desirable to know how the weak half-plane property behaves under relaxations. We offer the
following conjecture.
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Conjecture 4.2. Suppose that M has the weak half-plane property. Then so does any relaxation of M.

If this conjecture is true then, for example, the non-Pappus matroid will have the WHPP since the
Pappus matroid does.
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