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Abstract 

It is proved that integral Pontrjagin classes pk mod p are topological invariant if p is 
odd, k < n(p) and they are not topological invariant if k 2 n(p), where n(p) is the smallest 
value of k for which p divides ek and ek is the smallest positive integer such that e,p, is 
topological invariant. For example, pk mod p is topological invariant for p = 3, 5, 11 etc. 
for every k > 1 but not topological invariant for p = 7 and k > 2. 
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1. Introduction 

This paper settles the problem of topological invariance of integral Pontrjagin 
classes pk modulo a prime p. In [4] we reproved a classical result of Wu [7] that for 
every k > 1, pk mod p is topological invariant (or briefly TOP-invariant) for p = 3 
and extended it for p = 5. In fact, this problem turns out to be connected with the 
problem of finding the smallest multiples of integral Pontrjagin classes pk which 
are TOP-invariant. The latter was solved in [3]. 

Let ek be the smallest positive integer such that e,p, is TOP-invariant. The 
following is an extension of the TOP-invariance of pk mod 3 and pk mod 5. 

Theorem A. For any odd prime p, let n(p) be the smallest value of k such that p 
divides ek . Then pk mod p is TOP-invariant for k < n(p) and is not TOP-invariant 
for k a n(p). 

* Corresponding author. 
1 The author is supported by the UGC as Research Scientist A. 

0166-8641/95/$09.50 0 1995 Elsevier Science B.V. All rights reserved 
SSDI 0166-8641(94)00064-6 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82767671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


60 B.L. Sharma, N. Singh / Topology and its Applications 63 (1995) 59-67 

For example, for p = 7, n(p) = 2, Theorem A implies that p1 mod 7 is the only 
TOP-invariant class and pk mod 7, k > 2 are not TOP-invariant. 

Corollary B. If p is an odd prime which does not divide ek, for every k > 1, then pk 
mod p is TOP-invariant. 

For example, 3, 5, 11, 13, 17 etc. are odd primes that do not divide any ek. 
The above theorems are proved by using necessary and sufficient conditions for 

TOP-invariance of characteristic classes proved in [3]. We recall them in Section 2. 
In this section, we also recall the numbers ek and associated numbers d, and ck 
and their properties which are needed for the proofs of the theorems. Section 3 
contains the proofs of Theorem A and Corollary B. 

2. Integral multiples related to TOP-invariance 

Let BO and BTOP be the stable classifying spaces for vector bundles and 
topological bundles respectively. Let the canonical map [l] 

rp:BO+BTOP 

be treated as a fibration and let TOP/O be its homotopy fibre with 
7 : TOP/O + BO 

the canonical inclusion. Let 

cp* :H*(BTOP; A) +H*(BO; A), 

r]* :H*(BO; A) -+H*(TOP/O; A) 
be the induced maps in cohomology, where A is any commutative ring with 
identity. 

We recall the following from [3]. 

Definition 2.1. Let & = @,2X}, i = 0, 1 be two vector bundles on the same base 
X. We say that so and ,$I are TOP-equivalent if there exists a homeomorphism 
h : E, + E, making the following diagram commutative 

There is a similar definition for stable TOP-equivalence. 

Definition 2.2. Let x E H * (BO; A) be a universal characteristic class of stable 
vector bundles. We say that x is TOP-invariant if for each pair (to, fi) of stably 
TOP-equivalent vector bundles on X, we have t;(x) = t;(x). [Here we use the 
same symbol & for the bundle and the homotopy class of its classifying map 
X + BO.] 
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The following lemma giving necessary and sufficient conditions for TOP-invari- 
ance plays a crucial role in this work. 

Lemma 2.3. (a) (A necessary condition for TOP-invariance) If a characteristic class 
x E H * (BO; A) is TOP-inzmiunt, then x E Ker 17 * . 

(b) (A sufficient condition for TOP-invariance) x E H *(BO; A) is TOP-in- 
variant if x E Image rp * . 

(c) (A necessary and sufficient condition for TOP-invariance) A characteristic 
class x E H * (BO; A> is TOP-invariant iff pcL* x = x X 1 where p is the composite 

BO x TOP/O - lx’ BOxBO”B0 
where h is the H-space multiplication. 

For a proof see [3]. 
Let A = h[i] and let ck be the smallest positive integer such that ckpk E 

Image 9 *. Let d, be the smallest positive integer such that dkpk E Ker 77 *. We 
consider here only the odd part of ck. Let rr(k) denote the set of partitions of the 
positive integer k. Also let c, =ci,ci,...ci, for o = (iI, &,,...,&I ET(~) and 
l7 o E x-(k)‘w = the least common multiple of c,‘s when w varies in r(k). Let 
Yk = (22k-l- l)Num(B,,/4k) where B,, is the (2k)th Bernoulli number and 
NUm(B,k/4k) denotes the numerator of the fraction B,k/4k in the lowest terms. 
Let v,(m) = the p-valuation of an integer m for a prime p. 

We require the following lemmas. 

J&Wtla 2.4. For every k > 1, ck divides yk * fI, Er(k),o + kc,. 

For a proof see [4, Lemma 2.11. 

Lemma 2.5 [3, Theorem 1.41. If p is an odd prime which divides yk but does not 
divide yi for 1 G i < k, then v,(d,) = vp(yk). 

Proposition 2.6 [3, Corollary 2.91. ek = l.c.m. of d,, . . . , d,. 

Proof. Applying pL* on pk we get 

p*pk=(lXq*)h*Pk 

=(1X7*) Pk@l+ C Pi@Pj 
i i+j=k 

ial 

=Pk~l+i+~=kPiB~*(Pj)’ 

is1 

If mk = 1.c.m. of d,,.. ., d, then 

p* crnkpk) = mkpk @l+CPi@T*(mkPj) 

= (mkpk) @ l- 
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Now Lemma 2.3(c) implies that m,p, is TOP-invariant. Since ek is the smallest 
such integer, ek divides mk. Also, the above calculation of ,u*pk shows that mk is 
the smallest integer such that the class x = m,p, satisfies the necessary and 
sufficient condition p*x =x x 1. Since e,p, is TOP-invariant, mk divides ek and 
hence mk=ek. q 

Lemma 2.7. If p is an odd prime and p divides ck but not ci for 1 < i < k then p 
divides ek . 

Proof. Since p does not divide ci for 1 Q i < k, p will not divide fiI, Err(k),o +QZ,. 
Lemma 2.4 implies that if p divides ck then p divides yk, in fact v,(c,) = vJrJ. 
Combining with Lemma 2.5 we get vg(ck) = vp(yk) = v,(d,). But p divides d, 
implies that p divides ek since ek = 1.c.m. of d,, . . . , d,. q 

Remark 2.8. Given below are some values of ek for k G 7, 

e, = 1, e,=7, 
. e3 = 7.31, e4 = 7.31.127, 

e5 = 7.31.127.73, e6 = 7.31.127.73.23.89.691, 
e7 = 7.31.127.73.23.89.691.8191. 

3. Proofs of Theorem A and Corollary B 

Theorem A can be divided into three cases: 
Case 1: k < n(p). If n(p) = ~0 then this case is Corollary B. In this case we apply 

the sufficient condition for TOP-invariance (Lemma 2.3(b)). 
Case 2: k = n(p). To prove this we apply the necessary condition for TOP-in- 

variance (Lemma 2.3(a)), that is if & +E Ker 6 * then ak is not TOP-invariant. 
Case 3: k > n(p). The necessary and sufficient condition for TOP-invariance 

(Lemma 2.3(c)) is used to prove this. We show that fi*$Q #Sk X 1 implying that $k 
is not TOP-invariant for every k > n(p). 

For Case 1, denote by Dk, the kth integral Pontrjagin class modulo p, p an odd 
prime. We know that fik E H4k(BO; Z/p) is TOP-invariant if 

&~Image[$* :H*(BTOP; Z/p) +H*(BO; Z/P)]. 

Let us consider the following commutative diagram 
Cl-Ker(cp*@l) ,Ker @* ,Ker f 

I I I 
0 -H4k(BTOP; Z)@Z/p -H4k(BTOP; Z/p) --) Tor(H4k’1(BTOP; Z); Z/p) - 0 

I $O*@l I ̂ I ‘p I f 

0-H4“(BO; Z)@Zz/p- H4k(BO; Z/p) - Tor(H4kC1(BO; E); Z/p)-0 

I I I 
Coker cp * 8 Z/p, Coker 4 * ) Coker f 
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Since H * (BO; Z) does not contain odd prime torsion, Tor(H4kf1(BO; Z); Z/p> = 
0 implying that Coker f = 0. Also Coker(cp * @ 1) = Coker rp * @I Z/p. By applying 
the Snake Lemma we obtain the exact sequence 

O+Ker(rp*@l)+Ker&* -+Kerf+Coker q* @Z/p+Coker @* -0. 
Consider the part 

Coker cp* @Z/p+Coker $* +O 
of the above sequence. Let ~t,~, “k be the smallest positive integer such that 
rl cll...(Yk PY’ . ..p.kEImage cp*. Since c;“l...c;kp~l...p;kEImage cp*, n(yl,,.olk di- 
vides ~1”‘. . . CF. Coker cp * 8 Z/p will contain summands of the type E/ltrY1,,,cuk 8 
Z/p. By hypothesis, k < n(p), hence by definition, p does not divide ek. Then by 
Lemma 2.7, if p is odd and if p does not divide ci, 1 Q i < k, then p does not 
divide ck. But for every i, 1 G i < k, p does not divide ei. Inductively we can show 
that p does not divide ci, 1 G i < k. Hence for k < n(p), p does not divide ci, 
1 < i < k, and therefore p does not divide nal ,-.o/k. This implies Z/nU1, (yk 8 Z/p 

= 0, hence Coker 4 * = 0. This in turn will imply that fik E Image 6 * , thus proving 
that Dk is TOP-invariant by Lemma 2.3(b). 

For the proof of Case 2 we require the decomposition of the fibration 

TOP/O A BO 2 BTOP 
which whenirlised at an odd prime p is the product of two fibrations (see [3]) 

(9 Ocp) -BO 
(P) --f--+ BO&, 

(ii) Coker Jcp, ------+ * - B Coker Jcp, 
where Xcp, and g(,) denote the space X and the map g localised at an odd prime 
p. 8 is the Adams cannibalistic class, BO@ is the space BO with H-space structure 
induced by the tensor product of vector bundles of virtual dimension 1, B Coker Jcp, 
is the space whose homotopy groups are isomorphic to the cokernel of the 
J-homomorphism and Coker J = 0 B Coker Jcp,. Thus we obtain the following 
homotopy commutative diagrz) - 

(P) 

TOP/O,,, 

which implies that Ker 6 * = Ker $’ * where A represents that cohomology is with 
Z/p coefficients. Lemma 3.1 below proves that Ker 7j’ * G (Image) where 
(Image e^*> denotes th e 1 ea generated by the elements of Image e^* of degree ‘d 1 
> 0. Now to prove Case 2 of Theorem A we show that for k =n(p>, fik ~5 

(Image e^*> which is isomorphic to Ker $’ * . Thus the necessary condition for 
TOP-invariance establishes that Sk is not TOP-invariant. 

The proof of Case 2 also requires the application of some results concerning the 
Eilenberg-Moore spectral sequence [5], which we recall below. 
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Let FAE ZB be a fibration. Suppose that r,(B) operates trivially on the 
cohomology of the fibre F and the cohomology groups H * (E; A> and H *(B; A) 
are finitely generated, A being a commutative ring. Then there is a spectral 
sequence (Eilenberg-Moore spectral sequence) {E,, d,} in the second quadrant, 
having the following properties: 

(i) E2’ = Tor;T;‘:(,;,,(H *(E; A>; A>. 
(ii) E, converges to H *(Ii; A). 
(iii) The edge homomorphism 

e:At+.,,;,,H*(E; A) =Ei’* +E$* -H*(F; A), 

coincides with the map 

A %*(B;n) H*(E; A) +H*(f’; A), 

which is obtained from the composite map 

A @H*(E; A) +H*(F; A) @H*(F; A) +H*(F; A) 

on passing to quotient. 
A result of Munkholm [2] states that, if in addition to the above hypothesis we 

suppose that A is a principal ring with characteristic # 2 and H * (B; A) and 
H ‘(E; A) are polynomial algebras in at most countable variables, then the 
Eilenberg-Moore spectral sequence collapses. 

Atiyah and Segal established an H-equivalence between BO,,, and BO&. 
Hence H *(BOB; Z/p) = H * (BO; Z/p> which is a polynomial algebra in count- 
able variables. Hence the Eilenberg-Moore spectral sequence of the fibration 

collapses. 
The following lemma plays a crucial role in the proof. 

Lemma 3.1. Ker +j’ * = (Image e^*>. 

Proof. Let {E,, d,} be the Eilenberg-Moore spectral sequence of the fibration 

@(P, - 
‘b) BO,,, --% BO@ 

(P)’ 

Consider the following commutative diagram where the edge homomorphism is 
surjective and E, = Em due to the collapsing of the sp 

e 
ctral sequence. Let j be the 

quotient map. 

‘/p %*(BO”; Z/p) H * (BO; Z/p) = E,O,* LE,,* -H*(Ocp,; Z/p) 

Z/P 8 H * (BO; Z/p) = H * (BO; Z/p) - Image $ * 
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Hence 

Image 5’ * z E,“, * E E$ * 

= ‘/p @H *(BO@;Z,p) H * PO; VP) 

=H*(BO; B/p)/(Image i*) 

(see [6, p. 671) which implies that Ker $‘* z (Image e^*>. 0 

In the Universal Coefficient Theorem 

O+H4k(X;Z)@AaH4k(X; n)+T~r(H~~+l(x;jZ); A)+0 

the last term is zero for X= BO or BO@ and A = ZcP) or b/p since H4k+1(X; Z) 
contains only 2-torsion and p # 2. In these cases /?(X; A> is an isomorphism. 
Consider the following diagrams 

H4k(BO@; E,p) HBO@; VP) -H4k(BO@; Z)eH/p ’ -H4k(BO”; Z)s(Z<,,c+h/p) 

I 

(4) (3) 
s^* 

I 
Si@l 

I 

0f@(l@l) 

PCBO; Z/P) 
H4k(BO; Z/p)- H4k(BO; Z) 0 Z/p B --+H4k(BO; Z) 0 (E,,,o Z/p) 

and 

@(BO”; Z) @ (Zfpj 0 L/p) A (+(BO”; Z) @ Z& 0 Z/p 
PCBO”; Hc,,)@ 1 

,AY~~(BO”; H<,)) @Z/p 

A @(BO; Z!) @ (Zc,) @ Z/p) - (H4”(BO; L) @ Lc,)) @Z/p B(Bo; 1’p”@‘d14k(BO; Z& @ Z/p 

The commutative square (1) is obtained by the naturality of the Universal Coeffi- 
cient Theorem with respect to A = Zo,) and the map 19 : BOW -+ BO and tensoring 
the square by Z/p. Square (2) is commutative since the map A is the map of 
associativity. The commutative square (3) follows from the isomorphism B : ZcP) 8~ 
Z/p = Z/p. The commutativity of square (4) follows from the naturality of the 
Universal Coefficient Theorem for A = Z/p. Now juxtaposing the above two 
diagrams we get the commutative diagram 

H4k(BO@; Z/p) 
[P(BO@; E~,))~l]oAnB-‘~P(BO”; Z/JI)-~ 

’ H4!=(BOQ; Z,,,) 8 Z/p 

I 
tT* GCP) @ 1 

H4k(BO; Z/p> 
[P(BO; Z&8 110 A 0 B-’ 0 P(BO; Z/p)-1 I 

f H4k(BO; Z,,,) @ Z/p 
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Hence we obtain the following commutative diagram with exact rows 
Ker t?* - Ker( 6& @ 1) ,O 

0 -H4k(BO@; Z/p) - H4k(BO@; h,,,) 8 Z/p - 0 - 0 

0 - H4k(BO; Z/p) - H4k(BO; Z,,,) 8 Z/p - 0 - 0 

I I I 

Coker e^* - Coker( 6& 8 1) - 0 

This implies that Coker e^* E Coker(B& 8 1) = Coker f9& @ Z/p. Consider the 
map Cp* localised at p, 

~~~;~,:H*(BTOP; b,,,) +H*(B~; z,,,), 
where p * denotes the quotient of H * by its torsion subgroup. By definition 
?&, = Cp* @ 1 where 

cp*~l:H*(BTOP;iZ)~~Z,,,~H*(BO;H)sZ,,,. 

Since qtp, is the product of fibrations 8 and * + B Coker Jo,,, 

F;p) = G(~). 
Hence Coker r9& = Coker F&, = Coker(@ * @ 1) = Coker (p * 8 .&). In Coker rp* 
we have summands of the type Z/nal,, ok (refer to the proof of Case 1). Since n(p) 

is the smallest value of k for which p divides ck, the only nonzero summand on 
tensoring with Z/p will be Z/c,. Therefore 

which implies that j& E Image e^*. Also since (Image e^*> is the ideal consisting of 
elements of degree > 0, j?& E (Image e*). 

To prove Case 3 we apply g* on Bk, 
p*jk = (1 x +j*)h*j.& 

=(1X$*) Bk@l+$k-n(p)@$n(p)+ 

I 

C Si@$j 
O<j#n(p) 

i+j=k 

=~,~l+~k--n(p)~7j*(B,(p))+ c $i @+j*$j. 

O<i+n(p) 
i+j=k 
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Since BnCpj CZ Ker ij *, ?j *&,) # 0 implying that ,G*fik #fi, ~3 1 for k > n(p). Ap- 
plying the necessary and sufficient condition for TOP-invariance we get that fik is 
not TOP-invariant for k > n(p). 0 
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