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Abstract

It is proved that integral Pontrjagin classes p, mod p are topological invariant if p is
odd, k < n(p) and they are not topological invariant if k > n(p), where n(p) is the smallest
value of & for which p divides e, and ¢, is the smallest positive integer such that e, p, is
topological invariant. For example, p, mod p is topological invariant for p =3, 5, 11 etc.
for every k = 1 but not topological invariant for p =7 and &k > 2.
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1. Introduction

This paper scttles the problem of topological invariance of integral Pontrjagin
classes p, modulo a prime p. In [4] we reproved a classical result of Wu [7] that for
every k > 1, p, mod p is topological invariant (or briefly TOP-invariant) for p = 3
and extended it for p = 5. In fact, this problem turns out to be connected with the
problem of finding the smallest multiples of integral Pontrjagin classes p, which
are TOP-invariant. The latter was solved in [3].

Let e, be the smallest positive integer such that e, p, is TOP-invariant. The
following is an extension of the TOP-invariance of p, mod 3 and p, mod 5.

Theorem A. For any odd prime p, let n(p) be the smallest value of k such that p
divides e,. Then p, mod p is TOP-invariant for k <n(p) and is not TOP-invariant
for k =n(p).
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For example, for p =7, n(p) =2, Theorem A implies that p, mod 7 is the only
TOP-invariant class and p, mod 7, k > 2 are not TOP-invariant.

Corollary B. If p is an odd prime which does not divide e,, for every k > 1, then p,
mod p is TOP-invariant.

For example, 3, 5, 11, 13, 17 etc. are odd primes that do not divide any e,.

The above theorems are proved by using necessary and sufficient conditions for
TOP-invariance of characteristic classes proved in [3]. We recall them in Section 2.
In this section, we also recall the numbers e, and associated numbers d; and c,
and their properties which are needed for the proofs of the theorems. Section 3
contains the proofs of Theorem A and Corollary B.

2. Integral multiples related to TOP-invariance

Let BO and BTOP be the stable classifying spaces for vector bundles and
topological bundles respectively. Let the canonical map [1]
¢:BO —» BTOP
be treated as a fibration and let TOP /O be its homotopy fibre with
7n:TOP/0O - BO
the canonical inclusion. Let
¢ :H*(BTOP; A) - H*(BO; A),
n*:H*(BO; A) - H"*(TOP/O; A)
be the induced maps in cohomology, where A is any commutative ring with
identity.
We recall the following from [3].

i
Definition 2.1. Let ¢, ={E;,—>X}, i =0, 1 be two vector bundles on the same base
X. We say that £, and £, are TOP-equivalent if there exists a homeomorphism
h: E,— E, making the following diagram commutative

E—" L F

0 1
S e

There is a similar definition for stable TOP-equivalence.

Definition 2.2. Let x € H*(BO; A) be a universal characteristic class of stable
vector bundles. We say that x is TOP-invariant if for each pair (&, ¢,) of stably
TOP-equivalent vector bundles on X, we have £;5(x) = ¢&;"(x). [Here we use the
same symbol ¢, for the bundle and the homotopy class of its classifying map
X - BO)]
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The following lemma giving necessary and sufficient conditions for TOP-invari-
ance plays a crucial role in this work.

Lemma 2.3. (a) (A necessary condition for TOP-invariance) If a characteristic class
x € H*(BO; A) is TOP-invariant, then x € Ker n*.

(b) (A sufficient condition for TOP-invariance) x € H *(BO; A) is TOP-in-
variant if x € Image ¢~.

(c) (A necessary and sufficient condition for TOP-invariance) A characteristic
class x € H *(BO; A) is TOP-invariant iff u*x =x X 1 where u is the composite

BO x TOP,/0 - BO x BO —— BO
where A is the H-space multiplication.

For a proof see [3].

Let A=27[3] and let c, be the smallest positive integer such that c,p, €
Image ¢*. Let d, be the smallest positive integer such that d, p, € Ker n*. We
consider here only the odd part of c,. Let w(k) denote the set of partitions of the
positive integer k. Also let ¢, =c;c;,...c; for =0y, iy,...,i,) €m(k) and
I, e n(x)Co = the least common multiple of c,’s when w varies in m(k). Let
v =(2%~1 ~ 1)Num(B,, /4k) where B,, is the (2k)th Bernoulli number and
Num(B,, /4k) denotes the numerator of the fraction B,,/4k in the lowest terms.
Let v,(m) = the p-valuation of an integer m for a prime p.

We require the following lemmas.

Lemma 2.4. For every k > 1, c, divides vy, - ﬁwEW(k),w;ékcm.
For a proof see [4, Lemma 2.1].

Lemma 2.5 [3, Theorem 1.4]. If p is an odd prime which divides vy, but does not
divide y; for 1<i<k, then v,(d,) =v,(y,).

Proposition 2.6 [3, Corollary 2.9]. ¢, =l.c.m. of dy,...,d,.
Proof. Applying n* on p, we get
pp=(1Xn")Ap,

=(IXn"){p®1+ X pi®p;

i+j=k
=1
=p®1+ Y p;®n*(p)).
i+j=k
j=1

If m;=1cm. of dy,...,d, then
p*(myp) =mp,®1+Y p®n" (mp;)
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Now Lemma 2.3(c) implies that m, p, is TOP-invariant. Since e, is the smallest
such integer, ¢, divides m,. Also, the above calculation of p*p, shows that m, is
the smallest integer such that the class x =m,p, satisfies the necessary and
sufficient condition u*x =x X 1. Since e, p, is TOP-invariant, m, divides e, and
hence m,=e,. O

Lemma 2.7. If p is an odd prime and p divides c, but not c; for 1 <i<k then p
divides e,,.

Proof. Since p does not divide c; for 1 <i <k, p will not divide ﬁwETr(k)mﬁ ©Cor
Lemma 2.4 implies that if p divides ¢, then p divides v,, in fact v,(c;) = v,(y,).
Combining with Lemma 2.5 we get v,(c;) =v,(v,) =v,(d,). But p divides d,
implies that p divides e, since e, =lcm. of dy,...,d,. O

Remark 2.8. Given below are some values of ¢, for k<7,

e, =1, e,=17,
e; =731, e, =7.31.127, ,
es=7.31.127.73, es=7.31.127.73.23.89.691,

e;=7.31.127.73.23.89.691.8191.

3. Proofs of Theorem A and Corollary B

Theorem A can be divided into three cases:
Case 1: k <n(p). If n(p) = « then this case is Corollary B. In this case we apply
the sufficient condition for TOP-invariance (Lemma 2.3(b)).
Case 2: k =n(p). To prove this we apply the necessary condition for TOP-in-
variance (Lemma 2.3(a)), that is if p, & Ker %* then p, is not TOP-invariant.
Case 3: k >n(p). The necessary and sufficient condition for TOP-invariance
(Lemma 2.3(c)) is used to prove this. We show that 4*p, # p, X 1 implying that p,
is not TOP-invariant for every k > n(p).
For Case 1, denote by p,, the kth integral Pontrjagin class modulo p, p an odd
prime. We know that p, € H**(BO; Z /p) is TOP-invariant if
Py € Image[$* : H*(BTOP; Z /p) — H *(BO; Z/p)].
Let us consider the following commutative diagram
00— Ker(p*®1) Kerg* Ker f

| |

0—— H*(BTOP; 2)®Z / p ——— H*(BTOP; Z/ p) —> Tor( H**+(BTOP; Z); Z/ p) — 0

¢ el l@* ‘f

00— H*(BO; 2)®7Z/p — H**(BO; Z/ p) —— Tor( H**+Y(BO; 2); Z/p) ——>0

| |

Coker ¢*®7Z/p——> Coker ¢ * ———————> Coker f
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Since H *(BO; Z) does not contain odd prime torsion, Tor( H***(BO; 7); Z /p) =
0 implying that Coker f=0. Also Coker(¢* ® 1) = Coker ¢* ® Z/p. By applying
the Snake Lemma we obtain the exact sequence

0—Ker(¢*®1) > Ker $* = Ker f— Coker ¢* ® 7 /p — Coker ¢* — 0.
Consider the part
Coker ¢* ® Z/p — Coker $* — 0

of the above sequence. Let n, , be the smallest positive integer such that
R, ..apP1'--- P € Image ¢, Since ci...cg*pit... pgt € Image ¢°, n, . di-
vides cf1...cpk Coker ¢ ® Z/p will contain summands of the type Z/n,, _, ®
Z /p. By hypothesis, k <n(p), hence by definition, p does not divide e,. Then by
Lemma 2.7, if p is odd and if p does not divide ¢;, 1 <i<k, then p does not
divide c¢,. But for every i, 1 <i <k, p does not divide e;. Inductively we can show
that p does not divide c;, 1 <i<k. Hence for kK <n(p), p does not divide c;,
1<i<k, and therefore p does not divide n,, . This implies Z/n, , ®7Z/p
=0, hence Coker ¢* = 0. This in turn will imply that p, € Image &, thus proving
that p, is TOP-invariant by Lemma 2.3(b).

For the proof of Case 2 we require the decomposition of the fibration

TOP/O —— BO —— BTOP

which when localised at an odd prime p is the product of two fibrations (see [3])

@) 6, — B0, — BOG,,

(i) Coker J,, —> * —— B Coker J
where Xy and g,y denote the space X and the map g localised at an odd prime
p. 8 is the Adams cannibalistic class, BO® is the space BO with H-space structure
induced by the tensor product of vector bundles of virtual dimension 1, B Coker I
is the space whose homotopy groups are isomorphic to the cokernel of the
J-homomorphism and Coker Jipy =42 B Coker J,). Thus we obtain the following
homotopy commutative diagram

Mgy X *
@(p) X Coker Jpy — Bo(p)

q

M(p)

TOP /O,

which implies that Ker 4* = Ker #'* where ) represents that cohomology is with
Z/p coefficients. Lemma 3.1 below proves that Ker #'" =(Image 6*) where
(Image 6*) denotes the ideal generated by the elements of Image g* of degree
>0. Now to prove Case 2 of Theorem A we show that for k=n(p), p, &
(Image 8*) which is isomorphic to Ker #'*. Thus the necessary condition for
TOP-invariance establishes that p, is not TOP-invariant.

The proof of Case 2 also requires the application of some results concerning the
Eilenberg—Moore spectral sequence [5], which we recall below.
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Let FSESB be a fibration. Suppose that 7 ,(B) operates trivially on the
cohomology of the fibre F and the cohomology groups H *(E; A) and H *(B; A)
are finitely generated, A being a commutative ring. Then there is a spectral
sequence (Eilenberg—Moore spectral sequence) {E,, d,} in the second quadrant,
having the following properties:

() E5'=Tor" g 4(H"(E; A); A).

(i) E, converges to H*(F; A).

(iii) The edge homomorphism

€Ay H*(E; A)=E)" > E>* > H*(F; A),
coincides with the map

A @y p. 4y H*(E; A)-H*(F; A),
which is obtained from the composite map

A®H*(E; Ay>H"(F; A)®H*(F; A)>H"(F; A)
on passing to quotient.

A result of Munkholm [2] states that, if in addition to the above hypothesis we
suppose that A is a principal ring with characteristic #2 and H *(B; A) and
H*(E; A) are polynomial algebras in at most countable variables, then the
Eilenberg-Moore spectral sequence collapses.

Atiyah and Segal established an H-equivalence between BO,, and BOg,).
Hence H *(BO®; Z/p)=H *(BO; Z/p) which is a polynomial algebra in count-

able variables. Hence the Eilenberg—Moore spectral sequence of the fibration
Mp) [

@(P) BO(P) BO(?,)

collapses.
The following lemma plays a crucial role in the proof.

Lemma 3.1. Ker #'* = (Image §*).

Proof. Let {E,, d,} be the Eilenberg—Moore spectral sequence of the fibration

Mp) 8 ®
@(p) BO(p) Bo(p)'

Consider the following commutative diagram where the edge homomorphism is
surjective and E, = E,_ due to the collapsing of the spfctral sequence. Let j be the
quotient map.

Z/p 8y-moe;2,m H" (BO; Z/p) =EY" —— E}" > H"(0,; Z/p)

Z/p®H"*(BO; Z/p) =H " (BO; Z/p) —— Image '~
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Hence
Image " =EJ* =EY*
=7/P ®y+mo°z,p H (BO; Z/p)
= H*(BO; Z/p)/(Image §*)

(see [6, p. 67]) which implies that Ker #'* = (Image §*). D

In the Universal Coefficient Theorem

(X; A)
0 H*(X; Z) © A 2528 4k (X; A) - Tor(H¥*+1(X; Z); A) - 0
the last term is zero for X = BO or BO® and A =Z, or Z/p since H*Y(X; 7)
contains only 2-torsion and p # 2. In these cases B(X; A) is an isomorphism.
Consider the following diagrams

B(BO®; Z/p)
—

H*(BO®; Z/p) H*(BO®; 2)8 1/ p— H*(BO®; 7)®(Z,,/8Z/p)

4) 3)
l{;' le;m 038(181)

(BO; Z/p)
H*(BO; 7/ p) &2 4(BO; 7) 7/ p—2s H**(BO; ) (Z,,)® 7,/ p)

and

“ 4 BBO®; Z el
H*%(BO®; 7) ® (2(,) @ Z/p) ———— (H*(BO®; Z) ® Z(,,)) ® Z/p —————— H**(BO®; Z,,)) ® Z/p
?) 1)

[Z216C:3V) (G 87,1

4 B(BO; Z,81

H*(BO; Z) ® (Z(,,® Z/p) ——— (H*(BO; 2)  Z(,)) ® Z/p — > H*(BO; Z,,) ® Z/p
The commutative square (1) is obtained by the naturality of the Universal Coeffi-
cient Theorem with respect to A =7, and the map 6: BO®— BO and tensoring
the square by Z/p. Square (2) is commutative since the map A is the map of
associativity. The commutative square (3) follows from the isomorphism B: Zpy®
Z/p =Z/p. The commutativity of square (4) follows from the naturality of the
Universal Coefficient Theorem for A =Z/p. Now juxtaposing the above two
diagrams we get the commutative diagram

[B(BO®; Z,)@1]o 4> B~' - B(BO®; Z/p)"*
H*(BO®; Z,/p) - — H*(BO®; Z,,) ® Z/p

J{é* 102(p>®1
[B(BO; Z,,)® 1o A B~1o B(BO; Z/p)!
H*(BO; Z/p) 2 H*(BO; Z,) ® Z/p
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Hence we obtain the following commutative diagram with exact rows

Ker §* ——— Ker(@z*(p) ® 1) — 0

0 —— H*(BO®; 2 /p) — H*(BO®; Z,)) ® Z/p —— 0 ——0
i Jeiner

0 —— H*(BO; Z/p) —— H**(BO; Z)®Z/p——>0——0

|

Coker §* ——— Coker(f; ®1) ————0

This implies that Coker §* = Coker(BZ(p) ® 1) = Coker 07, ® £/p. Consider the
map ¢ localised at p,

6(’;_): H*(BTOP; Z,,) » H " (BO; Z,,,),
where H* denotes the quotient of H ™ by its torsion subgroup. By definition
By =¢" ®1 where

¢°®1:H"(BTOP; Z)®Z,,— H*(BO; Z) ® Z .
Since ¢, is the product of fibrations # and * — B Coker J;

)y

93(4;1) = 02(1)).
Hence Coker eg(p) = Coker &,y = Coker(g* ® 1) = Coker ¢* ® Z,,,. In Coker ¢~
we have summands of the type Z/n,, . (refer to the proof of Case 1). Since n(p)
is the smallest value of k& for which p divides ¢, the only nonzero summand on
tensoring with Z/p will be Z /c,. Therefore

Coker * = Coker 02@)@ Z/p= (Z/ck ® & Z/nal___ak) ®Z»®L/p

n #Cp,

.. ay

=(z/c0 @ 2/m,, )02/

n #Cp

=Z/p
which implies that p, & Image 6*. Also since (Image 6*) is the ideal consisting of
elements of degree > 0, p, & (Image 6*).
To prove Case 3 we apply 4" on p,,

Ak A

LB = (L XA{")A" By

= (XG5 ® 1+ Dy—ppy ®Bruepy + Y B ® b
0<j+#n(p)
ivj=k

=Dk®1+ Py ® 0 (Buy) + X D:®47D;.
0<j=n(p)
i+j=k
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A

Since p,,, & Ker 47, 4" P, # 0 implying that i*p, #p, ® 1 for k > n(p). Ap-
plying the necessary and sufficient condition for TOP-invariance we get that p, is
not TOP-invariant for k> n(p). O
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