

Topology and its Applications 63 (1995) 59-67

Topological invariance of integral Pontrjagin classes mod p

Banwari Lal Sharma^{*}, Neeta Singh¹

Department of Mathematics, University of Allahabad, Allahabad, 211002, India

Received 16 September 1993; revised 18 April 1994

Abstract

It is proved that integral Pontrjagin classes $p_k \mod p$ are topological invariant if p is odd, k < n(p) and they are not topological invariant if $k \ge n(p)$, where n(p) is the smallest value of k for which p divides e_k and e_k is the smallest positive integer such that $e_k p_k$ is topological invariant. For example, $p_k \mod p$ is topological invariant for p = 3, 5, 11 etc. for every $k \ge 1$ but not topological invariant for p = 7 and $k \ge 2$.

Keywords: Integral Pontrjagin classes; Pontrjagin classes modulo p; Topological invariance; Eilenberg-Moore spectral sequence

AMS (MOS) Subj. Class.: 55R40, 55T20, 57R20

1. Introduction

This paper settles the problem of topological invariance of integral Pontrjagin classes p_k modulo a prime p. In [4] we reproved a classical result of Wu [7] that for every $k \ge 1$, p_k mod p is topological invariant (or briefly TOP-invariant) for p = 3 and extended it for p = 5. In fact, this problem turns out to be connected with the problem of finding the smallest multiples of integral Pontrjagin classes p_k which are TOP-invariant. The latter was solved in [3].

Let e_k be the smallest positive integer such that $e_k p_k$ is TOP-invariant. The following is an extension of the TOP-invariance of $p_k \mod 3$ and $p_k \mod 5$.

Theorem A. For any odd prime p, let n(p) be the smallest value of k such that p divides e_k . Then $p_k \mod p$ is TOP-invariant for k < n(p) and is not TOP-invariant for $k \ge n(p)$.

^{*} Corresponding author.

¹ The author is supported by the UGC as Research Scientist A.

^{0166-8641/95/\$09.50 © 1995} Elsevier Science B.V. All rights reserved SSDI 0166-8641(94)00064-6

For example, for p = 7, n(p) = 2, Theorem A implies that $p_1 \mod 7$ is the only TOP-invariant class and $p_k \mod 7$, $k \ge 2$ are not TOP-invariant.

Corollary B. If p is an odd prime which does not divide e_k , for every $k \ge 1$, then $p_k \mod p$ is TOP-invariant.

For example, 3, 5, 11, 13, 17 etc. are odd primes that do not divide any e_k .

The above theorems are proved by using necessary and sufficient conditions for TOP-invariance of characteristic classes proved in [3]. We recall them in Section 2. In this section, we also recall the numbers e_k and associated numbers d_k and c_k and their properties which are needed for the proofs of the theorems. Section 3 contains the proofs of Theorem A and Corollary B.

2. Integral multiples related to TOP-invariance

Let BO and BTOP be the stable classifying spaces for vector bundles and topological bundles respectively. Let the canonical map [1]

 φ : BO \rightarrow BTOP

be treated as a fibration and let TOP/O be its homotopy fibre with

 η : TOP/O \rightarrow BO

the canonical inclusion. Let

$$\varphi^* : H^*(\text{BTOP}; \Lambda) \to H^*(\text{BO}; \Lambda),$$

$$\eta^* : H^*(\text{BO}; \Lambda) \to H^*(\text{TOP/O}; \Lambda)$$

be the induced maps in cohomology, where Λ is any commutative ring with identity.

We recall the following from [3].

Definition 2.1. Let $\xi_i = \{E_i \xrightarrow{\pi_i} X\}$, i = 0, 1 be two vector bundles on the same base X. We say that ξ_0 and ξ_1 are *TOP-equivalent* if there exists a homeomorphism $h: E_0 \rightarrow E_1$ making the following diagram commutative

$$E_0 \xrightarrow[\pi_0]{h} E_1$$

There is a similar definition for stable TOP-equivalence.

Definition 2.2. Let $x \in H^*(BO; \Lambda)$ be a universal characteristic class of stable vector bundles. We say that x is *TOP-invariant* if for each pair (ξ_0, ξ_1) of stably TOP-equivalent vector bundles on X, we have $\xi_0^*(x) = \xi_1^*(x)$. [Here we use the same symbol ξ_i for the bundle and the homotopy class of its classifying map $X \to BO$.]

The following lemma giving necessary and sufficient conditions for TOP-invariance plays a crucial role in this work.

Lemma 2.3. (a) (A necessary condition for TOP-invariance) If a characteristic class $x \in H^*(BO; \Lambda)$ is TOP-invariant, then $x \in \text{Ker } \eta^*$.

(b) (A sufficient condition for TOP-invariance) $x \in H^*(BO; \Lambda)$ is TOP-invariant if $x \in \text{Image } \varphi^*$.

(c) (A necessary and sufficient condition for TOP-invariance) A characteristic class $x \in H^*(BO; \Lambda)$ is TOP-invariant iff $\mu^* x = x \times 1$ where μ is the composite

 $BO \times TOP / O \xrightarrow{1 \times \eta} BO \times BO \xrightarrow{\lambda} BO$

where λ is the H-space multiplication.

For a proof see [3].

Let $\Lambda = \mathbb{Z}[\frac{1}{2}]$ and let c_k be the smallest positive integer such that $c_k p_k \in$ Image φ^* . Let d_k be the smallest positive integer such that $d_k p_k \in$ Ker η^* . We consider here only the odd part of c_k . Let $\pi(k)$ denote the set of partitions of the positive integer k. Also let $c_{\omega} = c_{i_1}c_{i_2}\dots c_{i_r}$ for $\omega = (i_1, i_2, \dots, i_r) \in \pi(k)$ and $\tilde{\Pi}_{\omega \in \pi(k)}c_{\omega} =$ the least common multiple of c_{ω} 's when ω varies in $\pi(k)$. Let $\gamma_k = (2^{2k-1} - 1)\operatorname{Num}(B_{2k}/4k)$ where B_{2k} is the (2k)th Bernoulli number and $\operatorname{Num}(B_{2k}/4k)$ denotes the numerator of the fraction $B_{2k}/4k$ in the lowest terms. Let $v_p(m) =$ the p-valuation of an integer m for a prime p.

We require the following lemmas.

Lemma 2.4. For every $k \ge 1$, c_k divides $\gamma_k \cdot \prod_{\omega \in \pi(k), \omega \neq k} c_{\omega}$.

For a proof see [4, Lemma 2.1].

Lemma 2.5 [3, Theorem 1.4]. If p is an odd prime which divides γ_k but does not divide γ_i for $1 \le i < k$, then $v_p(d_k) = v_p(\gamma_k)$.

Proposition 2.6 [3, Corollary 2.9]. $e_k = l.c.m. \text{ of } d_1, ..., d_k.$

Proof. Applying μ^* on p_k we get

$$\mu^* p_k = (1 \times \eta^*) \lambda^* p_k$$

= $(1 \times \eta^*) \left(p_k \otimes 1 + \sum_{\substack{i+j=k \ j \ge 1}} p_i \otimes p_j \right)$
= $p_k \otimes 1 + \sum_{\substack{i+j=k \ j \ge 1}} p_i \otimes \eta^* (p_j).$

If $m_k = \text{l.c.m. of } d_1, \ldots, d_k$ then

$$\mu^*(m_k p_k) = m_k p_k \otimes 1 + \sum p_i \otimes \eta^*(m_k p_j)$$
$$= (m_k p_k) \otimes 1.$$

Now Lemma 2.3(c) implies that $m_k p_k$ is TOP-invariant. Since e_k is the smallest such integer, e_k divides m_k . Also, the above calculation of $\mu^* p_k$ shows that m_k is the smallest integer such that the class $x = m_k p_k$ satisfies the necessary and sufficient condition $\mu^* x = x \times 1$. Since $e_k p_k$ is TOP-invariant, m_k divides e_k and hence $m_k = e_k$. \Box

Lemma 2.7. If p is an odd prime and p divides c_k but not c_i for $1 \le i < k$ then p divides e_k .

Proof. Since p does not divide c_i for $1 \le i < k$, p will not divide $\prod_{\omega \in \pi(k), \omega \ne k} c_{\omega}$. Lemma 2.4 implies that if p divides c_k then p divides γ_k , in fact $v_p(c_k) = v_p(\gamma_k)$. Combining with Lemma 2.5 we get $v_p(c_k) = v_p(\gamma_k) = v_p(d_k)$. But p divides d_k implies that p divides e_k since $e_k = 1$ c.m. of d_1, \ldots, d_k . \Box

Remark 2.8. Given below are some values of e_k for $k \leq 7$,

 $\begin{array}{ll} e_1=1, & e_2=7, \\ e_3=7.31, & e_4=7.31.127, \\ e_5=7.31.127.73, & e_6=7.31.127.73.23.89.691, \\ e_7=7.31.127.73.23.89.691.8191. \end{array}$

3. Proofs of Theorem A and Corollary B

Theorem A can be divided into three cases:

Case 1: k < n(p). If $n(p) = \infty$ then this case is Corollary B. In this case we apply the sufficient condition for TOP-invariance (Lemma 2.3(b)).

Case 2: k = n(p). To prove this we apply the necessary condition for TOP-invariance (Lemma 2.3(a)), that is if $\hat{p}_k \notin \text{Ker } \hat{\eta}^*$ then \hat{p}_k is not TOP-invariant.

Case 3: k > n(p). The necessary and sufficient condition for TOP-invariance (Lemma 2.3(c)) is used to prove this. We show that $\hat{\mu}^* \hat{p}_k \neq \hat{p}_k \times 1$ implying that \hat{p}_k is not TOP-invariant for every k > n(p).

For Case 1, denote by \hat{p}_k , the kth integral Pontrjagin class modulo p, p an odd prime. We know that $\hat{p}_k \in H^{4k}(BO; \mathbb{Z}/p)$ is TOP-invariant if

 $\hat{p}_k \in \text{Image}[\hat{\varphi}^* : H^*(\text{BTOP}; \mathbb{Z}/p) \to H^*(\text{BO}; \mathbb{Z}/p)].$

Let us consider the following commutative diagram

62

Since $H^*(BO; \mathbb{Z})$ does not contain odd prime torsion, $Tor(H^{4k+1}(BO; \mathbb{Z}); \mathbb{Z}/p) =$ 0 implying that Coker f = 0. Also $\operatorname{Coker}(\varphi^* \otimes 1) \cong \operatorname{Coker} \varphi^* \otimes \mathbb{Z}/p$. By applying the Snake Lemma we obtain the exact sequence

 $0 \to \operatorname{Ker}(\varphi^* \otimes 1) \to \operatorname{Ker} \hat{\varphi}^* \to \operatorname{Ker} f \to \operatorname{Coker} \varphi^* \otimes \mathbb{Z}/p \to \operatorname{Coker} \hat{\varphi}^* \to 0.$ Consider the part

Coker $\varphi^* \otimes \mathbb{Z}/p \to \text{Coker } \hat{\varphi}^* \to 0$

of the above sequence. Let $n_{\alpha_1...\alpha_k}$ be the smallest positive integer such that $n_{\alpha_1...\alpha_k} p_1^{\alpha_1} \dots p_k^{\alpha_k} \in \text{Image } \varphi^*$. Since $c_1^{\alpha_1} \dots c_k^{\alpha_k} p_1^{\alpha_1} \dots p_k^{\alpha_k} \in \text{Image } \varphi^*$, $n_{\alpha_1...\alpha_k}$ divides $c_1^{\alpha_1} \dots c_k^{\alpha_k}$. Coker $\varphi^* \otimes \mathbb{Z}/p$ will contain summands of the type $\mathbb{Z}/n_{\alpha_1\dots\alpha_k} \otimes$ \mathbb{Z}/p . By hypothesis, k < n(p), hence by definition, p does not divide e_k . Then by Lemma 2.7, if p is odd and if p does not divide c_i , $1 \le i \le k$, then p does not divide c_k . But for every $i, 1 \le i < k, p$ does not divide e_i . Inductively we can show that p does not divide c_i , $1 \le i \le k$. Hence for $k \le n(p)$, p does not divide c_i , $1 \leq i \leq k$, and therefore p does not divide $n_{\alpha_1...\alpha_k}$. This implies $\mathbb{Z}/n_{\alpha_1...\alpha_k} \otimes \mathbb{Z}/p$ = 0, hence Coker $\hat{\varphi}^* = 0$. This in turn will imply that $\hat{p}_k \in \text{Image } \hat{\varphi}^*$, thus proving that \hat{p}_k is TOP-invariant by Lemma 2.3(b).

For the proof of Case 2 we require the decomposition of the fibration

 $TOP/O \xrightarrow{\eta} BO \xrightarrow{\varphi} BTOP$

which when localised at an odd prime p is the product of two fibrations (see [3])

(i) $\Theta_{(p)} \xrightarrow{\eta_{(p)}} BO_{(p)} \xrightarrow{\theta} BO_{(p)}^{\otimes}$, (ii) Coker $J_{(p)} \longrightarrow * \longrightarrow B$ Coker $J_{(p)}$ where $X_{(p)}$ and $g_{(p)}$ denote the space X and the map g localised at an odd prime p. θ is the Adams cannibalistic class, BO^{\otimes} is the space BO with H-space structure induced by the tensor product of vector bundles of virtual dimension 1, B Coker $J_{(n)}$ is the space whose homotopy groups are isomorphic to the cokernel of the J-homomorphism and Coker $J_{(p)} \cong \Omega$ B Coker $J_{(p)}$. Thus we obtain the following homotopy commutative diagram

which implies that Ker $\hat{\eta}^* = \text{Ker } \hat{\eta}'^*$ where $\hat{\gamma}$ represents that cohomology is with \mathbb{Z}/p coefficients. Lemma 3.1 below proves that Ker $\hat{\eta}'^* \cong (\overline{\text{Image } \hat{\theta}^*})$ where (Image $\hat{\theta}^*$) denotes the ideal generated by the elements of Image $\hat{\theta}^*$ of degree >0. Now to prove Case 2 of Theorem A we show that for k = n(p), $\hat{p}_k \notin$ (Image $\hat{\theta}^*$) which is isomorphic to Ker $\hat{\eta}'^*$. Thus the necessary condition for TOP-invariance establishes that \hat{p}_k is not TOP-invariant.

The proof of Case 2 also requires the application of some results concerning the Eilenberg–Moore spectral sequence [5], which we recall below.

Let $F \xrightarrow{i} E \xrightarrow{\pi} B$ be a fibration. Suppose that $\pi_1(B)$ operates trivially on the cohomology of the fibre F and the cohomology groups $H^*(E; \Lambda)$ and $H^*(B; \Lambda)$ are finitely generated, Λ being a commutative ring. Then there is a spectral sequence (Eilenberg-Moore spectral sequence) $\{E_r, d_r\}$ in the second quadrant, having the following properties:

- (i) $E_2^{s,t} = \operatorname{Tor}_{H^*(B;\Lambda)}^{s,t}(H^*(E;\Lambda);\Lambda).$
- (ii) E_r converges to $H^*(F; \Lambda)$.
- (iii) The edge homomorphism

$$e: \Lambda \otimes_{H^*(B;\Lambda)} H^*(E;\Lambda) = E_2^{0,*} \to E_{\infty}^{0,*} \hookrightarrow H^*(F;\Lambda),$$

coincides with the map

$$\Lambda \otimes_{H^*(B;\Lambda)} H^*(E;\Lambda) \to H^*(F;\Lambda),$$

which is obtained from the composite map

$$\Lambda \otimes H^*(E;\Lambda) \to H^*(F;\Lambda) \otimes H^*(F;\Lambda) \to H^*(F;\Lambda)$$

on passing to quotient.

A result of Munkholm [2] states that, if in addition to the above hypothesis we suppose that Λ is a principal ring with characteristic $\neq 2$ and $H^*(B; \Lambda)$ and $H^*(E; \Lambda)$ are polynomial algebras in at most countable variables, then the Eilenberg-Moore spectral sequence collapses.

Atiyah and Segal established an H-equivalence between $BO_{(p)}$ and $BO_{(p)}^{\otimes}$. Hence $H^*(BO^{\otimes}; \mathbb{Z}/p) \cong H^*(BO; \mathbb{Z}/p)$ which is a polynomial algebra in countable variables. Hence the Eilenberg-Moore spectral sequence of the fibration

$$\Theta_{(p)} \xrightarrow{\eta_{(p)}} \mathrm{BO}_{(p)} \xrightarrow{\theta} \mathrm{BO}_{(p)}^{\otimes}$$

collapses.

The following lemma plays a crucial role in the proof.

Lemma 3.1. Ker $\hat{\eta}'^* \cong (\text{Image } \hat{\theta}^*).$

Proof. Let $\{E_r, d_r\}$ be the Eilenberg-Moore spectral sequence of the fibration

 $\Theta_{(p)} \xrightarrow{\eta'_{(p)}} \mathrm{BO}_{(p)} \xrightarrow{\theta} \mathrm{BO}_{(p)}^{\otimes}$

Consider the following commutative diagram where the edge homomorphism is surjective and $E_2 = E_{\infty}$ due to the collapsing of the spectral sequence. Let *j* be the quotient map.

64

Hence

Image
$$\hat{\eta}'^* \cong E^{0,*}_{\infty} \cong E^{0,*}_{2}$$

$$\cong \mathbb{Z}/p \otimes_{H^*(\mathrm{BO}^{\otimes};\mathbb{Z}/p)} H^*(\mathrm{BO};\mathbb{Z}/p)$$
$$\cong H^*(\mathrm{BO};\mathbb{Z}/p)/(\overline{\mathrm{Image}\ \hat{\theta}^*})$$

(see [6, p. 67]) which implies that Ker $\hat{\eta}^{\prime *} \cong (\overline{\text{Image } \hat{\theta}^{*}}).$

In the Universal Coefficient Theorem

$$0 \to H^{4k}(X;\mathbb{Z}) \otimes \Lambda \xrightarrow{\beta(X;\Lambda)} H^{4k}(X;\Lambda) \to \operatorname{Tor}(H^{4k+1}(X;\mathbb{Z});\Lambda) \to 0$$

the last term is zero for X = BO or BO^{\otimes} and $\Lambda = \mathbb{Z}_{(p)}$ or \mathbb{Z}/p since $H^{4k+1}(X; \mathbb{Z})$ contains only 2-torsion and $p \neq 2$. In these cases $\beta(X; \Lambda)$ is an isomorphism. Consider the following diagrams

and

The commutative square (1) is obtained by the naturality of the Universal Coefficient Theorem with respect to $\Lambda = \mathbb{Z}_{(p)}$ and the map $\theta : BO^{\otimes} \to BO$ and tensoring the square by \mathbb{Z}/p . Square (2) is commutative since the map Λ is the map of associativity. The commutative square (3) follows from the isomorphism $B : \mathbb{Z}_{(p)} \otimes \mathbb{Z}/p \cong \mathbb{Z}/p$. The commutativity of square (4) follows from the naturality of the Universal Coefficient Theorem for $\Lambda = \mathbb{Z}/p$. Now juxtaposing the above two diagrams we get the commutative diagram

Hence we obtain the following commutative diagram with exact rows

This implies that Coker $\hat{\theta}^* \cong \operatorname{Coker}(\theta^*_{\mathbb{Z}_{(p)}} \otimes 1) \cong \operatorname{Coker} \theta^*_{\mathbb{Z}_{(p)}} \otimes \mathbb{Z}/p$. Consider the map $\overline{\varphi}^*$ localised at p,

 $\overline{\varphi}_{(p)}^*: \overline{H}^*(\operatorname{BTOP}; \mathbb{Z}_{(p)}) \to \overline{H}^*(\operatorname{BO}; \mathbb{Z}_{(p)}),$

where \overline{H}^* denotes the quotient of H^* by its torsion subgroup. By definition $\overline{\varphi}^*_{(p)} = \overline{\varphi}^* \otimes 1$ where

 $\overline{\varphi}^* \otimes 1 : \overline{H}^*(\text{BTOP}; \mathbb{Z}) \otimes \mathbb{Z}_{(p)} \to \overline{H}^*(\text{BO}; \mathbb{Z}) \otimes \mathbb{Z}_{(p)}.$

Since $\varphi_{(p)}$ is the product of fibrations θ and $* \to B$ Coker $J_{(p)}$,

 $\overline{\varphi}_{(p)}^* = \theta_{\mathbb{Z}_{(p)}}^*.$

Hence Coker $\theta_{\mathbb{Z}_{(p)}}^* = \text{Coker } \overline{\varphi}_{(p)}^* = \text{Coker}(\overline{\varphi}^* \otimes 1) = \text{Coker } \overline{\varphi}^* \otimes \mathbb{Z}_{(p)}$. In Coker $\overline{\varphi}^*$ we have summands of the type $\mathbb{Z}/n_{\alpha_1...\alpha_k}$ (refer to the proof of Case 1). Since n(p) is the smallest value of k for which p divides c_k , the only nonzero summand on tensoring with \mathbb{Z}/p will be \mathbb{Z}/c_k . Therefore

Coker
$$\hat{\theta}^* \cong \text{Coker } \theta^*_{\mathbb{Z}_{(p)}} \otimes \mathbb{Z}/p \cong \left(\mathbb{Z}/c_k \oplus \bigoplus_{\substack{n_{\alpha_1...\alpha_k} \neq c_k}} \mathbb{Z}/n_{\alpha_1...\alpha_k}\right) \otimes \mathbb{Z}_{(p)} \otimes \mathbb{Z}/p$$

$$\cong \left(\mathbb{Z}/c_k \oplus \bigoplus_{\substack{n_{\alpha_1...\alpha_k} \neq c_k}} \mathbb{Z}/n_{\alpha_1...\alpha_k}\right) \otimes \mathbb{Z}/p$$
$$\cong \mathbb{Z}/p$$

which implies that $\hat{p}_k \notin \text{Image } \hat{\theta}^*$. Also since $(\text{Image } \hat{\theta}^*)$ is the ideal consisting of elements of degree > 0, $\hat{p}_k \notin (\text{Image } \hat{\theta}^*)$.

To prove Case 3 we apply
$$\hat{\mu}^*$$
 on \hat{p}_k ,
 $\hat{\mu}^* \hat{p}_k = (1 \times \hat{\eta}^*) \lambda^* \hat{p}_k$
 $= (1 \times \hat{\eta}^*) \left[\hat{p}_k \otimes 1 + \hat{p}_{k-n(p)} \otimes \hat{p}_{n(p)} + \sum_{\substack{0 < j \neq n(p) \\ i+j=k}} \hat{p}_i \otimes \hat{p}_j \right]$
 $= \hat{p}_k \otimes 1 + \hat{p}_{k-n(p)} \otimes \hat{\eta}^* (\hat{p}_{n(p)}) + \sum_{\substack{0 < j \neq n(p) \\ i+j=k}} \hat{p}_i \otimes \hat{\eta}^* \hat{p}_j.$

Since $\hat{p}_{n(p)} \notin \text{Ker } \hat{\eta}^*$, $\hat{\eta}^* \hat{p}_{n(p)} \neq 0$ implying that $\hat{\mu}^* \hat{p}_k \neq \hat{p}_k \otimes 1$ for k > n(p). Applying the necessary and sufficient condition for TOP-invariance we get that \hat{p}_k is not TOP-invariant for k > n(p). \Box

References

- J.W. Milnor and J.D. Stasheff, Characteristic Classes, Annals of Mathematics Studies 76 (Princeton University Press, Princeton, NJ, 1974).
- [2] H.J. Munkholm, The Eilenberg-Moore spectral sequence and strongly homotopy multiplicative maps, J. Pure Appl. Algebra 5 (1974) 1-50.
- [3] B.L. Sharma, Topologically invariant integral characteristic classes, Topology Appl. 21 (1985) 135-146.
- [4] N. Singh, On topological and homotopy invariance of integral Pontrjagin classes modulo a prime p, Topology Appl. 38 (1991) 225-235.
- [5] L. Smith, Homological algebra and the Eilenberg-Moore spectral sequence, Trans. Amer. Math. Soc. 129 (1967) 58-93.
- [6] L. Smith, Lectures on the Eilenberg-Moore Spectral Sequence, Lecture Notes in Mathematics 134 (Springer, Berlin, 1970).
- [7] W.T. Wu, On Pontrjagin classes III, Acta Math. Sinica 4 (1954); also Amer. Math. Soc. Transl. Ser. 2 11 (1959) 155–172 (in English).