
el

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Artificial Intelligence 169 (2005) 1–22

www.elsevier.com/locate/artint

An incremental algorithm for generating all
minimal models

Rachel Ben-Eliyahu – Zohary 1

Software Engineering Department, Jerusalem College of Engineering (JCE), Jerusalem 91035, Isra

Received 1 October 2002; received in revised form 23 March 2005; accepted 22 June 2005

Available online 11 August 2005

Abstract

The task of generating minimal models of a knowledge base is at the computational heart of
diagnosis systems like truth maintenance systems, and of nonmonotonic systems like autoepistemic
logic, default logic, and disjunctive logic programs. Unfortunately, it is NP-hard. In this paper we
present a hierarchy of classes of knowledge bases, Ψ1,Ψ2, . . . , with the following properties: first,
Ψ1 is the class of all Horn knowledge bases; second, if a knowledge base T is in Ψk , then T has at
most k minimal models, and all of them may be found in time O(lk2), where l is the length of the
knowledge base; third, for an arbitrary knowledge base T , we can find the minimum k such that T

belongs to Ψk in time polynomial in the size of T ; and, last, where K is the class of all knowledge
bases, it is the case that

⋃∞
i=1 Ψi = K, that is, every knowledge base belongs to some class in the

hierarchy. The algorithm is incremental, that is, it is capable of generating one model at a time.
 2005 Elsevier B.V. All rights reserved.

Keywords:Minimal models; Nonmonotonic reasoning; Diagnosis; Logic programming; Knowledge
representation; Propositional statisfiability; Datalog

E-mail address:rbz@jce.ac.il (R. Ben-Eliyahu – Zohary).
1 Part of this work was done while the author was a visiting scholar in the division of engineering and applied

sciences, Harvard university, Cambridge, Massachusetts. A paper discussing a preliminary version of this work
has appeared in AAAI-2000 under the name “A demand-driven algorithm for generating minimal models”.
0004-3702/$ – see front matter 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.artint.2005.06.003

https://core.ac.uk/display/82767576?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 R. Ben-Eliyahu – Zohary / Artificial Intelligence 169 (2005) 1–22
1. Introduction

Computing minimal models is an essential task in many reasoning systems in Artificial
Intelligence, including circumscription [23,25,26], default logic [28], and minimal diagno-
sis [12], and in answering queries posed on logic programs and deductive databases [27].
In such reasoning systems, the goal is to produce plausible inferences or plausible expla-
nations, not to compute minimal models. Nonetheless, efficient algorithms for computing
minimal models can help reaching a substantial speed up in inference in implemented
systems.

Let us take a closer look at the task of computing the stable models of a knowledge
base expressed in the language of disjunctive logic programs. One of the most successful
semantics for logic programs is stable model semantics[5,16,17], which associates with
any logic program a (possibly empty) set of models called stable models. Intuitively, each
stable model represents a set of coherent conclusions one might deduce from the logic
program. It turns out that the task of computing grounded interpretations for a set of TMS
justifications corresponds exactly to the task of computing the stable models of the logic
programs represented by the set of TMS justifications, and that algorithms for comput-
ing stable models may be used in computing expansions of autoepistemic programs and
extensions of Reiter’s default theories [15,18].

Each stable model of a knowledge base is a minimal model. Moreover, if the knowledge
base is stratified, that is, if there are no circular dependencies between the facts that involve
negation, the computation of the stable model is carried by dividing the knowledge into
layers (strata) and computing the set of minimal models in each strata.

The algorithm presented in this paper can be used for computing all minimal models,
but it can stop once only part of the models have been generated. That is, there is no need
to compare all the models of the knowledge base with each other in order to find out which
of them is minimal. This feature can be used, for example, as follows:

In entailment—a fact follows from the knowledge base iff it is true in all minimal mod-
els. We can check the minimal models one at a time and refute a fact before seeing all of
them.

In diagnosis—each minimal model is an indication of a possible set of faulty compo-
nents. We can check the components suggested by some minimal model while the next
minimal model is being generated.

The task of reasoning with minimal models has received a formal analysis in several
studies [3,8–10,14,22]. Unfortunately, the results of the above work on the complexities of
reasoning with minimal models are discouraging. It turns out that even when the knowledge
base is positive, that is, when the knowledge base has no integrity constraints, finding
one minimal model is P NP[O(logn)]-hard [9] (and positive theories always have a minimal
model!),2 and checking whether a model is minimal for some knowledge base is co-NP-
complete [8].

2 We recall that P NP[O(logn)] is the class of decision problems that are solved by polynomial-time bounded
deterministic Turing machines making at most a logarithmic number of calls to an oracle in NP. For a precise
characterization of the complexity of model finding, given in terms of complexity classes of functions, see [10].

R. Ben-Eliyahu – Zohary / Artificial Intelligence 169 (2005) 1–22 3
In this paper we present a new algorithm for computing minimal models. Using this
algorithm, we can show a hierarchy of classes of knowledge bases, Ψ1,Ψ2, . . . , with the
following properties: first, Ψ1 is the class of all Horn knowledge bases; second, if a knowl-
edge base T is in Ψk , then T has at most k minimal models, and all of them may be found
in time O(lk2), where l is the length of the knowledge base; third, for an arbitrary knowl-
edge base T , we can find the minimum k such that T belongs to Ψk in time polynomial
in the size of T ; and, last, where K is the class of all knowledge bases, it is the case that⋃∞

i=1 Ψi = K, that is, every knowledge base belongs to some class in the hierarchy. The
algorithm that we present is demand-driven, that is, it is capable of generating one model
at a time. We show how the algorithm can be generalized to allow efficient computation
of minimal Herbrand models for the subclass of all function-free first-order knowledge
bases.

The paper is organized as follows. In the next section, we define some basic termi-
nology. In Section 3 we present the algorithm for minimal model generation, called AM.
Algorithm AM works from the bottom up on the superstructure of the dependency graph
of the knowledge base and may use any known procedure for computing minimal models
as a subroutine. Section 4 explains how the algorithm AM can be generalized to handle
knowledge bases over a function-free first-order language. Finally, in Sections 5 and 6, we
discuss related work and make concluding remarks.

2. Preliminary definitions

2.1. Syntax

We define a knowledge base to be a set of rules which are implications of the form

A1 ∧ · · · ∧ An −→ B1 ∨ · · · ∨ Bm (1)

where all the A’s and B’s are positive atoms and m,n � 0. The B’s are called the headof
the rule, the A’s—the body. When n = 0 the rule (1) becomes

true −→ B1 ∨ · · · ∨ Bm,

or simply:

B1 ∨ · · · ∨ Bm, (2)

and is called a fact. Rule (1) and fact (2) are said to be aboutB1, . . . ,Bm. When m = 0 the
rule (1) becomes

A1 ∧ · · · ∧ An −→ false, (3)

and is called an integrity constraint(name borrowed from database terminology). A rule
of the form (3) is said to be aboutA1, . . . ,An.

When both m,n are 0, the rule (1) is equal to false. The rule (1) is Horn whenever
m � 1.

4 R. Ben-Eliyahu – Zohary / Artificial Intelligence 169 (2005) 1–22
The size, or lengthof a knowledge base T is the total number of symbols that it takes
to write all the rules in it. It is well known that for any propositional formula there is a
logically equivalent CNF formula. It is easy to verify that any CNF propositional formula
has an equivalent formula in our language. Hence for any propositional formula there is a
logically equivalent formula in our language.

2.2. The dependency graph

Let T be a knowledge base. We will define a binary relation ≡ over the atoms in T to
be the minimal relation having the following properties. Let P,Q and R be atoms in the
knowledge base.

1. P ≡ P .
2. If at least one of the following conditions hold, P ≡ Q:

(a) P and Q are in the head of the same rule;
(b) P and Q are both in the body of the same integrity constraint;
(c) P and Q are both unconstrained. An atom P is unconstrainediff it appears only

in bodies of rules which are not integrity constraints.
3. If P ≡ Q and Q ≡ R then P ≡ R.

Clearly, ≡ is an equivalence relation and hence the equivalence sets make up a partition
of all the atoms in the knowledge base.

Example 2.1 (Running example). Consider the following knowledge base T0:

r1: P1 ∨ Q1

r2: P1 −→ P2 ∨ Q2

r3: P2 −→ P3 ∨ Q2

r4: P3 −→ Q3

r5: P2 ∧ Q2 −→ false

r6: P4 ∨ Q4

r7: P5 −→ P4.

Note that P5 is the only unconstrained atom. The equivalence sets with respect to the
relation ≡ are:

s1: {P1,Q1}
s2: {P2,Q2,P3}
s3: {Q3}
s4: {P4,Q4}
s5: {P5}.

Given a knowledge base T , the dependency graphof T is a directed graph built as
follows:

R. Ben-Eliyahu – Zohary / Artificial Intelligence 169 (2005) 1–22 5
Fig. 1. The dependency graph of T0.

Nodes: there are two types of nodes:
1. Each equivalence set with respect to the relation ≡ is a node, called ES-node.
2. Each rule having both a non-empty head and a non-empty body is a node,

called R-node. Note that, by definition, an integrity constraint is considered a
rule with an empty head and hence will not be represented as an R-node in the
graph.

Edges: Edges exist only between ES-nodes and R-nodes. Let s be an ES-node and r an
R-node. There is an edge directed from s to r iff an atom from ES-node s appears
in the body of r , and there is an edge directed from r to s iff there is an atom in s

that appears in the head of r .

Example 2.2. The dependency graph of the knowledge base T0 of Example 2.1 is shown
in Fig. 1.

The strongly connected components(SCC) of a directed graph G make up a partition
of its set of nodes such that, for each subset S in the partition and for each x, y ∈ S, there
are directed paths from x to y and from y to x in G. The strongly connected components
are identifiable in O(V + E) time, where V is the number of nodes and E the number of
edges in the graph [30].

The super dependency graphof a knowledge base T , denoted GT , is the superstructure
of the dependency graph of T . That is, GT is a directed graph built by making each strongly
connected component (SCC) in the dependency graph of T into a node in GT . An arc exists
from an SCC s to an SCC v iff there is an arc from one of the nodes in s to one of the nodes
in v in the dependency graph of T .

Note that GT is an acyclic graph; for if it has a directed cycle, all the SCCs on it should
have been one component.

Example 2.3. The super dependency graph of T0 is shown in Fig. 2. The nodes in the
square are grouped into a single node.

6 R. Ben-Eliyahu – Zohary / Artificial Intelligence 169 (2005) 1–22
Fig. 2. The super dependency graph of T0.

Recall that a sourceof a directed graph is a node with no incoming edges, while a sinkis
a node with no outgoing edges. Given a directed graph G and a node s in G, the subgraph
rooted bys, is the subgraph of G having all and only nodes t such that there is a path
directed from t to s in G (this includes s itself). The childrenof s in G are all nodes t such
that there is an arc directed from t to s in G.

Example 2.4. Consider the graph illustrated in Fig. 2. Node {P1,Q1} is a source in the
graph; {P5} is a sink. The subgraph rooted by {r2} consists of the node {r2}, the node
{P1,Q1}, and the arc between them. {r7} has only one child—{P5}.

2.3. Minimal models

Sometimes we will treat a truth assignment (in other words, an interpretation) in propo-
sitional logic as a set of atoms—the set of all atoms assigned true by the interpretation.
Given two interpretations, I and J , over sets of atoms A and B , respectively, the interpre-
tation I + J is defined as follows, where P is an arbitrary atom:

(I + J)(P) =

I (P) if P ∈ A \ B,

J (P) if P ∈ B \ A,

I (P) if P ∈ A ∩ B and I (P) = J (P),

undefined otherwise.

It is easy to verify that the operator + as defined above is commutative and associative. If
I (P) = J (P) for every P ∈ A ∩ B , we say that I and J are consistent. A set of interpreta-
tions is consistent if every pair of interpretations in the set is consistent.

A partial interpretation over a set of atoms A is a truth assignment over a set of atoms
B where B ⊆ A. A literal is an atom (e.g., P) or a negated atom (e.g., ¬P). A partial
interpretation can be represented as a set of literals: positive literals represent the atoms
that are true, negative literals—the atoms that are false, and the rest are unknown. Note
that if A is a set of literals which is a partial interpretation then A must be consistent. That
is, A cannot contain two literals which are the negation of each other (e.g., both P and ¬P).
A model of a knowledge base in propositional logic is an interpretation that satisfies all the
rules. A model m is minimalamong a set of models M iff there is no model m′ ∈ M such
that m′ ⊂ m. We will use the term minimal modelof some knowledge base T to denote a
model which is minimal among all the models of T . A knowledge base will be called Horn

R. Ben-Eliyahu – Zohary / Artificial Intelligence 169 (2005) 1–22 7
iff all its rules are Horn. A consistent Horn knowledge base has a unique minimal model
that can be found in linear time [11].

3. The algorithm

Algorithm ALL-MINIMAL (AM) is shown in Fig. 3. Algorithm AM exploits the struc-
ture of the knowledge base as it is reflected in its super dependency graph. It computes
all minimal models while traversing the super dependency graph from the bottom up, and
may use any algorithm for computing minimal models as a subroutine.

Let T be a knowledge base. With each node s in GT (the super dependency graph of
T), we associate the sets Ts , As , Ms , and T̂s . Ts is the subset of T containing all the rules
about the atoms in s. In other words, if s contains no ES-nodes then Ts is the empty set.
Otherwise, Ts is the set of all the rules which are about the atoms from all the ES-nodes in
s. Note that the R-nodes in the set s have no role in the procedure for constructing Ts .

Formally:

Ts = {r | r is about a set of atoms B and B ⊆ s}.
For example, T{P1,Q1} is r1 and T{P2,Q2,P3,r3} is r2, r3, and r5.

As is the set of all atoms in the nodes in the subgraph of GT rooted by s, and Ms is the
set of minimal models associated with the subset of the knowledge base T which contains
only rules about atoms in As . We define T̂s to be the knowledge base obtained from Ts by
deleting each occurrence of an atom that does not belong to s from the body of every rule.
For example, if Ts = {b −→ a, a ∧ d −→ c, a} and s = {a, c}, then T̂s = {a, a −→ c}. The
running example is next.

ALL-MINIMAL(T)
Input: A knowledge base T .
Output: The set of all minimal models of T .

1. Construct GT ;
2. Traverse GT from the bottom up. For each node s, do:

(a) Ms := ∅;
(b) Let s1, . . . , sj be the children of s;
(c) If j = 0, then Mc(s) := {∅};

else Mc(s) := Combine({Ms1 , . . . ,Msj });
(d) For each m ∈ Mc(s), do:

(i) Tsm := Transform(Ts,m);
(ii) M := ALL-MINIMAL-SUBROUTINE(Tsm);

(iii) If M �= ∅,
then Ms := Ms ∪ Combine({{m},M});

3. Output Combine({Ms1 , . . . ,Msk }),
where s1, . . . , sk are the sinks of GT .

Fig. 3. Algorithm ALL-MINIMAL (AM).

8 R. Ben-Eliyahu – Zohary / Artificial Intelligence 169 (2005) 1–22
Example 3.1 (Running example cont.). Suppose s is the node including P2,P3, Q2, and r3.
Then:

Ts is the set of the following rules:

r2: P1 −→ P2 ∨ Q2

r3: P2 −→ P3 ∨ Q2

r5: P2 ∧ Q2 −→ false.

As is the set of atoms {P1,Q1,P2,Q2,P3}.
ComputingMs : First, we have to find out what are all the rules about atoms in As . These

are:

r1: P1 ∨ Q1

r2: P1 −→ P2 ∨ Q2

r3: P2 −→ P3 ∨ Q2

r5: P2 ∧ Q2 −→ false.

Ms is the set of minimal models of the above knowledge base. That is,

Ms = {{P1,P2,P3}, {P1,Q2}, {Q1}
}
.

T̂s is the set of the following rules:

P2 ∨ Q2

r3: P2 −→ P3 ∨ Q2

r5: P2 ∧ Q2 −→ false.

For a simpler case, suppose s is the node containing r7. Then:
Ts is the empty set, because s contains no atoms.
As is a set containing only one atom—P5.
Ms is the empty set because there are no rules about P5 in T .
T̂s is also the empty set because Ts is the empty set.

The need to consider all the above sets of atoms and rules will be clarified in the sequel,
when we present algorithm AM and analyze its complexity.

Algorithm AM works with partial interpretations, which are sets of literals. In the
following paragraph, we will simply use the term “interpretations” instead of partial in-
terpretations. Initially, Ms is the empty set for every s. The algorithm traverses GT from
the bottom up (that is, starting from the sources). When at a node s, it first combines all
the partial models computed at the children nodes into a single set of interpretations Mc(s).
If s is a source, then Mc(s) is set to {∅}.3 Next, for each interpretation m in Mc(s), AM
converts Ts to a knowledge base Tsm using some transformations that depend on the atoms

3 Note the difference between {∅}, which is a set of one partial interpretation—the interpretation that does not
assign any truth value, and ∅, which is a set that contains no interpretations.

R. Ben-Eliyahu – Zohary / Artificial Intelligence 169 (2005) 1–22 9
Combine(I)
Input: A set of sets of partial interpretations I = {I1, . . . , In}.
Output: The set of partial interpretations {i1 + · · · + in | for 1 � j � n,
ij ∈ Ij and {i1, . . . , in} is a consistent set of interpretations}.

1. If I has a single element {E}, then return E;
2. I := ∅;
3. Let I ′ ∈ I;
4. D := Combine(I \ {I ′});
5. For each d in D, do:

(a) For each m in I ′, do:
If m and d are consistent,

then I := I ∪ {m + d};
(b) EndFor;

6. EndFor;
7. Return I .

Fig. 4. Procedure Combine.

in m (this is done using procedure Transform in Fig. 5, which will be described shortly);
then, algorithm AM finds all the minimal models of Tsm and combines them with m. The
set Ms is obtained by repeating this operation for each m in Mc(s). The procedure ALL-
MINIMAL-SUBROUTINE called by AM may be any procedure that generates all minimal
models.

AM uses the procedure Combine (Fig. 4), which receives as input a set of sets
of interpretations {I1, . . . , In} and returns all the consistent combinations of assign-
ments from each set. Formally, procedure Combine returns the set {i1 + · · · + in |
for 1 � j � n, ij ∈ Ij and {i1, . . . , in} is a consistent set of interpretations}. For example,
if M = {{{P,¬Q,R}, {¬P,¬Q,¬R}}, {{P,S,U}, {¬P,¬S,U}}} then Combine(M) =
{{P,¬Q,R,S,U}, {¬P,¬Q,¬R,¬S,U}}. If one of the sets of interpretations which
Combine gets as input is the empty set, Combine will output an empty set of interpre-
tations.

Procedure Transform (Fig. 5) gets as input a knowledge base T and a interpretation i,
and it changes T to reflect the truth assignment that i represents, in the following way:

• For each positive literal P in i, each occurrence of P is deleted from the body of each
rule in T .

• For each negative literal ¬P in i, if P occurs in a body of some rule in T , that rules is
deleted.

For example, if T is {P1 −→ P2 ∨Q2, P2 −→ P3 ∨Q2, P2 ∧Q2 −→ false} and i is {¬P1,
P2}, Transform(T , i) returns {P3 ∨ Q2, Q2 −→ false}. Here is another example using the
running example.

Example 3.2. Suppose s is the node including P2,P3, Q2, and r3. Then, as discussed in
Example 3.1, Ts is the following knowledge base:

10 R. Ben-Eliyahu – Zohary / Artificial Intelligence 169 (2005) 1–22

se
Transform(T ,m)
Input: A knowledge base T and an interpretation m;
Output: A transform of T where all the atoms having a truth value in m are
deleted.

1. For each positive literal P in m,
For each rule r in T

Delete each occurrence of P from the body of r ;
2. For each negative literal ¬P in m,

For each rule r in T

If P occurs in the body of r , delete r from T .

Fig. 5. Procedure Transform.

r2: P1 −→ P2 ∨ Q2

r3: P2 −→ P3 ∨ Q2

r5: P2 ∧ Q2 −→ false.

Assume i1 = {P1,¬Q1} and i2 = {¬P1,Q1}. Then:
Transform(Ts, i1) is

r2: P2 ∨ Q2

r3: P2 −→ P3 ∨ Q2

r5: P2 ∧ Q2 −→ false.

Transform(Ts, i2) is

r3: P2 −→ P3 ∨ Q2

r5: P2 ∧ Q2 −→ false.

We next show that Algorithm AM is correct.

Theorem 3.3. Algorithm AM is correct, that is,m is a minimal model of a knowledge ba
T iff m is generated by AM when applied toT .

Proof. Assume without loss of generality that GT has a single sink s (to get a single sink,
we can add to the program the rule P ←− P1, . . . ,Pk , where atoms P1, . . . ,Pk are all
the atoms that appear in the sinks and P is a new atom. Note that any sink will have at
least one S-node). Let s0, s1, . . . , sn be the ordering of the nodes of the super dependency
graph by which the algorithm is executed. Denote by Ksi the portion of the knowledge
base composed of rules that only use atoms from Asi . We will show by induction on i that
AM, when at node si , generates all and only the minimal models of Ksi .

Casei = 0. S0 is a course and hence has no children. Therefore Mc(s0) is set to {∅} at
step 2(c). The loop in step 2(d) is executed once with m = ∅. Transform returns T̂s0 = Ts0

and ALL-MINIMAL subroutine returns the set of minimal models of Ts0 . Since m is the
empty set, Combine returns this set as well. Note that for a source si , Tsi = Ksi .

R. Ben-Eliyahu – Zohary / Artificial Intelligence 169 (2005) 1–22 11
Casei > 0. First, we will show that every minimal model is generated. Assume by
contradiction that m′ is a minimal model of Ksi not generated by AM.

Claim 1. Supposem′ is a minimal model ofKsi , and letc be a child ofsi . Let m1 be the
interpretation resulting from projectingm′ on Ac. Thenm1 is a minimal model ofKc, the
portion of the knowledge base composed of rules that only use atoms fromAc.

Proof of Claim 1. Assume by contradiction that m1 is not a minimal model of Kc . Then
there must be another model of Kc, m2, such that m2 ⊂ m1. We claim that m′′ = m2 ∪
(m′ − m1) is a model of Ksi . Clearly, all rules in Kc are satisfied by m′′. Rules in Ksi

having no atoms from Ac are also satisfied. All other rules from Ksi − Kc having atoms
from Ac must have these atoms in the body. Since m2 ⊂ m1, m′′ must satisfy these rules as
well. Since m′′ ⊂ m′, m′ is not minimal—a contradiction. �

According to the above claim, for each child c of si , the interpretation resulting from
projecting m′ on Ac is a minimal model of Kc , the portion of the knowledge base composed
of rules that only use atoms from Ac . By the induction hypothesis, all these models are
generated at previous steps of the algorithm, and hence the interpretation mc, resulting
from projecting m′ on

⋃
c is a child of si

Ac, must belong to Mc(si) as defined in step 2(c) of
the algorithm. It is easy to verify that if this is the case, m′ must be generated by AM, a
contradiction to our initial assumption.

Next we will show that every model generated by AM is minimal. Let m be a model
generated by AM at node si , we will show that m is a minimal model of Ksi . Assume
by contradiction that m is not minimal. Then there must be a model m′ of Ksi such that
m′ ⊂ m. Let E be the set of all atoms P such that m(P) = true and m′(P) = false. By the
induction hypothesis, for every child c of si , the projection of m on Ac is a minimal model
of Kc . By Claim 1, the projection of m′ on Ac is a model of Kc. So it must be the case
that E ∩ Ac is empty. By the way step 2(d) of AM is executed, E cannot be a subset of
Asi − ⋃

c is a child of si
Ac, a contradiction. �

Example 3.4 (Running example cont.). Suppose algorithm AM is executed with the knowl-
edge base T0 of Example 2.1 as input. The super dependency graph of this knowledge base
is in Fig. 2. Suppose the order of nodes visited is {P1,Q1}, {r2}, {r3,P2,Q2,P3}, {r4},
{Q3}, {P5}, {r7}, {P4,Q4}.

• Since node {P1,Q1} is a source, we set Mc({P1,Q1}) = {∅}. T{P1,Q1} is {P1 ∨ Q1}, and
procedure Transform with input T{P1,Q1} and ∅ returns T{P1,Q1}. The ALL-MINIMAL-
SUBROUTINE returns the two minimal models of T{P1,Q1} which are {P1,¬Q1} and
{¬P1,Q1}, and M{P1,Q1} is set to {{P1,¬Q1}, {¬P1,Q1}}.

• Since {P1,Q1} is the only child of {r2} and T{r2} is empty (by definition), M{r2} is set
to M{P1,Q1} which is {{P1,¬Q1}, {¬P1,Q1}}.

• When visiting node s = {r3,P2,Q2,P3}, which has also one child ({r2}), we set
at step 2(c) Mc(s) to be M{P1,Q1} which is {{P1,¬Q1}, {¬P1,Q1}}. As explained
in Example 3.1, Ts is r2, r3 and r5, or in other words, the set {P1 −→ P2 ∨ Q2,
P2 −→ P3 ∨ Q2, P2 ∧ Q2 −→ false}. As shown in Example 3.2, at step 2(d), when

12 R. Ben-Eliyahu – Zohary / Artificial Intelligence 169 (2005) 1–22
we first set m to be {P1,¬Q1}, Tsm computed by Transform is {P2 ∨ Q2, P2 −→
P3 ∨ Q2, P2 ∧ Q2 −→ false}. The two minimal models of Tsm are {P2,¬Q2,P3} and
{¬P2,Q2,¬P3}, and Ms is set to be {{P1,¬Q1,P2,¬Q2,P3}, {P1, ¬Q1, ¬P2, Q2,
¬P3}}.
Next we set m to be {¬P1,Q1}. As explained in Example 3.2, Transform computes
Tsm to be {P2 −→ P3 ∨ Q2, P2 ∧ Q2 −→ false}, and this knowledge base has exactly
one minimal model—{¬P2, ¬Q2, ¬P3}. Combine combines this model with m =
{¬P1,Q1} and we add {¬P1, Q1, ¬P2, ¬Q2, ¬P3} to Ms . So at the end of this visit
M{r3,P2,Q2,P3} is set to {{P1,¬Q1,P2,¬Q2,P3}, {P1, ¬Q1, ¬P2, Q2, ¬P3}, {¬P1,
Q1, ¬P2, ¬Q2, ¬P3}}.

• Next we visit node {r4}. Since {r3,P2,Q2,P3} is the only child of {r4} and T{r4} is
empty, M{r4} is set to be M{r3,P2,Q2,P3}.• Next we visit {Q3}. Since this node has one child, {r4}, we get Mc({Q3}) = M{r4}. The
knowledge base T{Q3} is {P3 −→ Q3}. For simplicity, let us number the models in
Mc({Q3}):
1. {P1,¬Q1,P2,¬Q2,P3},
2. {P1, ¬Q1, ¬P2, Q2, ¬P3},
3. {¬P1, Q1, ¬P2, ¬Q2, ¬P3}.
Let us now look at the loop in step (d). When m is model 1, Transform returns {Q3}
the minimal model of which is {Q3}, and when m is model 2 or 3, Transform returns
the empty set, the minimal model of which is {¬Q3}. Therefore, at the end of the loop
in step (d) M{Q3} is the set of the following three models:
1. {P1,¬Q1,P2,¬Q2,P3,Q3},
2. {P1, ¬Q1, ¬P2, Q2, ¬P3, ¬Q3},
3. {¬P1, Q1, ¬P2, ¬Q2, ¬P3, ¬Q3}.

• We now visit node {P5}. The node {P5} is a source and T{P5} is empty and so we get
that M{P5} is {{¬P5}}.

• Since {P5} is the only child of {r7} and T{r7} is empty, M{r7} is set to M{P5} which is
{{¬P5}}.

• We leave it for the reader to convince herself that after visiting node {P4,Q4}, M{P4,Q4}
is set to {{¬P5,¬P4,Q4}, {¬P5,P4,¬Q4}}.

• At the last step of the algorithm, step 3, we output all the consistent combinations of
the models generated at the sinks. In this example, we will output all the six combina-
tions of the three models in M{Q3} and the two models in M{P4,Q4}, because all these
combinations are consistent.

You see that although the language of knowledge base T0 uses nine atoms, the
largest knowledge base for which we had to call subroutine ALL-MINIMAL (at node
{r3,P2,Q2,P3}) was using only three atoms.

We will now analyze the complexity of AM. We need to consider the set T̂s because
while visiting a node s during the execution of AM, we have to compute at step 2(d)
all minimal models of some knowledge base Ts . The estimated time required to find all
minimal models of Ts is shorter than or equal to the time required to find all minimal
models of T̂s , because the truth value of atoms out of s is already known at this stage of

R. Ben-Eliyahu – Zohary / Artificial Intelligence 169 (2005) 1–22 13
the computation. Thus, if T̂s is a Horn knowledge base, we can find the minimal model of
T̂s in polynomial time. If T̂s happens to be a single fact having n atoms, then it has at most
n minimal models, and we can find all its minimal models in time O(n2). If T̂s is not Horn
and not a single fact, then we can find all minimal models of T̂s , in time O(22nl) where
n is the number of distinct atoms used in T̂s and l is the length of T̂s (l � n, and it takes
O(2n ∗ l) time to find all the models and then O(22n ∗ n) time to compare them to each
other in order to select the minimal ones). Note that in many cases we can use algorithms
with better performance as subroutines.

Based on the above analysis, to every knowledge base T , we assign a number tT as
follows. First, associate a number vs with every node s in GT . Assume there are d distinct
atoms in T̂s . If T̂s is a Horn knowledge base, then vs is 1; else, if T̂s is a single fact, then
vs = d , otherwise, vs is (2d). Note that if s contains no ES-nodes, then Ts is by definition
the empty set and therefore T̂s is Horn. So for states s having no ES-nodes, vs = 1.

Now associate another number ts with every node s. If s is a leaf node, then ts = vs . If
s has children s1, . . . , sj in GT , then ts = vs ∗ max(ts1 ∗ · · · ∗ tsj , ts1 + tsj). Define tT to be
ts1 ∗ · · · ∗ tsk , where s1, . . . , sk are all the sink nodes in GT .

Definition 3.5. A knowledge base T belongs to Ψj if tT = j .

Theorem 3.6. If a knowledge baseT belongs toΨj for somej , then it has at mostj
minimal models and all of them can be computed in timeO(lj2), wherel is the length ofT .

Proof. (By induction onj .) The dependency graph and the super dependency graph are
both built in time linear in the size of the knowledge base. So we may only consider the
time it takes to compute all minimal models with the super dependency graph given.

Casej = 1. T ∈ Ψ1 means that for every node s in GT , T̂s is a Horn knowledge base.
In other words, T is Horn and therefore has exactly one minimal model. It is known that a
minimal model of a Horn knowledge base can be computed in time O(l) [11,19].

Casej > 1. By induction on h, the number of nodes in the super dependency graph
of T .

Caseh = 1: Let s be the single node in GT . Thus, T = Ts = T̂s and j = vs . If T is a single
fact, then j = d , where d is the number of distinct atoms in T . Obviously, a single
fact has exactly d minimal models (all possible models where exactly one of the
atoms in the fact is true), and these models can be computed in time O(d2). If T

is not a single fact, then vs is (2d) where there are d distinct atoms in T .
Clearly, all minimal models of T can be found in time O(lv2

s), and T has at
most vs models, and hence at most vs minimal models.

Caseh > 1: First, assume that GT has a single sink s. Let c1, . . . , ck be the children of s.
For each child ci , Kci

, the part of the knowledge base which corresponds to the
subgraph rooted by ci , must belong to Ψti for some ti . By the induction hypoth-
esis, for each child node ci , all minimal models of Kci

can be computed in time
O(lt2), and Kci

has at most ti minimal models.
i

14 R. Ben-Eliyahu – Zohary / Artificial Intelligence 169 (2005) 1–22
By definition, j = vs ∗ max(t1 ∗ · · · ∗ tk, t1 +· · ·+ tk). We will show that T has
at most j minimal models and that using the AM algorithm, all minimal models
of T can be computed in time O(lj2).

By the induction hypothesis, the total time taken to compute all minimal mod-
els in the children nodes is o(lt2

1 + lt2
2 +· · ·+ lt2

k) = O(l(t2
1 +· · ·+ t2

k)) � O(lj2).
Now let us observe what happens when AM is visiting node s. First, the com-
bination of all the models computed at the children nodes is taken. By the in-
duction hypothesis, this can be executed in time O(l ∗ t1 ∗ · · · ∗ tk) � O(lj), and
yields at most t1 ∗ · · · ∗ tk interpretations in Mc(s). For every m ∈ Mc(s), we call
Transform (O(l))—so this step is O(l ∗ t1 ∗ · · · ∗ tk) � O(lj) and compute all
the minimal models of Tsm (total of O(lv2

s ∗ t1 ∗ · · · ∗ tk) � O(lj2) steps). We
then merge all the minimal models of Tsm with m using Combine (O(lvs) for
each m, and total of O(l ∗ vs ∗ t1 ∗ · · · ∗ tk) � O(lj) time for all the models in
Mc(s)). Since Tsm has at most vs minimal models, this last step yields at most
vs ∗ t1 ∗ · · · ∗ tk = vs ∗ t1 ∗ · · · ∗ tk � j minimal models for T . Thus, the overall
computation of all the minimal models of T yields at most j minimal models and
takes a finite number of steps, each of which is O(lj2) time, and hence it is O(lj2)

time.
If GT has multiple sinks, then we can artificially add to the knowledge base

the rule P ←− s1, . . . , sk , where s1, . . . , sk are all atoms used in theories in all the
sinks and P is a new atom. All minimal models of the revised knowledge base,
the value given to P ignored, are minimal models of the original knowledge base.
Since for the new state {P }, T̂{P } is a Horn knowledge base, using the induction
hypothesis we realize that T has at most (ts1 ∗· · ·∗ tsj models, where s1, . . . , sk are
all the sink nodes in GT , and all these models can be computed in time O((ts1 ∗
· · · ∗ tsj)

2). �
Note that all Horn theories belong to Ψ1, and the largest portion of Horn rules that any

knowledge base has, the more likely it is that algorithm AM will be efficient.
Given a knowledge base T , it is easy to find the minimum j such that T belongs to Ψj .

This follows because building GT and finding ts for every node in GT are polynomial-time
tasks. Hence,

Theorem 3.7. Given a knowledge baseT , we can find the minimumj such thatT belongs
to Ψj in polynomial time.

Example 3.8 (Running example cont.). v{P1,Q1} = 2, since T{P1,Q1} is the single fact P1 ∨
Q1. v{P2,Q2,P3} is 23, since T̂{P2,Q2,P3} has there distinct atoms. v{P4,Q4} = 2, since T{P4,Q4}
is the single fact P4 ∨ Q4. v{P5} = 1 because T{P5} is the empty set and hence it is Horn.
v{Q3} = 1 because T̂{Q3} is Horn. All other nodes s in GT0 are R-nodes and hence for each
of them vs = 1. Thus T ∈ Ψj where j = t{Q3} ∗ t{P4,Q4} = 1 ∗ 23 ∗ 2 ∗ 2 = 25. Note that
there are nine distinct atoms in T0, and thus algorithm AM improves on the trivial algorithm
which has a worst case of producing O(2d) models in time O(22d l) where l is the length
of the knowledge base and d the number of distinct atoms in the knowledge base.

R. Ben-Eliyahu – Zohary / Artificial Intelligence 169 (2005) 1–22 15

et
Note that some interpretations generated at some nodes of the super dependency graph
during the run of AM may be later deleted, since they cannot be completed to a minimal
model of the whole knowledge base:

Example 3.9. Consider knowledge base T2:

a ∨ c

a −→ b

a −→ d

b ∧ d −→ false.

During the run of algorithm AM, M{ac} (the set of models computed at the node {a, c}) is
set to {{a}, {c}}. However, only {c} is a minimal model of T2.

Nevertheless, we can show that if the knowledge base has no integrity constraints, each
minimal model generated at some node will be a part of a minimal model of the whole
knowledge base.

Theorem 3.10. AssumeT is a knowledge base having no integrity constraints, and ls

be any node inGT , the super dependency graph ofT . Then each model inMs , computed
when algorithm AM is visiting nodes, can be completed to a minimal model ofT .

Proof. Let m1 be a minimal model of Ks , the part of the knowledge base which corre-
sponds to the subgraph rooted by s, computed when algorithm AM is visiting node s, and
let TKs be the knowledge base obtained when we take T − Ks and instantiate all atoms
belonging to As according to the truth value they have in m1. Since the atoms in As may
appear only in bodies of rules from TKs and since T has no integrity constraints, it must be
the case that TKs has no integrity constraints and hence must be consistent (every knowl-
edge base with no integrity constraints is consistent—the interpretation that assigns true
to all the atoms in the knowledge base is a model). Let m2 be a model of TKs . Clearly,
m = m1 + m2 is a model of T . If m is minimal, then we are done. Else, there must be a
model m′ of TKs such that m′ ⊂ m. Let E be the set of all atoms P such that m(P) = true
and m′(P) = false. Since the projection of m on the atoms of As must be a model of Ks

and since m1 is a minimal model of Ks , it must be the case that E ∩ As is empty. Hence
m1 can be completed into a minimal model of T . �

Theorem 3.10 shows that if the knowledge base has no integrity constraints, then when
we use the AM algorithm, we do not always have to compute all minimal models up to
the root node. If the query is about an atom that is somewhere in the middle of the graph,
it is enough to compute only the interpretations of the subgraph rooted by the node that
includes this atom. The following example will illustrate this.

Example 3.11 (Running example cont.). Supposed we are given knowledge base T0 with
rule r5, which is the only integrity constraint excluded. The reader can check that the
dependency graph will be still the same as shown in Fig. 1. Now, suppose that we ask the

16 R. Ben-Eliyahu – Zohary / Artificial Intelligence 169 (2005) 1–22
query “Is P3 true in all minimal models of the knowledge base T0?”. It is enough to run
algorithm AM only for the nodes {P1,Q1}, r2, and {r3,P2,Q2,P3}. The computation of
nodes {P1,Q1} and r2 is exactly as shown in Example 3.4. As explained in Example 3.4,
when visiting node s = {r3,P2,Q2,P3}, which has also one child ({r2}), we set Mc(s) to be
M{P1,Q1} which is {{P1,¬Q1}, {¬P1,Q1}}. But unlike Example 3.4, since r5 is missing,
Ts is composed only of r2 and r3, or in other words, the set {P1 −→ P2 ∨ Q2, P2 −→
P3 ∨Q2}. At step 2(d), when we first set m to be {{P1,¬Q1}, Tsm} computed by Transform
is {P2 ∨ Q2, P2 −→ P3 ∨ Q2}. The two minimal models of Tsm are {P2,¬Q2,P3} and
{¬P2,Q2,¬P3} and Ms is set to be {{P1,¬Q1,P2,¬Q2,P3}, {P1, ¬Q1, ¬P2, Q2, ¬P3}}.

Next we set m to be {¬P1,Q1}. As explained in Example 3.2, Transform computes
Tsm to be {P2 −→ P3 ∨ Q2}, and this knowledge base has exactly one minimal model—
{¬P2,¬Q2, ¬P3}. Combine combines this model with m = {¬P1,Q1} and we add
{¬P1, Q1, ¬P2, ¬Q2, ¬P3} to Ms . So at the end of this visit M{r3,P2,Q2,P3} is set to
{{P1,¬Q1,P2,¬Q2,P3}, {P1, ¬Q1, ¬P2, Q2, ¬P3}, {¬P1, Q1, ¬P2, ¬Q2, ¬P3}}.

By Theorem 3.10, all these models are part of minimal models of the knowledge base
T0. Hence, without having to continue the computation for all the nodes in the tree we can
answer that P3 is not true in every minimal model.

In addition to the beneficial feature discussed above, Algorithm AM has other desir-
able features. First, AM enables us to compute minimal models in a modular fashion.
We can use GT as a structure in which to store the minimal models. Once the knowl-
edge base is changed, we need to resume computation only at the nodes affected by the
change.

Second, the AM algorithm is useful in computing the labeling of a TMS subject to no-
goods. A set of nodes of a TMS can be declared nogood, which means that all acceptable
labeling should assign false to at least one node in the nogood set.4 In minimal models ter-
minology, this means that when handling nogoods, we look for minimal models in which
at least one atom from a nogood is false. A straightforward approach would be to first
compute all the minimal models and then choose only the ones that comply with the no-
good constraints. But since the AM algorithm is modular and works from the bottom up,
in many cases it can prevent the generation of unwanted minimal models at an early stage.
During the computation, we can exclude the partial interpretations that do not comply with
the nogood constraints and erase these partial interpretations. We can do this once we are at
a node s in the super dependency graph such that As includes all the members of a certain
nogood.

4. Computing minimal models of first-order knowledge bases

In this section, we show how we can generalize algorithm AM so that it can find all
minimal models of a knowledge base over a first-order language with no function symbols.
The new algorithm will be called FIRST-ALL-MINIMAL (FAM).

4 In our terminology nogoods are simply integrity constraints, and can be added directly to the knowledge base.

R. Ben-Eliyahu – Zohary / Artificial Intelligence 169 (2005) 1–22 17
We will now refer to a knowledge base as a set of rules of the form

A1 ∧ A2 ∧ · · · ∧ An −→ B1 ∨ B2 ∨ · · · ∨ Bm (4)

where all As and Bs are atoms in a first-order language L with no function symbols. The
definitions of head, body, facts, and integrity constraints are analogous to the propositional
case. In the expression p(X1, . . . ,Xk), p is called a predicate name.

As in the propositional case, every knowledge base T is associated with a directed graph
called the dependency graphof T , in which we have predicates names instead of atoms.
The super dependency graph, GT , is defined in an analogous manner.

A knowledge base will be called safeiff each of its rules is safe. A rule is safeiff all
the variables appearing in the head of the rule also appear in the body of the rule. In this
section, we assume that knowledge bases are safe. The Herbrand baseof a knowledge
base is the set of all atoms constructed using predicate names and constant symbols5 from
the knowledge base. The set of ground instances of a ruleis the set of rules obtained by
consistently substituting variables from the rule with constant symbols that appear in the
knowledge base in all possible ways. The ground instance of a knowledge baseis the union
of all ground instances of its rules. Note that the ground instance of a first-order knowledge
base can be viewed as a propositional knowledge base.

A (Herbrand) modelfor a knowledge base is a subset M of the knowledge base’s Her-
brand base having

1. For every rule with non-empty head in the grounded knowledge base, if all the atoms
that appear in the body of the rule belong to M then at least one of the atoms in the
head of the rule belongs to M .

2. For every integrity constraint, not all the atoms in the body appear in M .

A minimal model for a first-order knowledge base T is a Herbrand model of T , which
is also a minimal model of the grounded version of T .

We now present FAM, an algorithm that computes all minimal models of a first-order
knowledge base. Let T be a first-order knowledge base. As in the propositional case, with
each node s in GT (the super dependency graph of T), we associate Ts , As , and Ms .
Ts is the subset of T containing all the rules about predicates whose names are in s. As

is the set of all predicate names that appear in the subgraph of GT rooted by s. Ms are
the minimal models associated with the sub-knowledge base of T that contains only rules
about predicates whose names are in As . Initially, Ms is empty for every s. Algorithm FAM
traverses GT from the bottom up. When at a node s, the algorithm first combines all partial
models computed by the children of s into a single set of models, Mc(s). Then, for each
model m in Mc(s), it calls a procedure that finds all the minimal models of Ts union the set
of all the clauses true −→ P such that P ∈ m. The procedure ALL-MINIMAL called by
FAM can be any procedure that computes all the minimal models of a first-order knowledge
base, such as one of the procedures suggested by [7]. Because procedure ALL-MINIMAL

5 We remind the reader that the knowledge base is over a first-order language who has, by definition, a prede-
fined set of constant symbols.

18 R. Ben-Eliyahu – Zohary / Artificial Intelligence 169 (2005) 1–22

e

FIRST-ALL-MINIMAL(T)

Input: A first-order knowledge base T .
Output: All the minimal models of T .

1. Construct GT ;
2. Traverse GT from the bottom up. For each node s, do:

(a) Ms := ∅;
(b) Let s1, . . . , sj be the children of s;
(c) Mc(s) := Combine({Ms1 , . . . ,Msj });
(d) For each m ∈ Mc(s) do

Ms := Ms ∪ all-minimal(Ts ∪ {true −→ P | P ∈ m});
3. Output Combine({Ms1 , . . . ,Msk }),

where s1, . . . , sk are the sinks of GT .

Fig. 6. Algorithm FIRST-ALL-MINIMAL (FAM).

computes minimal models for only parts of the knowledge base, it may take advantage
of some fractions of the knowledge base being Horn or having any other property that
simplifies computation of the minimal models.

Theorem 4.1. Algorithm FAM is correct, that is,m is a minimal model of a knowledg
baseT iff m is one of the models in the output when applying FAM toT .

Proof. As the proof of Theorem 3.3. �
Example 4.2. Consider knowledge base T3:

r1: bird(X) −→ fly(x) ∨ abnormal(X)

r2: bird(X) −→ female(X) ∨ male(X)

r3: peacock(X) −→ bird(X)

r4: peacock(X) −→ abnormal(X)

r5: pheasant(X) −→ bird(X)

r6: peacock(peaki).

The super dependency graph of T3, GT3 , is shown in Fig. 7. Observe that when at
node bird, for example, in step 2(d) the algorithm looks for all minimal models of
the knowledge base T ′ = Tbird ∪ {←− peacock(peaki)}, where Tbird = {peacock(X) −→
bird(X),pheasant(X) −→ bird(X)}. T ′ is a Horn knowledge base that has a unique min-
imal model that can be found efficiently. Hence, algorithm FAM saves us from having to
ground all the rules of the knowledge base before starting to calculate the models, and it
can take advantage of parts of the knowledge base being Horn.

R. Ben-Eliyahu – Zohary / Artificial Intelligence 169 (2005) 1–22 19
Fig. 7. The super dependency graph of T3.

5. Related work

During the last few years there have been several studies regarding the problem of min-
imal model computation. Ben-Eliyahu and Dechter [3] have presented several algorithms
for computing minimal models, all of them different from the one presented here. One
limitation of the algorithms presented there is that they produce a supersetof all mini-
mal models while every model produced using our algorithm is minimal. In addition, for
each of the algorithms presented by [3] we can show a set of theories for which our algo-
rithm performs better. For example, one of the heuristics employed in [3] is to convert a
knowledge base into a Horn knowledge base by instantiation of some of the atoms. This
heuristics works well when the knowledge base is close to being Horn, or in other words,
when only few atoms should be instantiated. Consider the following knowledge base:

A ∨ C

A −→ B

C −→ D

B ∧ D −→ X1 ∨ · · · ∨ Xn

and assume A,B,C or D are not one of X1, . . . ,Xn. By the heuristics of [3], all combi-
nations of instantiating the variables X2, . . . ,Xn should be tried when computing all the
models. This approach will work well only if n is very small. On the other hand, if algo-
rithm AM is used for this knowledge base, it will work in linear time on such theories,
no matter what n is. This is because when node {X1, . . . ,Xn} of the dependency graph is
reached during the computation of the AM algorithm, it is clear that there is no minimal
model in which both B and D are true. Hence the rule B ∧ D −→ X1 ∨ · · · ∨ Xn is not

20 R. Ben-Eliyahu – Zohary / Artificial Intelligence 169 (2005) 1–22
considered at all during the computation. Ben-Eliyahu and Palopoli [4] have presented a
polynomial algorithm for finding a minimal model, but it works only for a subclass of all
CNF theories and it finds only one minimal model.

The algorithm of Ben-Eliyahu [1] for finding stable models of logic programs has sev-
eral common ideas with the one presented here. However, it finds only stable models and
it does not work for rules with more than one atom in the head.

Bry and Yahya [7] describe an approach for generating the minimal Herbrand mod-
els of sets of first-order clauses. Their approach builds upon positive unit hyperresolution
(PUHR) tableaux. Two minimal model generation procedures are described by [7]. The
first one expands PUHR tableaux depth-first relying on a complement splitting expansion
rule and on a form of backtracking involving constraints. The second minimal model gen-
eration procedure performs a breadth-first, constrained expansion of PUHR (complement)
tableaux. Like the algorithm presented here, both procedures described in [7] are optimal
in the sense that each minimal model is constructed only once, and the construction of
nonminimal models is interrupted as soon as possible. The advantage of the algorithm pre-
sented here is that for the propositional case, an upper-bound on the time complexity and
the number of models generated can be assessed ahead of time in time polynomial in the
size of the theory.

Variations on the task of minimal model computation have been studied in the past in
the diagnosis literature and the logic programming literature. For instance, many of the
algorithms used in diagnosis systems [12,13] are highly complex in the worst case. To find
a minimal diagnosis, they first compute all prime implicates of a knowledge base and then
find a minimal cover of the prime implicates. The first task is output exponential, while the
second is NP-hard. Therefore, in the diagnosis literature, researchers often compromise
completeness by using heuristic approaches.

Some of the work in the logic programming literature has focused on using efficient
optimization techniques, such as linear programming, for computing minimal models (e.g.,
[6]). The systems dlv [21,24] and smodels[20,29] compute stable models of disjunctive
logic programs. If integrity constraints are allowed in the programs, then every knowledge
base can be represented as a disjunctive logic program such that the set of all minimal
models of the first coincide with the set of all stable models of the second. The system
dlv takes advantage of the fact that minimal model checking for HCF theories [2] can be
computed in linear time [4]. The system smodelstranslates the disjunctive program into
a non-disjunctive one and then calls a stable model computing procedure that uses some
constraints programming techniques. One limitation of the above approaches is that they
do not provide a tool to assess ahead of time how complex will be the computation. An
advantage of our approach compares to theirs is that our algorithm may be implemented
as a parallel algorithm and thus take advantage of distributed computing systems. Our
algorithm can call the algorithms of dlv or smodelsas a subroutine.

6. Conclusions

We have presented a new algorithm for computing minimal models. Every model gen-
erated by this algorithm is minimal, and all minimal models are eventually generated. The

R. Ben-Eliyahu – Zohary / Artificial Intelligence 169 (2005) 1–22 21
algorithm induces a hierarchy of tractable subsets for the problem of minimal model com-
putation. The minimal models can be generated by the algorithm one at a time, a property
which allows demand-driven computation.

Algorithm AM enables us to compute minimal models in a modular fashion. We can
use the super-dependency graph of the knowledge base as a structure in which to store the
minimal models. Once the knowledge base is changed, we need to resume computation
only at the nodes affected by the change. By using the AM algorithm, we do not always
have to compute all minimal models up to the root node. If we are queried about an atom
that is somewhere in the middle of the graph, it is often enough to compute only the models
of the subgraph rooted by the node that represents this atom.

A parallel implementation of the AM algorithm is possible. Computations related to
each node in the super dependency graph could be executed in different machines. A ma-
chine that represents a specific node would have to wait to get messages containing models
from machines that represent the node’s children. Once a particular machine P gets at
least one model from each child node, models for the knowledge base represented in P

can be computed and sent to the machine that represents P ’s parent in the super depen-
dency graph. The final results—the minimal models of the whole knowledge base – will
be delivered by the machine that represents the root of the super dependency graph. Such
parallel implementation could speed up the computation, since models of nodes that are
not connected by a directed path in the super dependency graph can be executed in paral-
lel. We leave details of the implementation and analysis of parallel version of the algorithm
presented here for future research.

Acknowledgements

Thanks to Chen Avin and Luigi Palopoli for useful comments on earlier drafts of this
paper, and to Barbara Grosz for inviting the author to spend a year at Harvard DEAS as
a visiting scholar. The author is grateful to one of the referees for providing detailed and
thoughtful comments that led to a significant improvement in the paper’s presentation.

References

[1] R. Ben-Eliyahu, A hierarchy of tractable subsets for computing stable models, J. Artificial Intelligence Res. 5
(1996) 27–52.

[2] R. Ben-Eliyahu, R. Dechter, Propositional semantics for disjunctive logic programs, Ann. Math. Artificial
Intelligence 12 (1994) 53–87. A short version appears in JICSLP-92: Proceedings of the 1992 Joint Interna-
tional Conference and Symposium on Logic Programming.

[3] R. Ben-Eliyahu, R. Dechter, On computing minimal models, Ann. Math. Artificial Intelligence 18 (1996)
3–27. A short version in AAAI-93: Proceedings of the 11th National Conference on Artificial Intelligence.

[4] R. Ben-Eliyahu, L. Palopoli, Reasoning with minimal models: Efficient algorithms and applications, Artifi-
cial Intelligence 96 (1997) 421–449. A short version in KR-94.

[5] N. Bidoit, C. Froidevaux, Minimalism subsumes default logic and circumscription in stratified logic pro-
gramming, in: Proceedings of the IEEE Symposium on Logic in Computer Science, LICS-87, IEEE Com-
puter Science Press, Los Alamitos, CA, 1987, pp. 89–97.

[6] C. Bell, A. Nerode, R.T. Ng, V.S. Subrahmanian, Mixed integer programming methods for computing non-
monotonic deductive databases, J. ACM 41 (6) (1994) 1178–1215.

22 R. Ben-Eliyahu – Zohary / Artificial Intelligence 169 (2005) 1–22
[7] F. Bry, A. Yahya, Positive unit hyperresolution tableaux and their application to minimal model generation,
J. Autom. Reason. 25 (1) (2000) 35–82.

[8] M. Cadoli, The complexity of model checking for circumscriptive formulae, Inform. Process. Lett. 44 (3)
(1992) 113–118.

[9] M. Cadoli, On the complexity of model finding for nonmonotonic propositional logics, in: A. Marchetti
Spaccamela, P. Mentrasti, M. Venturini Zilli (Eds.), Proceedings of the 4th Italian Conference on Theoretical
Computer Science, World Scientific, Singapore, 1992, pp. 125–139.

[10] Z. Chen, S. Toda, The complexity of selecting maximal solutions, in: Proc. 8th IEEE Int. Conf. on Structures
in Complexity Theory, 1993, pp. 313–325.

[11] W.F. Dowling, J.H. Gallier, Linear time algorithms for testing the satisfiability of propositional Horn formu-
lae, J. Logic Programming 3 (1984) 267–284.

[12] J. de Kleer, A.K. Mackworth, R. Reiter, Characterizing diagnosis and systems, Artificial Intelligence 56
(1992) 197–222.

[13] J. de Kleer, B.C. Williams, Diagnosis multiple faults, Artificial Intelligence 32 (1987) 97–130.
[14] T. Eiter, G. Gottlob, Propositional circumscription and extended closed-world reasoning are �

p
2 -complete,

Theoret. Comput. Sci. 114 (1993) 231–245.
[15] C. Elkan, A rational reconstruction of nonmonotonic truth maintenance systems, Artificial Intelligence 43

(1990) 219–234.
[16] K. Fine, The justification of negation as failure, Logic, Methodology and Philosophy of Science 8 (1989)

263–301.
[17] M. Gelfond, V. Lifschitz, The stable model semantics for logic programming, in: R.A. Kowalski, K.A.

Bowen (Eds.), Logic Programming: Proceedings of the 5th International Conference, MIT Press, Cambridge,
MA, 1988, pp. 1070–1080.

[18] M. Gelfond, V. Lifschitz, Classical negation in logic programs and disjunctive databases, New Gen. Com-
put. 9 (1991) 365–385.

[19] A. Itai, J.A. Makowsky, Unification as a complexity measure for logic programming, J. Logic Program-
ming 4 (1987) 105–117.

[20] T. Janhunen, I. Niemelä, D. Seipel, P. Simons, J.-H. You, Unfolding partiality and disjunctions in stable
model semantics, CoRR cs.AI/0303009, 2003.

[21] C. Koch, N. Leone, G. Pfeifer, Enhancing disjunctive logic programming systems by sat checkers, Artificial
Intelligence 151 (1–2) (2003) 177–212.

[22] P.G. Kolaitis, C.H. Papadimitriou, Some computational aspects of circumscription, J. ACM 37 (1990) 1–14.
[23] V. Lifshitz, Computing circumscription, in: IJCAI-85: Proceedings of the International Joint Conference on

AI, Los Angeles, CA, 1985, pp. 121–127.
[24] N. Leone, G. Pfeifer, W. Faber, F. Calimeri, T. Dell’Armi, T. Eiter, G. Gottlob, G. Ianni, G. Ielpa, C. Koch,

S. Perri, A. Polleres, The dlv system, in: Proc. JELIA, 2002, pp. 537–540.
[25] J. McCarthy, Circumscription—a form of non-monotonic reasoning, Artificial Intelligence 13 (1980) 27–39.
[26] J. McCarthy, Application of circumscription to formalizing common-sense knowledge, Artificial Intelli-

gence 28 (1986) 89–116.
[27] J. Minker, On indefinite databases and the closed world assumption, in: Proceedings of the 6th Conference

on Automated Deduction, in: Lecture Notes in Computer Science, vol. 138, Springer, Berlin, 1982, pp. 292–
308.

[28] R. Reiter, A logic for default reasoning, Artificial Intelligence 13 (1980) 81–132.
[29] P. Simons, I. Niemelä, T. Soininen, Extending and implementing the stable model semantics, Artificial In-

telligence 138 (1–2) (2002) 181–234.
[30] R. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Computing 1 (1972) 146–160.

