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Abstract

The task of generating minimal models of a knowledge base is at the computational heart of
diagnosis systems like truth maintenance systems, and of nonmonotonic systems like autoepistemic
logic, default logic, and digunctive logic programs. Unfortunately, it is NP-hard. In this paper we
present a hierarchy of classes of knowledge bases, Y1, ¥o, ..., with the following properties: first,
¥, isthe class of al Horn knowledge bases; second, if a knowledge base T isin ¥, then T has at
most £ minimal models, and al of them may be found in time O(lkz), where [ is the length of the
knowledge base; third, for an arbitrary knowledge base T', we can find the minimum & such that T
belongs to ¥ in time polynomial in the size of T'; and, last, where IC is the class of all knowledge
bases, it is the case that U?il ¥; = KC, that is, every knowledge base belongs to some class in the
hierarchy. The algorithm isincremental, that is, it is capable of generating one model at atime.
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1. Introduction

Computing minimal modelsis an essential task in many reasoning systemsin Artificial
Intelligence, including circumscription [23,25,26], default logic [28], and minimal diagno-
sis[12], and in answering queries posed on logic programs and deductive databases [27].
In such reasoning systems, the goal is to produce plausible inferences or plausible expla-
nations, not to compute minimal models. Nonetheless, efficient algorithms for computing
minima models can help reaching a substantial speed up in inference in implemented
systems.

Let us take a closer look at the task of computing the stable models of a knowledge
base expressed in the language of disjunctive logic programs. One of the most successful
semantics for logic programs is stable model semanti¢$,16,17], which associates with
any logic program a (possibly empty) set of models called stable modeld ntuitively, each
stable model represents a set of coherent conclusions one might deduce from the logic
program. It turns out that the task of computing grounded interpretations for a set of TMS
justifications corresponds exactly to the task of computing the stable models of the logic
programs represented by the set of TMS justifications, and that algorithms for comput-
ing stable models may be used in computing expansions of autoepistemic programs and
extensions of Reiter’'s default theories [15,18].

Each stable model of a knowledge base isaminimal model. Moreover, if the knowledge
baseisstratified, that is, if there are no circular dependencies between the factsthat involve
negation, the computation of the stable model is carried by dividing the knowledge into
layers (strata) and computing the set of minima models in each strata.

The algorithm presented in this paper can be used for computing all minimal models,
but it can stop once only part of the models have been generated. That is, there is no need
to compare all the models of the knowledge base with each other in order to find out which
of them is minimal. This feature can be used, for example, as follows:

In entailment—a fact follows from the knowledge base iff it istruein all minimal mod-
els. We can check the minimal models one at a time and refute a fact before seeing all of
them.

In diagnosis—each minimal model is an indication of a possible set of faulty compo-
nents. We can check the components suggested by some minimal model while the next
minimal model is being generated.

The task of reasoning with minimal models has received a formal anaysis in several
studies [3,8-10,14,22]. Unfortunately, the results of the above work on the complexities of
reasoning with minimal modelsare discouraging. It turnsout that even when the knowledge
base is positive, that is, when the knowledge base has no integrity constraints, finding
one minimal model is PNPIOU%amI_hard [9] (and positive theories always have a minimal
model!),2 and checking whether a model is minimal for some knowledge base is co-NP-
complete[8].

2 We recall that PNPLOU09M)] s the class of decision problems that are solved by polynomial-time bounded
deterministic Turing machines making at most a logarithmic number of calls to an oracle in NP. For a precise
characterization of the complexity of model finding, given in terms of complexity classes of functions, see[10].
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In this paper we present a new agorithm for computing minimal models. Using this
agorithm, we can show a hierarchy of classes of knowledge bases, W1, ¥, ..., with the
following properties: first, ¥ isthe class of all Horn knowledge bases; second, if a knowl-
edgebase T isin ¥, then T has at most £ minimal models, and all of them may be found
intime O(k?), where [ is the length of the knowledge base; third, for an arbitrary knowl-
edge base T, we can find the minimum & such that 7 belongs to ¥ in time polynomial
in the size of T'; and, last, where K is the class of all knowledge bases, it is the case that
U2, ¥ =K, that is, every knowledge base belongs to some class in the hierarchy. The
algorithm that we present is demand-driven, that is, it is capable of generating one model
at a time. We show how the algorithm can be generalized to allow efficient computation
of minima Herbrand models for the subclass of al function-free first-order knowledge
bases.

The paper is organized as follows. In the next section, we define some basic termi-
nology. In Section 3 we present the algorithm for minimal model generation, called AM.
Algorithm AM works from the bottom up on the superstructure of the dependency graph
of the knowledge base and may use any known procedure for computing minimal models
as a subroutine. Section 4 explains how the algorithm AM can be generalized to handle
knowledge bases over a function-free first-order language. Finally, in Sections 5 and 6, we
discuss related work and make concluding remarks.

2. Preliminary definitions
2.1. Syntax

We define a knowledge base to be a set of rules which are implications of the form
AiLAN---ANA, — B1V---V B, (@D}

where all the A’sand B’s are positive atomsand m, n > 0. The B’s are called the headof
the rule, the A’s—the body When n = 0 the rule (1) becomes

true— B1Vv---V By,
or simply:
Bi1v---VB,, 2

andiscaled afact Rule (1) and fact (2) are said to be aboutBy, ..., B,;,. When m = 0 the
rule (1) becomes

ALN---NA, — false, ©)

and is called an integrity constrain{name borrowed from database terminology). A rule
of theform (3) issaid to be aboutAsq, ..., A,.

When both m, n are 0, the rule (1) is equal to false. The rule (1) is Horn whenever
m<1.
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The size or lengthof a knowledge base T is the total number of symbols that it takes
to write al the rulesin it. It is well known that for any propositional formula there is a
logically equivalent CNF formula. It is easy to verify that any CNF propositional formula
has an equivalent formulain our language. Hence for any propositional formulathereisa
logically equivalent formulain our language.

2.2. The dependency graph

Let T be a knowledge base. We will define abinary relation = over the atomsin T to
be the minimal relation having the following properties. Let P, Q and R be atoms in the
knowledge base.

1. P=P.
2. If at least one of the following conditionshold, P = Q:
(@) P and Q areinthe head of the samerule;
(b) P and Q are both in the body of the same integrity constraint;
(c) P and Q are both unconstrained. An atom P is unconstrainedff it appears only
in bodies of rules which are not integrity constraints.
3. IfP=Qand Q=R then P =R.

Clearly, = isan equivalence relation and hence the equival ence sets make up a partition
of al the atomsin the knowledge base.

Example 2.1 (Running examp)e Consider the following knowledge base Tp:
ri: P1Vv Q1
ro:. Pp— P2V Q>
r3: Pp—> P3V Q2
rg: P3—> QO3
rs. PoA Qp —> false
re: PaV Qq
r7: P5— P4

Note that Ps is the only unconstrained atom. The equivalence sets with respect to the
relation = are:

s1: {P1, Q1)

520 {P2, O2, P3}
s3: {Qs)

sa: {Pa, Qa)

s5: {Ps}.

Given a knowledge base T, the dependency grapbf T is a directed graph built as
follows:
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Fig. 1. The dependency graph of Tp.

Nodes there are two types of nodes:
1. Each equivalence set with respect to the relation = isanode, called ES-node
2. Each rule having both a non-empty head and a non-empty body is a node,
called R-node Note that, by definition, an integrity constraint is considered a
rule with an empty head and hence will not be represented as an R-node in the
graph.
Edges Edges exist only between ES-nodes and R-nodes. Let s be an ES-node and r an
R-node. Thereis an edge directed from s to r iff an atom from ES-node s appears
in the body of r, and there is an edge directed from r to s iff thereisan atomin s
that appearsin the head of r.

Example 2.2. The dependency graph of the knowledge base Ty of Example 2.1 is shown
inFig. 1.

The strongly connected componerf&CC) of a directed graph G make up a partition
of its set of nodes such that, for each subset S in the partition and for each x, y € S, there
are directed paths from x to y and from y to x in G. The strongly connected components
areidentifiable in O(V + E) time, where V isthe number of nodes and E the number of
edges in the graph [30].

The super dependency gramii a knowledge base T', denoted G 7, is the superstructure
of thedependency graphof T. That is, G isadirected graph built by making each strongly
connected component (SCC) in the dependency graph of 7 intoanodein Gr. Anarc exists
from an SCC s to an SCC v iff thereisan arc from one of the nodesin s to one of the nodes
in v in the dependency graph of T.

Notethat Gr isan acyclic graph; for if it has adirected cycle, all the SCCson it should
have been one component.

Example 2.3. The super dependency graph of Ty is shown in Fig. 2. The nodes in the
sguare are grouped into a single node.
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Fig. 2. The super dependency graph of Ty.

Recall that asourceof adirected graph isanode with no incoming edges, whileasinkis
anode with no outgoing edges. Given adirected graph G and anode s in G, the subgraph
rooted bys, is the subgraph of G having al and only nodes ¢ such that there is a path
directed from 7 to s in G (thisincludes s itself). The childrenof s in G are all nodesr such
that thereis an arc directed from s tos in G.

Example 2.4. Consider the graph illustrated in Fig. 2. Node {P1, Q1} is a source in the
graph; {Ps} is a sink. The subgraph rooted by {r,} consists of the node {r»}, the node
{P1, Q1}, and the arc between them. {r7} has only one child—{ Ps}.

2.3. Minimal models

Sometimes we will treat atruth assignment (in other words, an interpretation) in propo-
sitional logic as a set of atoms—the set of al atoms assigned true by the interpretation.
Given two interpretations, 7 and J, over sets of atoms A and B, respectively, the interpre-
tation 7 4 J is defined as follows, where P isan arbitrary atom:

I1(P) if Pe A\ B,
Juwp if PeB\ A,
(I +J)(P)= 1(P) if Pe ANBand I(P)=J(P),

undefined otherwise.

It is easy to verify that the operator + as defined above is commutative and associative. |f
I(P)=J(P)forevery P € AN B,wesay that I and J are consistentA set of interpreta-
tionsis consistent if every pair of interpretationsin the set is consistent.

A partial interpretation over a set of atoms A is a truth assignment over a set of atoms
B where B C A. A literal is an atom (e.g., P) or a negated atom (e.g., —=P). A partia
interpretation can be represented as a set of literals. positive literals represent the atoms
that are true, negative literals—the atoms that are false, and the rest are unknown. Note
that if A isaset of literalswhich isapartia interpretation then A must be consistent. That
is, A cannot contain two literalswhich are the negation of each other (e.g., both P and = P).
A model of aknowledge basein propositional logic isan interpretation that satisfies all the
rules. A model m is minimalamong a set of models M iff there is no model m’ € M such
that m" c m. We will use the term minimal modebf some knowledge base T to denote a
model which isminimal among all the modelsof 7. A knowledge base will be called Horn
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iff al itsrules are Horn. A consistent Horn knowledge base has a unique minimal model
that can be found in linear time [11].

3. Thealgorithm

Algorithm ALL-MINIMAL (AM) isshown in Fig. 3. Algorithm AM exploits the struc-
ture of the knowledge base as it is reflected in its super dependency graph. It computes
al minimal models while traversing the super dependency graph from the bottom up, and
may use any algorithm for computing minimal models as a subroutine.

Let T be a knowledge base. With each node s in G7 (the super dependency graph of
T), we associate the sets Ty, A, My, and ﬁ T isthe subset of 7 containing all the rules
about the atoms in s. In other words, if s contains no ES-nodes then 7 is the empty set.
Otherwise, T isthe set of al the rules which are about the atoms from al the ES-nodesin
s. Note that the R-nodes in the set s have no role in the procedure for constructing 7.

Formally:

T, = {r | r isabout aset of atoms B and B C s}.

For example, Tip, o) iSr1 and Tip,, 0, Ps.rs) ISF2, 73, 8Nd rs.

A, isthe set of all atomsin the nodes in the subgraph of G rooted by s, and M isthe
set of minimal models associated with the subset of the knowledge base T which contains
only rules about atomsin A;. We define 7, to be the knowledge base obtained from 7 by
deleting each occurrence of an atom that does not belong to s from the body of every rule.
For example, if Ty = {b —> a,and —> c,a} ands = {a, c}, then T} ={a,a —> c}.The
running exampleis next.

ALL-MINIMAL(T)
Input: A knowledgebase T'.
Output: The set of al minimal models of T.

1. Construct Gr;
2. Traverse G from the bottom up. For each node s, do:
(@ My :=0;
(b) Letsy,...,s; bethechildren of s;
(o) If j =0, then M) :={#)};
else M(5) := Combine({Ms,, ..., Ms; D;
(d) Foreachm € My, do:
(i) T, := Transform(7Ty, m);
(i) M := ALL-MINIMAL-SUBROUTINE(Z,,);
(i) If M #£0,
then M := M U Combine({{m}, M});
3. Output Combine({ My, , ..., Mg }),
wheresy, ..., s; arethesinksof Gr.

Fig. 3. Algorithm ALL-MINIMAL (AM).
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Example 3.1 (Running example coft.Suppose s isthe node including P>, P3, Q2, and r3.
Then:
T isthe set of the following rules:

ro.  PL— PoVv Q>
r3: Po— P3Vv Q2
rs:. Py A Qo — false
A, isthe set of atoms {P1, Q1, P2, Q2, P3}.

ComputingM,: First, we haveto find out what are all the rules about atomsin A;. These
are;

ri: Piv Q1

ro. Pp— P2V Q>
r3: Po—> P3Vv Q>
rs: Py A Qo — false

M; isthe set of minimal models of the above knowledge base. That is,

M = {{P1, P2, P3}, {P1, 02}, {Q1}}.

7, isthe set of the following rules:

P2V Qs
ra: P, — P3Vv Q>

rs: Py A Qr — false

For asimpler case, suppose s isthe node containing r7. Then:
T, isthe empty set, because s contains no atoms.

Ay isaset containing only one atom— Ps.

M; isthe empty set because there are no rules about Psin T'.
T, is also the empty set because T is the empty set.

The need to consider all the above sets of atoms and rules will be clarified in the sequel,
when we present algorithm AM and analyze its complexity.

Algorithm AM works with partial interpretations, which are sets of literals. In the
following paragraph, we will simply use the term “interpretations’ instead of partial in-
terpretations. Initialy, M; isthe empty set for every s. The agorithm traverses Gy from
the bottom up (that is, starting from the sources). When at a node s, it first combines all
the partial models computed at the children nodes into asingle set of interpretations M. ().
If s is asource, then M, is set to {#}.3 Next, for each interpretation m in M), AM
converts T, to aknowledge base T, using some transformations that depend on the atoms

m

3 Note the difference between {#/}, which is a set of one partial interpretation—the interpretation that does not
assign any truth value, and @, which is a set that contains no interpretations.
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Combine(Z)

Input: A set of sets of partial interpretationsZ = {1y, .. ., I,}.

Output: The set of partial interpretations {iq + --- + i, | for 1 < j < n,
ijeljand{iy,..., iy} isaconsistent set of interpretations}.

If 7 hasasingle element {E}, then return E;
1:=0,
Letl' eZ;
D := Combine(Z \ {I'});
For each d in D, do:
(@ Foreachm inI’, do:
If m and d are consistent,
then I :=1U{m +d};
(b) EndFor;
6. EndFor;
7. Return I.

g whpeE

Fig. 4. Procedure Combine.

in m (thisis done using procedure Transform in Fig. 5, which will be described shortly);
then, algorithm AM finds all the minimal models of 75,, and combines them with m. The
set M is obtained by repeating this operation for each m in M. The procedure ALL-
MINIMAL-SUBROUTINE caled by AM may be any procedure that generates all minimal
models.

AM uses the procedure Combine (Fig. 4), which receives as input a set of sets
of interpretations {I1,...,I,} and returns all the consistent combinations of assign-
ments from each set. Formally, procedure Combine returns the set {i1 + -+ + i, |
for1<j<n,ijeljand{i,..., i,}isaconsistent set of interpretations}. For example,
if M={{{P,—-Q,R},{—P,—Q,—-R}},{{P, S, U}, {—P,—S, U}}} then Combine(M) =
{{P,—Q,R,S,U},{—P,—Q,—R,—S,U}}. If one of the sets of interpretations which
Combine gets as input is the empty set, Combine will output an empty set of interpre-
tations.

Procedure Transform (Fig. 5) gets as input a knowledge base T and a interpretation i,
and it changes T to reflect the truth assignment that i represents, in the following way:

e For each positivelliteral P in i, each occurrence of P isdeleted from the body of each
ruleinT.

e For each negativelliteral =P ini, if P occursinabody of somerulein T, that rulesis
deleted.

For example, if T is{P1 —> P2V Q2, P» —> P3V Q2, P2 A Q2 —> false} and i is{— Py,
P>}, Transform(T, i) returns { P3 v Q2, Q> —> false}. Here is another example using the
running example.

Example 3.2. Suppose s is the node including P2, P3, Q2, and r3. Then, as discussed in
Example 3.1, T; isthe following knowledge base:
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Transform(T, m)

Input: A knowledge base T and an interpretation m;

Output: A transform of T where al the atoms having a truth value in m are
deleted.

1. For each positive literal P inm,
Foreachruler inT
Delete each occurrence of P from the body of r;
2. For each negative literal =P inm,
Foreachruler inT
If P occursinthe body of r, delete r from T'.

Fig. 5. Procedure Transform.

ro:  Pp— P2V Qo
r3:. Pr—> P3Vv Q>
rs: Py A Qo — false
Assumeii = {P1,—Q1} andio = {—= Py, Q1}. Then:
Transforn{Ty, i1) is
ro: PoVv Qo
r3: Po— P3Vv Q>
rs: Po A Qo —> false.

Transforn{Ty, i2) is

ra: P, — P3Vv Q>
rs: P A Qo — false

We next show that Algorithm AM is correct.

Theorem 3.3. Algorithm AM is correct, that isp is a minimal model of a knowledge base
T iff m is generated by AM when applied To

Proof. Assume without loss of generality that G hasasingle sink s (to get asingle sink,
we can add to the program the rule P «— P1, ..., Py, where atoms P, ..., P, are dl
the atoms that appear in the sinks and P is a new atom. Note that any sink will have at
least one S-node). Let so, s1, ..., s, bethe ordering of the nodes of the super dependency
graph by which the algorithm is executed. Denote by K, the portion of the knowledge
base composed of rules that only use atoms from Ay, . We will show by induction on i that
AM, when at node s;, generates all and only the minimal models of K, .

Casei = 0. S is a course and hence has no children. Therefore M, is set to {#} a
step 2(c). Theloop in step 2(d) is executed once with m = @. Transform returns ﬁo =Ty,
and ALL-MINIMAL subroutine returns the set of minimal models of 7,. Since m is the
empty set, Combine returns this set as well. Note that for asource s;, Ty, = Kj; .
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Casei > 0. First, we will show that every minimal model is generated. Assume by
contradiction that m’ isaminimal model of K, not generated by AM.

Claim 1. Supposen’ is a minimal model oK,, and letc be a child ofs;. Letm1 be the
interpretation resulting from projecting’ on A.. Thenm is a minimal model oK, the
portion of the knowledge base composed of rules that only use atomg from

Proof of Claim 1. Assume by contradiction that 721 is not aminimal model of K. Then
there must be another model of K., m», such that mo C m1. We claim that m” = mo U
(m’ —my1) isamode of K. Clearly, al rulesin K. are satisfied by m”. Rules in K,
having no atoms from A, are also satisfied. All other rules from K, — K, having atoms
from A, must have these atomsin the body. Since mo C m1, m” must satisfy these rules as
well. Sincem” C m’, m’ is not minimal—acontradiction. O

According to the above claim, for each child ¢ of s;, the interpretation resulting from
projectingm’ on A, isaminimal model of K, the portion of the knowledge base composed
of rules that only use atoms from A.. By the induction hypothesis, al these models are
generated at previous steps of the algorithm, and hence the interpretation m.., resulting
from projecting m’ on (.. is a child of 5; Ac; Must belong to M., as defined in step 2(c) of
the algorithm. It is easy to verify that if thisis the case, m’ must be generated by AM, a
contradiction to our initial assumption.

Next we will show that every model generated by AM is minimal. Let m be a model
generated by AM at node s;, we will show that m is a minimal model of K. Assume
by contradiction that m is not minimal. Then there must be a model m’ of K, such that
m’ C m. Let E betheset of all atoms P such that m(P) =trueand m’(P) = false. By the
induction hypothesis, for every child ¢ of s;, the projection of m on A, isaminimal model
of K.. By Claim 1, the projection of m’ on A, isamodel of K.. So it must be the case
that E N A, is empty. By the way step 2(d) of AM is executed, E cannot be a subset of
As; = Uecisachild of 5; Acy @contradiction. O

Example 3.4 (Running example contSuppose algorithm AM is executed with the know!-
edge base Ty of Example 2.1 asinput. The super dependency graph of this knowledge base
isin Fig. 2. Suppose the order of nodes visited is {P1, Q1}, {r2}, {r3, P2, Q2, P3}, {ra},
{Q3}, {Ps}, {r7}, {Pa, Q4}.

e Sincenode {P1, Q1} isasource, we set Mc«p,. 0,1 = {9} Tipy, 04 IS{P1V Q1}, and
procedure Transform with input T{p,, o,y and ¥ returns Tip, o,}. The ALL-MINIMAL-
SUBROUTINE returns the two minimal models of 7;p, o,; which are {P1, —Q1} and
{—=P1, Q1}, and M(p, ¢,) issetto {{P1, =01}, {—P1, O1}}.

e Since {P1, Q1} istheonly child of {r2} and T,y isempty (by definition), M., is set
to M(p,,o,} Whichis {{P1, =01}, {—=P1, O1}}.

e When visiting node s = {r3, P2, Q2, P3}, which has also one child ({rp}), we set
a step 2(c) M. to be Mp, o,3 which is {{P1, =01}, {—P1, Q1}}. As explained
in Example 3.1, T is rp, r3 and rs, or in other words, the set {P1 —> P> Vv Qo,
P, — P3V Qy, P> A Q2 —> false}. As shown in Example 3.2, at step 2(d), when
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we first set m to be {P1, —Q1}, T;,, computed by Transform is {P2> v Q2, P, —
P3Vv Q2, P> A Q2 —> false}. Thetwo minimal models of 7y, are { P2, —Q»2, P3} and
{—=P2, Q2,—P3}, and M; isset to be {{ P1, =01, P2, =02, P3}, {P1, =01, = P2, Q2,
—Ps}}.

Next we set m to be {—P1, Q1}. As explained in Example 3.2, Transform computes
T;, tobe {P> — P3V Q2, P> A Q2 — false}, and this knowledge base has exactly
one minima model—{—Pz, =02, —P3}. Combine combines this model with m =
{—P1, 01} and we add {— P1, Q1, = P2, = Q2, ~P3} to M,. So a the end of this visit
Mr3, Py, 0,.Pg) 1S SELTO {{P1, =01, P2, =02, P3}, {P1, =Q1, = P2, Q2, =P}, {—P1,
Q1, P2, —Q2, —P3}}.

Next we visit node {rs}. Since {rs, P2, Q2, Ps} is the only child of {r4} and Ty, is
empty, M., isset tobe M, p, 0,. Ps)-

Next we visit { @3}. Since this node has one child, {r4}, we get Mo}y = M{,. The
knowledge base Tjp,; is {P3 —> Q3z}. For simplicity, let us number the models in
Me((0ap:

1 {P1,—Q1, P2,—Q2, P3},

2. {P1,—01, P2, 02, —~P3},

3. {—=P1, Q1,7 P2, =02, ~P3}.

Let us now look at the loop in step (d). When m is model 1, Transform returns { O3}
the minimal model of which is {Q3}, and when m is model 2 or 3, Transform returns
the empty set, the minimal model of whichis {—Q3}. Therefore, at the end of the loop
in step (d) Mg, isthe set of the following three models:

1 {P1,—01, P2, 02, P3, 03},

2. {P1, =Q1, P2, 02, —P3,—Q3},

3. {=P1, Q1, =Pz, —Q2, —P3, ~03}.

We now visit node { Ps}. The node { Ps} is a source and T{p) iS empty and so we get
that M{psy is {{—Ps}}.

Since { Ps} isthe only child of {r7} and i is empty, My, is set to M;p;; whichis
{{—Ps}}.

Weleaveit for thereader to convince herself that after visiting node { P4, Qa}, Mp,, 04}
issetto {{—Ps, =Pa, Q4}, {—Ps, P4, —~Qa}}.

At the last step of the algorithm, step 3, we output all the consistent combinations of
the models generated at the sinks. In this example, we will output all the six combina
tions of the three modelsin M{,) and the two modelsin M;p, o,), because all these
combinations are consistent.

You see that athough the language of knowledge base Tp uses nine atoms, the

largest knowledge base for which we had to call subroutine ALL-MINIMAL (a node
{r3, P2, O2, P3}) wasusing only three atoms.

We will now analyze the complexity of AM. We need to consider the set 7, because

while visiting a node s during the execution of AM, we have to compute at step 2(d)
all minimal models of some knowledge base T;. The estimated time required to find all
minima models of T; is shorter than or equal to the time required to find all minimal
models of 7,, because the truth value of atoms out of s is already known at this stage of
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the computation. Thus, if 7, isaHorn knowledge base, we can find the minima model of
7, in polynomial time. If T, happensto be asingle fact having n atoms, then it has at most
n minimal models, and we can find all its minimal modelsin time O(2). If ﬁ isnot Horn
and not a single fact, then we can find all minimal models of 7, in time O(22']) where
n is the number of distinct atoms used in 7; and ! is the length of 7; (I > n, and it takes
O(2" x 1) time to find all the models and then O(2%" % n) time to compare them to each
other in order to select the minimal ones). Note that in many cases we can use algorithms
with better performance as subroutines.

Based on the above analysis, to every knowledge base T, we assign a number 7 as
follows. Firgt, associate anumber v, with every node s in Gr. Assumethere are d distinct
atomsin ﬁ If ’T} is a Horn knowledge base, then v, is 1; else, if ﬁ isasingle fact, then
vy = d, otherwise, vs is (2¢). Note that if s contains no ES-nodes, then 7 is by definition
the empty set and therefore ﬁ isHorn. So for states s having no ES-nodes, vy = 1.

Now associate another number 7, with every node s. If s isaleaf node, then ¢, = vy. If
s haschildren sy, ...,s; in G, thent; = vy * max(ty, * - - - * ts; bsy +1s;)- Define tr to be
fg, % -+ %ty , Wheresy, ..., s¢ aredl thesink nodesin Gr.

Definition 3.5. A knowledge base T belongsto ¥; if 17 = j.

Theorem 3.6. If a knowledge bas@ belongs to¥; for somej, then it has at mosj
minimal models and all of them can be computed in 2), where! is the length of’".

Proof. (By induction onj.) The dependency graph and the super dependency graph are
both built in time linear in the size of the knowledge base. So we may only consider the
time it takes to compute all minimal models with the super dependency graph given.

Casej = 1. T € ¥1 means that for every node s in G, ’T\s is a Horn knowledge base.
In other words, T is Horn and therefore has exactly one minimal model. It is known that a
minimal model of a Horn knowledge base can be computed in time O(/) [11,19].

Casej > 1. By induction on %, the number of nodes in the super dependency graph
of T.

Caseh =1: Lets bethesinglenodein Gy.Thus, T =T, = T; and j = vy. If T isasingle
fact, then j = d, where d isthe number of distinct atomsin 7. Obviously, asingle
fact has exactly d minimal models (all possible models where exactly one of the
atomsin the fact is true), and these models can be computed in time O(d?). If T
isnot asingle fact, then v; is (2¢) where there are d distinct atomsin 7.

Clearly, al minimal models of T can be found in time O(lvsz), and T has at
most v; models, and hence at most vy minimal models.

Caseh > 1. Firdt, assumethat Gy hasasinglesink s. Let ¢y, ..., cx bethe children of s.
For each child ¢;, K, the part of the knowledge base which corresponds to the
subgraph rooted by ¢;, must belong to ¥;, for some ¢;. By the induction hypoth-
esis, for each child node ¢;, all minimal models of K, can be computed in time
O(lt?), and K, has a most #; minimal models.
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By definition, j = vy x max(tg * - - - g, t1 + - - - + ). Wewill show that T has
at most j minimal models and that using the AM agorithm, all minimal models
of 7' can be computed in time O(l;2).

By theinduction hypothesis, the total time taken to compute al minima mod-
elsinthechildren nodesiso(/t2 + 112 + - - - +1t2) = O( (12 + - - - +12)) < O(lj?).
Now let us observe what happens when AM is visiting node s. First, the com-
bination of all the models computed at the children nodes is taken. By the in-
duction hypothesis, this can be executed in time O(l x 1 * - - - x t;) < O(/j), and
yields at most 11 * - - - * 1 interpretations in M. For every m € M), we call
Transform (O(/))—so this step is O(/ x t1 * - -+ * 1) < O(/j) and compute all
the minimal models of Ty, (total of O(lvZ x 11 % - -- % 1) < O(lj?) steps). We
then merge all the minimal models of Ty, with m using Combine (O(lv,) for
each m, and total of O(l x vy * t1 * --- x 1) < O(lj) time for al the models in
M) Since Ty, has at most v, minimal models, this last step yields at most
Vg kB %k -k Iy = Vg k11 k% -+ -kt < j minima models for T. Thus, the overall
computation of all the minimal models of T yieldsat most j minimal models and
takes a finite number of steps, each of whichis O(/j2) time, and henceitis O(/j2)
time.

If G has multiple sinks, then we can artificially add to the knowledge base
therule P < sq, ..., sx, wheress, ..., sy areall atlomsused intheoriesin all the
sinks and P is a new atom. All minimal models of the revised knowledge base,
the value given to P ignored, are minimal models of the original knowledge base.
Since for the new state { P}, 7(p) is a Horn knowledge base, using the induction
hypothesisweredlizethat T has at most (f;, * - - Skl models, wheress, ..., s; are
all the sink nodesin Gr, and al these models can be computed in time O((z, *

cx1)?). O

Note that all Horn theories belong to ¥1, and the largest portion of Horn rules that any

knowledge base has, the more likely it is that algorithm AM will be efficient.

Given aknowledge base T, it is easy to find the minimum j such that T belongsto ¥;.

Thisfollows because building G and finding ¢, for every nodein G are polynomial-time
tasks. Hence,

Theorem 3.7. Given a knowledge bage, we can find the minimumsuch thatT" belongs
to ¥; in polynomial time.

Example 3.8 (Runmng example coNtwp,, 0,) = 2, since Tip, g, isthe single fact Py v
Q1. V(p,.0,.P3) 1523, 5ince T p,. 0, p;) hasthere distinct atoms. vip,. ,) = 2, Since Tip,. 0,)
isthe single fact P4 v Q4. v(ps) = 1 because T{p;) is the empty set and hence it is Horn.
v{0s) = 1 because T{ ;) is Horn. All other nodes s in G, are R-nodes and hence for each
of them vy = 1. Thus T € W; Where j = t{gq) * t(p, 04 = 1 % 2% % 2% 2 = 25, Note that
thereare ninedistinct atomsin Ty, and thus algorithm AM improveson thetrivial agorithm
which has aworst case of producing O(2¢) models in time O(2%4) where [ is the length
of the knowledge base and d the number of distinct atomsin the knowledge base.
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Note that some interpretations generated at some nodes of the super dependency graph
during the run of AM may be later deleted, since they cannot be completed to a minimal
model of the whole knowledge base:

Example 3.9. Consider knowledge base 7>:

ave
a—>b
a—>d

bAnd— false

During the run of algorithm AM, M, (the set of models computed at the node {a, c}) is
set to {{a}, {c}}. However, only {c} isaminima model of T».

Nevertheless, we can show that if the knowledge base has no integrity constraints, each
minimal model generated at some node will be a part of a minimal model of the whole
knowledge base.

Theorem 3.10. Assumerl is a knowledge base having no integrity constraints, and let
be any node irGr, the super dependency graph®f Then each model i, computed
when algorithm AM is visiting nodg can be completed to a minimal modelfof

Proof. Let m1 be a minima model of Kj, the part of the knowledge base which corre-
sponds to the subgraph rooted by s, computed when algorithm AM is visiting node s, and
let Tk, be the knowledge base obtained when we take T — K and instantiate all atoms
belonging to A according to the truth value they have in m1. Since the atomsin A; may
appear only in bodies of rulesfrom Tk, and since T has no integrity constraints, it must be
the case that Tk, has no integrity constraints and hence must be consistent (every knowl-
edge base with no integrity constraints is consistent—the interpretation that assigns true
to all the atoms in the knowledge base is a model). Let m, be a model of Tk, . Clearly,
m =m1 + mp isamodel of T. If m is minimal, then we are done. Else, there must be a
model m’ of Tk, suchthat m’ C m. Let E bethe set of all atoms P such that m(P) =true
and m'(P) = false. Since the projection of m on the atoms of A; must be a model of K
and since m1 isaminima model of K, it must be the case that E N A; is empty. Hence
m1 can be completed into aminimal model of 7. O

Theorem 3.10 shows that if the knowledge base has no integrity constraints, then when
we use the AM algorithm, we do not always have to compute all minimal models up to
the root node. If the query is about an atom that is somewhere in the middle of the graph,
it is enough to compute only the interpretations of the subgraph rooted by the node that
includes this atom. The following example will illustrate this.

Example 3.11 (Running example cont.Supposed we are given knowledge base Ty with
rule rs, which is the only integrity constraint excluded. The reader can check that the
dependency graph will be still the same as shown in Fig. 1. Now, suppose that we ask the
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query “Is P3 true in al minimal models of the knowledge base Tp?’. It is enough to run
agorithm AM only for the nodes {P1, Q1}, r2, and {r3, P>, Q2, P3}. The computation of
nodes { P1, Q1} and ry is exactly as shown in Example 3.4. As explained in Example 3.4,
when visiting node s = {r3, P2, Q2, P3}, which hasaso onechild ({r>}), we set M, to be
Mip,, 0,y Whichis {{P1, —Q1}, {(—P1, Q1}}. But unlike Example 3.4, since rs is missing,
T, is composed only of r» and r3, or in other words, the set {P1 —> P> Vv Q2, P» —>
P3Vv Q}. At step 2(d), when wefirst set m to be {{ P1, =01}, T;,, } computed by Transform
is{P2Vv Q2, P, —> P3V Qp}. The two minimal models of 7, are {P2, =Q2, P3} and
{=P2, Q2,—P3}and My issettobe {{ P1, = Q1, P>, ~Qo, P3}, {P1,~Q1, — P2, 02, ~P3}}.

Next we set m to be {—P1, Q1}. As explained in Example 3.2, Transform computes
T;,, to be {P» — P53V 0>}, and this knowledge base has exactly one minimal model—
{—=P>,—Q2, —P3}. Combine combines this model with m = {—=P1, 01} and we add
{—=P1, Q1, =P2, =Qp2, —P3} t0 M. So at the end of this visit My, p, 0, ps} IS St tO
{{P1, =01, P2, =Q2, P3}, {P1, =01, = P2, 02, = P3}, {—P1, Q1, = P2, =02, ~P3}}.

By Theorem 3.10, all these models are part of minimal models of the knowledge base
To. Hence, without having to continue the computation for all the nodes in the tree we can
answer that P3 isnot truein every minimal model.

In addition to the beneficial feature discussed above, Algorithm AM has other desir-
able features. First, AM enables us to compute minima models in a modular fashion.
We can use G7 as a structure in which to store the minimal models. Once the knowl-
edge base is changed, we need to resume computation only at the nodes affected by the
change.

Second, the AM algorithm is useful in computing the labeling of a TM'S subject to no-
goods. A set of nodes of a TMS can be declared nogood which means that all acceptable
labeling should assign false to at least one node in the nogood set.* In minimal models ter-
minology, this means that when handling nogoods, we look for minimal models in which
at least one atom from a nogood is false. A straightforward approach would be to first
compute all the minimal models and then choose only the ones that comply with the no-
good constraints. But since the AM algorithm is modular and works from the bottom up,
in many cases it can prevent the generation of unwanted minimal models at an early stage.
During the computation, we can exclude the partial interpretations that do not comply with
the nogood constraints and erase these partial interpretations. We can do thisoncewe are at
anode s in the super dependency graph such that A; includes al the members of acertain
nogood.

4. Computing minimal models of first-order knowledge bases
In this section, we show how we can generalize algorithm AM so that it can find al

minimal models of aknowledge base over afirst-order language with no function symbols.
The new algorithm will be called FIRST-ALL-MINIMAL (FAM).

4 In our terminol ogy nogoods are simply integrity constraints, and can be added directly to the knowledge base.
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We will now refer to a knowledge base as a set of rules of the form

ALANAA---NA, — B1V ByV---V By, 4

where all Asand Bs are atomsin afirst-orderlanguage £ with no function symbols. The
definitions of head, body, facts, and integrity constraints are analogous to the propositional
case. Inthe expression p(X1, ..., X¢), p iscaled apredicate name

Asinthe propositional case, every knowledge base T isassociated with adirected graph
called the dependency grapbf 7', in which we have predicates names instead of atoms.
The super dependency graph, G, is defined in an analogous manner.

A knowledge base will be called safeiff each of its rulesis safe. A rule is safeiff all
the variables appearing in the head of the rule also appear in the body of the rule. In this
section, we assume that knowledge bases are safe. The Herbrand baseof a knowledge
baseis the set of all atoms constructed using predicate names and constant symbols® from
the knowledge base. The set of ground instances of a rules the set of rules obtained by
consistently substituting variables from the rule with constant symbols that appear in the
knowledge basein al possibleways. The ground instance of a knowledge basghe union
of al ground instances of itsrules. Note that the ground instance of afirst-order knowledge
base can be viewed as a propositional knowledge base.

A (Herbrand) modelfor a knowledge base is a subset M of the knowledge base's Her-
brand base having

1. For every rule with non-empty head in the grounded knowledge base, if al the atoms
that appear in the body of the rule belong to M then at least one of the atoms in the
head of therule belongsto M.

2. For every integrity constraint, not all the atoms in the body appear in M.

A minima model for afirst-order knowledge base T is a Herbrand model of 7', which
isaso aminimal model of the grounded version of 7.

We now present FAM, an algorithm that computes all minimal models of a first-order
knowledge base. Let T be afirst-order knowledge base. Asin the propositional case, with
each node s in Gy (the super dependency graph of T), we associate T;, Ay, and M;.
T, isthe subset of T containing all the rules about predicates whose names arein s. A,
is the set of all predicate names that appear in the subgraph of G rooted by s. M; are
the minimal models associated with the sub-knowledge base of T that contains only rules
about predicateswhose namesarein Ay. Initialy, M, isempty for every s. Algorithm FAM
traverses G r from the bottom up. When at anode s, the algorithm first combines all partial
models computed by the children of s into a single set of models, M.). Then, for each
model m in M), it calls a procedure that finds al the minimal models of 7y union the set
of all the clauses true — P such that P € m. The procedure ALL-MINIMAL called by
FAM can be any procedure that computes all the minimal models of afirst-order knowledge
base, such as one of the procedures suggested by [7]. Because procedure ALL-MINIMAL

5 We remind the reader that the knowledge base is over a first-order language who has, by definition, a prede-
fined set of constant symbals.
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FIRST-ALL-MINIMAL(T)
Input: A first-order knowledge base T'.
Output: All the minimal models of 7.

1. Construct Gr;
2. Traverse G from the bottom up. For each node s, do:
@ M;:=0;
(b) Letsy,...,s; bethechildren of s;
(©) M(5) = Combine({Ms,, ..., My, D);
(d) Foreachm € M) do

M; := Mg Ual-minima(Ty U {true— P | P e m});

3. Output Combine({Ms, , ..., My, }),
wheresq, ..., s; arethesinksof Gp.

Fig. 6. Algorithm FIRST-ALL-MINIMAL (FAM).

computes minimal models for only parts of the knowledge base, it may take advantage
of some fractions of the knowledge base being Horn or having any other property that
simplifies computation of the minimal models.

Theorem 4.1. Algorithm FAM is correct, that isy is a minimal model of a knowledge
baseT iff m is one of the models in the output when applying FANI to

Proof. Asthe proof of Theorem3.3. O

Example 4.2. Consider knowledge base T3:

ri:  bird(X) — fly(x) v abnormalX)

ro:  bird(X) — femalg€ X) v malg(X)

r3: peacockX) — bird(X)

ra: peacockX) — abnormalX)

r5.  pheasantX) — bird(X)

re:  peacockpeakp.
The super dependency graph of 73, Gr,, is shown in Fig. 7. Observe that when at
node bird, for example, in step 2(d) the algorithm looks for al minima models of
the knowledge base T’ = Tyiq U {«<— peacockpeaki}, where T = {peacockX) —
bird(X), pheasantX) — bird(X)}. T’ is a Horn knowledge base that has a unique min-
imal model that can be found efficiently. Hence, algorithm FAM saves us from having to

ground all the rules of the knowledge base before starting to calculate the models, and it
can take advantage of parts of the knowledge base being Horn.
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/@

Fig. 7. The super dependency graph of T3.

el

5. Related work

During the last few years there have been several studies regarding the problem of min-
imal model computation. Ben-Eliyahu and Dechter [3] have presented several algorithms
for computing minimal models, all of them different from the one presented here. One
limitation of the algorithms presented there is that they produce a supersetof all mini-
mal models while every model produced using our algorithm is minimal. In addition, for
each of the algorithms presented by [3] we can show a set of theories for which our algo-
rithm performs better. For example, one of the heuristics employed in [3] is to convert a
knowledge base into a Horn knowledge base by instantiation of some of the atoms. This
heuristics works well when the knowledge base is close to being Horn, or in other words,
when only few atoms should be instantiated. Consider the following knowledge base:

AvC
A— B
C— D
BAD— X1V---VX,

and assume A, B, C or D are not one of X1, ..., X,,. By the heuristics of [3], al combi-
nations of instantiating the variables Xo, ..., X,, should be tried when computing all the
models. This approach will work well only if » is very small. On the other hand, if algo-
rithm AM is used for this knowledge base, it will work in linear time on such theories,
no matter what » is. This is because when node {X1, ..., X,,} of the dependency graph is
reached during the computation of the AM algorithm, it is clear that there is no minimal
model in which both B and D are true. Hencetherule BA D — X1V ---V X, isnot
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considered at al during the computation. Ben-Eliyahu and Palopoli [4] have presented a
polynomial algorithm for finding a minimal model, but it works only for a subclass of al
CNF theories and it finds only one minimal model.

The algorithm of Ben-Eliyahu [1] for finding stable models of logic programs has sev-
eral common ideas with the one presented here. However, it finds only stable models and
it does not work for rules with more than one atom in the head.

Bry and Yahya [7] describe an approach for generating the minimal Herbrand mod-
els of sets of first-order clauses. Their approach builds upon positive unit hyperresolution
(PUHR) tableaux. Two minimal model generation procedures are described by [7]. The
first one expands PUHR tableaux depth-first relying on a complement splitting expansion
rule and on aform of backtracking involving constraints. The second minimal model gen-
eration procedure performs a breadth-first, constrained expansion of PUHR (complement)
tableaux. Like the algorithm presented here, both procedures described in [7] are optimal
in the sense that each minimal model is constructed only once, and the construction of
nonminimal modelsisinterrupted as soon as possible. The advantage of the algorithm pre-
sented here is that for the propositional case, an upper-bound on the time complexity and
the number of models generated can be assessed ahead of time in time polynomial in the
size of the theory.

Variations on the task of minimal model computation have been studied in the past in
the diagnosis literature and the logic programming literature. For instance, many of the
algorithms used in diagnosis systems[12,13] are highly complex in the worst case. To find
aminimal diagnosis, they first compute al prime implicates of a knowledge base and then
find aminimal cover of the prime implicates. The first task is output exponential, while the
second is NP-hard. Therefore, in the diagnosis literature, researchers often compromise
completeness by using heuristic approaches.

Some of the work in the logic programming literature has focused on using efficient
optimization techniques, such aslinear programming, for computing minimal models (e.g.,
[6]). The systems dlv [21,24] and smodelq20,29] compute stable models of digjunctive
logic programs. If integrity constraints are allowed in the programs, then every knowledge
base can be represented as a digunctive logic program such that the set of al minimal
models of the first coincide with the set of all stable models of the second. The system
dlv takes advantage of the fact that minima model checking for HCF theories [2] can be
computed in linear time [4]. The system smodeldrandates the disjunctive program into
a non-disunctive one and then calls a stable model computing procedure that uses some
constraints programming techniques. One limitation of the above approaches is that they
do not provide a tool to assess ahead of time how complex will be the computation. An
advantage of our approach compares to theirs is that our algorithm may be implemented
as a parale algorithm and thus take advantage of distributed computing systems. Our
agorithm can call the algorithms of dlv or smodelsas a subroutine.

6. Conclusions

We have presented a new algorithm for computing minimal models. Every model gen-
erated by this algorithm is minimal, and all minimal models are eventually generated. The
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agorithm induces a hierarchy of tractable subsets for the problem of minima model com-
putation. The minimal models can be generated by the algorithm one at atime, a property
which alows demand-driven computation.

Algorithm AM enables us to compute minimal models in a modular fashion. We can
use the super-dependency graph of the knowledge base as a structure in which to store the
minima models. Once the knowledge base is changed, we need to resume computation
only at the nodes affected by the change. By using the AM algorithm, we do not always
have to compute all minimal models up to the root node. If we are queried about an atom
that is somewhere in the middle of the graph, it is often enough to compute only the models
of the subgraph rooted by the node that represents this atom.

A paralel implementation of the AM algorithm is possible. Computations related to
each node in the super dependency graph could be executed in different machines. A ma-
chinethat represents a specific node would have to wait to get messages containing models
from machines that represent the node’s children. Once a particular machine P gets at
least one model from each child node, models for the knowledge base represented in P
can be computed and sent to the machine that represents P’s parent in the super depen-
dency graph. The fina results—the minimal models of the whole knowledge base — will
be delivered by the machine that represents the root of the super dependency graph. Such
parallel implementation could speed up the computation, since models of nodes that are
not connected by a directed path in the super dependency graph can be executed in paral-
lel. We |eave detail s of the implementation and analysis of parallel version of the algorithm
presented here for future research.
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