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University of Tübingen, Auf der Morgenstelle 3, 72076 Tübingen, Germany
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SUMMARY

Intracellular membrane fusion requires complexes
of syntaxins with other SNARE proteins and regula-
tory Sec1/Munc18 (SM) proteins. In membrane
fusion mediating, e.g., neurotransmitter release or
glucose-stimulated insulin secretion in mammals,
SM proteins preferentially interact with the inactive
closed, rather than the active open, conformation of
syntaxin or with the assembled SNARE complex.
Other membrane fusion processes such as vacuolar
fusion in yeast involve like membranes carrying cis-
SNARE complexes, and the role of SM protein is
unknown. We investigated syntaxin-SM protein
interaction in membrane fusion of Arabidopsis cyto-
kinesis, which involves cytokinesis-specific syntaxin
KNOLLE and SM protein KEULE. KEULE interacted
with an open conformation of KNOLLE that comple-
mented both knolle and keule mutants. This interac-
tion occurred at the cell division plane and required
the KNOLLE linker sequence between helix Hc and
SNARE domain. Our results suggest that in cytoki-
nesis, SM protein stabilizes the fusion-competent
open form of syntaxin, thereby promoting trans-
SNARE complex formation.

INTRODUCTION

Intracellular membrane fusion requires membrane-anchored

SNARE (soluble N-ethylmaleimide-sensitive factor attachment

receptor) proteins and regulatory Sec1/Munc18 (SM) proteins.

When a transport vesicle arrives at a target membrane compart-

ment, a trans-SNARE complex forms between v(esicle)-SNARE

protein on the vesicle and syntaxin and additional t(arget)-

SNARE proteins on the target membrane (Südhof and Rothman,

2009). In addition, SMprotein interacts with the cognate syntaxin

in its inactive closed, rather than fusion-competent open, confor-

mation or with the assembled SNARE complex by binding to an

N-peptide sequence of syntaxin (Dulubova et al., 1999, 2007;

Misura et al., 2000; Yamaguchi et al., 2002). Vacuole fusion in
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yeast represents a different kind of membrane fusion in which

like membranes carrying cis-SNARE complexes fuse with one

another through priming by Sec18p/NSF ATPase followed by

trans-SNARE complex formation. This process is driven by

HOPS complex, which contains the SM protein Vps33p (Wick-

ner, 2010). How Vps33p regulates vacuole fusion is still

unknown. In Arabidopsis, two of six SM proteins (Sanderfoot

et al., 2000) have been functionally related to cognate syntaxins

or SNARE complexes. VPS45 positively regulates the SYP41-

SYP61-VTI12 SNARE complex in vacuolar trafficking at the

TGN/EE (trans-Golgi network/early endosomes) (Bassham

et al., 2000; Dettmer et al., 2006; Zouhar et al., 2009). SM protein

KEULE (KEU) is involved in cytokinesis, interacting with the cyto-

kinesis-specific syntaxin KNOLLE (KN), and also in root-hair

development independently of KN (Lukowitz et al., 1996; Lauber

et al., 1997; Waizenegger et al., 2000; Assaad et al., 2001). In

plant cytokinesis, membrane vesicles derived from the TGN

accumulate at the plane of cell division where they fuse with

one another to form the cell plate that matures into a new stretch

of plasma membrane between the daughter nuclei (Jürgens,

2005). Recently, Touihri et al. (2011) found out that two domains

of KN syntaxin—the SNARE domain and the adjacent linker

sequence—are essential for membrane fusion in cytokinesis.

Here we report that KN-KEU interaction requires the linker

sequence, occurs at the cell division plane and involves the

fusion-competent open conformation of KN. Our results suggest

a model of SM protein action in Arabidopsis cytokinesis that is

different from SM protein action in other membrane fusion

events in that SM protein stabilizes the fusion-competent open

form of syntaxin, thereby promoting trans-SNARE complex

formation.

RESULTS

Mode of Interaction between KN and KEU
The mode of KN-KEU interaction was studied in quantitative

yeast two-hybrid assays (Figure 1; Figures S1A and S1B avail-

able online). Unexpectedly, KEU interacted with KN only slightly

more strongly thanwith PEP12/SYP21, a PVC/MVB (prevacuolar

compartment/multivesicular body)-localized syntaxin (Figures

1A, 1T, and 1U) (Sanderfoot et al., 1998). PEP12 does not

complement a KN null mutant (knX37-2) (Müller et al., 2003), and

its interaction with KEU was equivalent to the empty-vector
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Figure 1. The KN Linker Sequence Is Indispensable for KEU Binding
Diagrams of AD-syntaxin constructs and their quantitative b-galactosidase interaction analysis in yeast coexpressing BD-KEU.

(A) KN, cytosolic fragment without tail anchor.

(B) KNIE182,183AA, KN with IE182,183AA substitution mutations.

(C) KND30, KN lacking N-peptide.

(D) KNIE182,183AAD30, KNIE182,183AA without N-peptide.

(E) KNDHa, KN without N-peptide and helix Ha.

(F) KNDHab, KN without N-peptide and helices Ha, Hb.

(G) KNDHabc, KN without entire N terminus.

(H) KNDSyn, KN without SNARE domain.

(I) KNDSynDL, KN with neither SNARE nor linker domain.

(J) KNDSynDHc, KN without SNARE domain and helix Hc.

(K) SDHab, SYP31 without N-peptide and helices Ha, Hb.
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Figure 2. KN Directly Interacts with KEU

Pull-down assays. Purified recombinant GST, GST:KN and GST:KNIE182,183AA

proteins (lacking the C-terminal membrane anchor) were tested for interaction

with agarose beads-trapped 63HA:KEU (A) or GFP:SNAP33 (B) isolated from

plant extracts. Input (IN), flow-through (FL), and precipitate (IP) were subjected

to immunoblot (IB) analysis with antibodies against HA, GFP, or GST. Note that

GST:KNIE182,183AA interacts more strongly than GST:KN with both 63HA:KEU

and GFP:SNAP33 (arrows). Asterisks, free GST; kDa (kilodalton), molecular

weight markers (left); Input (%), loading volumes relative to the input; Rel. of IB,

relative signal intensity (plant input signal = 100% for IB-HA and IB-GFP; input

signal of GST:KN = 100% for IB-GST).

See also Figure S2.
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control (not shown). Syntaxins adopt two alternative conforma-

tions: a closed conformation in which the three N-terminal

helices (Habc domain) fold back onto the SNARE domain, form-

ing a four-helical bundle, and an open conformation in which the

two regions are physically apart (Margittai et al., 2003b; Sutton

et al., 1998). The open form of syntaxin can be experimentally
(L) KNDHab-LS, KNDHab with SYP31 linker domain.

(M) SDHab-L, SDHab with KN linker domain.

(N) Linker, linker domain of KN.

(O) Hc, helix Hc of KN.

(P) Hc-L, helix Hc, and linker domain of KN.

(Q) HcS-L, helix Hc of SYP31, and KN linker domain.

(R) KN-NPEP12, KN with N-peptide of PEP12 (amino acids 1–20 of PEP12 replace

(S) KNIE182,183AA-NPEP12, KN with IE182,183AA substitution mutations and N-pep

(T) PEP12, cytosolic fragment without tail anchor.

(U) PEP12DHa, PEP12 without N-peptide and helix Ha. Domains of PEP12 and

constructs lack the C-terminal membrane anchor (tail anchor) to allow for nuclea

three times. Bars in the graph represent SD (n = 12).

See also Figures S1 and S2.
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stabilized by two point mutations in the linker between helix Hc

and the SNARE domain (Dulubova et al., 1999; D’Andrea-

Merrins et al., 2007). Homologous substitutions introduced into

KN (KNIE182,183AA) increased the interaction with KEU �3-fold

(Figure 1B), which correlated with its increased susceptibility to

limited trypsin proteolysis, suggestive of a more open structure

(Figure S1C). To verify this mode of interaction between KN

and KEU by a different approach, we performed modified pull-

down assays. GST-fused KN or KNIE182,183AA protein was puri-

fied from bacterial cells and then incubated with 63HA:KEU

that had been isolated from plant extracts and trapped on

agarose beads. Consistent with the results in yeast interaction

analysis, GST:KN interacted only weakly with 63HA:KEU

whereas GST:KNIE182,183AA displayed stronger interaction (Fig-

ure 2A). Thus, KEU interacts with KN directly and KEU appears

to prefer the open conformation of KN for binding. To determine

whether the open conformation of KN is competent to interact

with its SNARE partners, we performed comparable pull-down

assays of the two recombinant KN variants with GFP:SNAP33

purified from transgenic plants in the same manner as 63HA:

KEU. GST:KNIE182,183AA interacted more strongly than GST:KN

with SNAP33, which is a KN-interacting Arabidopsis SNAP25

homolog also involved in cytokinesis (Heese et al., 2001) (Fig-

ure 2B). Taken together, our results suggest that the open

conformation of KN is competent to interact with both its SNARE

partner(s) and the SM protein KEU.

The Linker Sequence of KN Is Essential for Binding
of KEU
To identify KN region(s) essential for interaction with KEU,

successively larger deletions were generated from the N-

terminus of KN based on its predicted secondary structure (Fig-

ure 1) (Lukowitz et al., 1996). Elimination of amino acids 1–30 had

no dramatic effect on KN-KEU interaction (Figure 1C), whereas

removal of one or more helices of the Habc domain strongly

increased the interaction (Figures 1E–1G). Truncated KN lacking

the SNARE domain (KNDSyn) also showed strong binding to

KEU (Figure 1H). Furthermore, this interaction was abolished

by removal of the linker (KNDSynDL), but not the adjacent helix

Hc (KNDSynDHc, Figures 1I and 1J), demonstrating the essential

role of the linker. The linker between helix Hc and the SNARE

domain is highly flexible, presumably allowing for conformational

changes of syntaxins (Margittai et al., 2003a). We replaced the

KN linker with the unrelated linker of the Golgi-localized

Sed5p/syntaxin 5 ortholog SYP31 (Figure S2) (Uemura et al.,

2004). Neither truncated SYP31 protein (SDHab) nor the
d amino acids 1–42 of KN).

tide of PEP12.

SYP31 are marked by light and dark gray color, respectively. Note that all

r uptake. Amino acid positions are indicated. The measurement was repeated
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Figure 3. N-Peptide of KN Is Not Sequence-

Specifically Required for KEU Binding

(A) Diagrams of KND30 and KN-NPEP12. KND30,

KN without N-peptide (amino acids 1–30 deleted);

KN-NPEP12, KN with N-peptide of PEP12 (blue line;

amino acids 1–42 of KN were replaced with amino

acids 1–20 of PEP12). Myc, myc tag; TM, tail

anchor.

(B) Complementation analysis. knX37-2 mutant

seedlings partially rescued (P.R) by KND30 (right);

WT, wild-type. See also Figure S3 for quantitative

analysis of complementation test: Note that in

contrast to KND30, KN-NPEP12 rescues knX37-2

mutant fully.

(C–E) Confocal images of KND30 and KN-NPEP12

localization in seedling root cells. Both anti-KN

(green) and anti-myc (red) antibodies were used to

detect endogenous KN and the engineered

versions. Note that anti-KN antiserum recognizes

the engineered versions as well because anti-KN

antiserum was raised against the entire cytosolic

segment of KN (Lauber et al., 1997). (E) Upon

100 mM BFA application, seedlings were immu-

nostained with both anti-myc (red) and anti-KN

(green) antibodies. Scale bars represent 1 cm in

(B); 5 mm in (C–E).

See also Figure S2.
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corresponding KN fragment with the linker from SYP31

(KNDHab-LS) interacted with KEU (Figures 1K and 1L), suggest-

ing that the KN linker is a sequence-specific binding site for KEU.

Unexpectedly, the reciprocal chimera, SDHab-L displayed

slightly enhanced interaction for KEU compared to SDHab or

KNDHab-LS, but did not interact more strongly than KNDHab

(cf. Figures 1M and 1F), indicating that the molecular context

may also play a role in the interaction with KEU. Neither linker

nor adjacent helix Hc alone was sufficient for interaction; how-

ever, Hc-L comprising both domains was competent to interact

with KEU (Figures 1N–1P), implying the necessity of an adjacent

domain for the tight interaction with KEU (see also Figure 1G).

Interestingly, even the helix Hc from SYP31 (HcS-L, Figure 1Q)

slightly enhanced the interaction of the KN linker with KEU.

Divergent and Convergent Contribution of N-Peptide
to Membrane Fusion
In mammalian membrane fusion mediating (e.g., neurotrans-

mitter release or glucose-stimulated insulin secretion) the

N-peptide of syntaxins Syntaxin 1A or Syntaxin 4 is a primary

sequence-specific binding site for SM proteins Munc18-1 or

Munc18c, respectively, initiating SNARE complex formation
992 Developmental Cell 22, 989–1000, May 15, 2012 ª2012 Elsevier Inc.
(Yamaguchi et al., 2002; Hu et al.,

2007; Burkhardt et al., 2008; Rathore

et al., 2010). Similarly, the N-peptide of

KNIE182,183AA was also required for inter-

action with KEU in the yeast assay (Fig-

ure 1D, KNIE182,183AAD30). Consistently,

KND30 rescued the knX37-2 mutant only

partially (Figures 3B and S3), although

this protein reached the cell division

plane, like KN (Figures 3C and 3E) (Lauber
et al., 1997; Reichardt et al., 2007). Thus, the N-peptide is impor-

tant for KN functionality. Interestingly, however, alanine substitu-

tions of the conserved amino acid residues T6 and F9, which

correspond to the essential residues of yeast syntaxins Sed5p

and Ufe1p in the SM protein Sly1p-binding pocket (Bracher

and Weissenhorn, 2002; Yamaguchi et al., 2002), did not disrupt

KN function (data not shown). Furthermore, a chimeric KN

protein containing the sequence-unrelated N-peptide of PEP12

(Figure S2) was able to substitute functionally for wild-type KN

(Figures 3A, 3D, 3E, and S3B). Indeed, KNIE182,183AA-NPEP12 in-

teracted strongly with KEU in yeast analysis, unlike KN-NPEP12,

which was reminiscent of the difference in interaction with KEU

between KNIE182,183AA and wild-type KN (Figures 1R and 1S,

cf. Figures 1A and 1B). Taken together, these results suggest

that the KN-KEU interaction requires the presence, but not

a specific sequence, of an N-peptide, in contrast to sequence-

specific requirement of the KN linker.

KN Without the Genuine Linker Sequence Is Not
Functional In Vivo
To determine the biological significance of the KN linker, we

generated transgenic plants expressing, from KN cis-regulatory
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sequences (Müller et al., 2003), three KN variants fused to either

vYFP (Nagai et al., 2002) or myc (Müller et al., 2003) at their N

terminus: KN without linker (KNDL), KN with the linker of

SYP31 in place of its own (KN-LS), and KN with two point muta-

tions in the linker (KNIE182,183AA), corresponding to a constitu-

tively open form (Figure 4A). Transgenic plants expressing

GFP:KN were used as control (Reichardt et al., 2007). All three

mutant fusion proteins had the expected sizes (Figure S4A)

and were indistinguishable in their subcellular localization and

dynamics from the wild-type form of KN (Figures 4B, 4C, and

S4B). Consistent with the data of the yeast analysis, both

KNDL and KN-LS, which lacked the genuine KN linker, failed to

rescue the knX37-2 mutant (Figures 4D, S4C, S4D, and S4G). In

contrast, KNIE182,183AA rescued the knX37-2 mutant, depending

on the amount of protein made (Figures 4D and S4E–S4G).

This result suggests that KNIE182,183AA actually resembles the

active form of KN, consistent with the result of the pull-down

assay in which KNIE182,183AA strongly interacted with SNAP33

(Figure 2B). Thus, the linker between N-terminal helices and

SNARE domain is not necessary for KN trafficking but is abso-

lutely essential for KN function at the cell plate, by acting as

a sequence-specific binding site for KEU.

Overexpression of the Open Conformation of KN
Bypasses the Necessity of KEU
To explore the biochemical interaction of KN and its variants with

KEU in planta, immunoprecipitation was performedwith extracts

from transgenic plants that coexpressed 63HA:KEU and each

myc-tagged KN variant (Figure 4E). Myc-KN was coimmmuno-

precipitated with KEU, although only a small amount of KN

was detected in the KEU-bound fraction. A similar observation

has been made on the interaction of neuronal syntaxin 1 with

SM protein Munc18-1 (Gerber et al., 2008). In contrast to KN,

neither KNDL nor KN-LS were bound to KEU (Figure 4E). These

results suggest that the linker of KN is a sequence-specific

binding site for KEU. Surprisingly, KNIE182,183AA was undetect-

able in the KEU-precipitated fraction, although the two proteins

interacted strongly in the yeast interaction and pull-down

assays (Figure 4E; see also Figures 1B and 2A). Interestingly,

however, KNIE182,183AA displayed an enhanced interaction with

the SNARE partner of KN, SNAP33, apparently at the expense

of KN-KEU interaction (Figure 5A, cf. Figure 4E). These results

raised the possibility that KN might interact with its SNARE

partners or with KEU but not with both at the same time. We

addressed this problem by coimmunoprecipitation of extracts

from plants expressing differentially tagged KEU, SNAP33, and

either KN or KNIE182,183AA. KEU did not coimmunoprecipitate

SNAP33 but did interact with KN, suggesting that KEU does

not interact with the assembled KN-containing SNARE complex

(Figure 5B). However, there was no interaction of KEU with the

open conformation of KN, as observed before (see Figure 4E).

In the reciprocal experiment, SNAP33 also did not coimmuno-

precipitate KEU, thus confirming the result (Figure S5D). Interest-

ingly, however, in this case, SNAP33 interacted more strongly

with the open conformation than with the normal form of KN,

as already observed (Figure S5D, see also Figure 5A). Taken

together, our results strongly suggest that KEU interacts with

monomeric KN preferentially in its open conformation rather

than the assembled SNARE complex. However, we cannot
Develo
completely rule out the possibility that there is residual interac-

tion of KEU with the assembled SNARE complex that escapes

detection for technical reasons. Because KEU preferentially

interacts with the open conformation of monomeric KN, which

appears to be a transitory state of syntaxin from the closed

monomer to the assembled complex, we analyzed whether

a constitutively open conformation of KN might bypass the

requirement of KEU in cytokinesis. As shown in Figures 5C and

S5A–S5C, KNIE182,183AA was able to suppress a KEU null mutant

phenotype (keuMM125). Thus, the constitutively open conforma-

tion of KN appears to form the trans-SNARE complex without

requiring KEU activity in cell-plate formation.

KN Interacts with KEU at the Cell Division Plane
The keuMM125 mutant was also rescued by KEU with an

N-terminal 63HA tag expressed from the KN cis-regulatory

sequences (Figures S6A–S6C), which displayed a punctate

pattern, with stronger signals at the plane of cell division (Fig-

ure 6A). Surprisingly, KEU localization was insensitive to the

ARF-GEF inhibitor brefeldin A (BFA) (Figures 6B and S6G)

(Geldner et al., 2003), and KEU did not colocalize with the

Golgi/TGN marker ARF1 (Figure S6E) (Stierhof and El Kasmi,

2010), suggesting that KEU, unlike KN, is not trafficked to the

plane of cell division through the TGN. Whereas neuronal SM

protein Munc18-1 escorts syntaxin 1A to the plasma membrane

(Liu et al., 2004), KN reaches the cell plate in a KEU-independent

manner (Waizenegger et al., 2000). Likewise, KEU did not require

KN for reaching the plane of cell division (Figures 6C and 6D).

These data suggest that KN interacts with KEU only at the divi-

sion plane where this interaction might promote the formation

of the trans-SNARE complex.

Interaction of KN with KEU Is a Pivotal Step in Plant
Cytokinesis
As shown in Figure 1P, the KN fragment comprising the Hc helix

and the linker (Hc-L) interacted strongly with KEU. To analyze

whether Hc-L overexpression interferes with KN function by

titrating out KEU, we generated transgenic plants expressing

vYFP-labeled Hc-L fusion protein either conditionally using

the GAL4>>UAS two-component system (Weijers et al., 2003)

or from the KN cis-regulatory sequences (Figures 7A and S7A).

Activation of Hc-L expression caused a growth-retarded seed-

ling phenotype of short and thickened root compared to wild-

type (Figure 7B; see also Figure S7B), with disorganized cell

shapes and cell-wall stubs suggesting cytokinesis defects

(Figures 7C, 7D, and S7C). These defects were less severe

than those in knX37-2 or keuMM125 single mutants, possibly

becauseHc-L boundKEU less efficiently than did a constitutively

open form of KN (Figures 1B and 1P).

Fusion protein vYFP:Hc-L was detected in the cytosol and,

interestingly, at the plane of cell division as shown by colabeling

of the associated phragmoplast, a microtubule array assisting in

cell-plate formation (Figure 7E, inset). Because KN protein lack-

ing the C-terminal membrane anchor is entirely cytosolic (Völker

et al., 2001) and Hc-L protein was BFA-insensitive (Figure S7D),

unlike KN, KEU interactionmightmediate Hc-L localization to the

cell division plane. Whereas wild-type embryos displayed Hc-L

at the cell division plane as did the root cells, Hc-L was redistrib-

uted to the cytosol in themultinucleated cells of keuMM125mutant
pmental Cell 22, 989–1000, May 15, 2012 ª2012 Elsevier Inc. 993



Figure 4. The Linker Sequence Is Essential for KN Function

(A) Domain structures of constructs; KN-LS, KN with SYP31 linker (gray); KNDL, KN without linker; KNIE182,183AA, constitutively open conformation of KN. GFP,

vYFP, Myc, epitopes; TM, tail anchor.

(B and C) Confocal images of seedling root cells stained for KN derivatives (green) and tubulin (B, red) or ARF1 after 100 mM BFA treatment (C, red), and

counterstained with DAPI (blue). Note that KNIE182,183AA was detected with anti-myc antibody. Arrows, cell plate with phragmoplast (red); arrowheads, BFA

compartment with KN and ARF1 signals merged.

(D) Complementation analysis. T2 seedlings harboring indicated transgene (T) in knX37-2 homozygous background. Left:WT, wild-type; inset: knX37-2mutant. Note

that KNIE182,183AA rescue of knX37-2 is dosage-dependent.

(E) Coimmunoprecipitation analysis. Immunoprecipitation (IP) with anti-HA beads (63HA:KEU) was followed by immunoblot (IB) analysis. The middle and bottom

panels show immunoblots exposed for 0.5 min and 3–4 min, respectively. kDa, (kilodalton), molecular weight markers (left); Input (%), loading volumes relative to

the input. Rel. of IB, relative signal intensity: IP signal (KN/KEU) = 100% for IB-HA; input signal (KN/KEU) = 100% for IB-KN. Arrow, 63HA:KEU; arrowheads,

myc:KN. Note the detection of myc:KN protein as doublet (Lauber et al., 1997) and no coimmunoprecipitation of endogenous KNwith KEU due to the low protein

level. Non, nontransformed plant; IN, input; FL, flow-through. Scale bars represent 5 mm in (B) and (C); 1 mm in (D).

See also Figures S2 and S4.
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Figure 5. The Constitutively Open Conformation of KN Does Not

Require KEU Activity

(A and B) Coimmunoprecipitation analyses. (A) Immunoprecipitation (IP) with

anti-GFP beads (S33, GFP:SNAP33) from transgenic plants coexpressing

GFP:SNAP33 and myc:KN or myc:KNIE182,183AA was followed by immunoblot

(IB) analysis. (B) Immunoprecipitation (IP) with anti-HA beads (63HA:KEU)

from transgenic plants coexpressing 63HA:KEU, GFP:SNAP33 and either

myc:KN or myc:KNIE182,183AA was followed by immunoblot (IB) analysis. See

also Figure S5D for the reciprocal coimmunoprecipitation experiment with

anti-GFP beads (GFP:SNAP33). kDa (kilodalton), molecular weight markers

(left); Input (%), loading volumes relative to the input. Arrows, GFP:SNAP33;

asterisks, myc:KN or myc:KNIE182,183AA; triangle, 63HA:KEU. IN, input; FL,

flow-through; Rel. of IB, relative signal intensity: IP signal (KN/S33) = 100%

for IB-GFP in (A); input signal (KN/S33) = 100% for IB-myc in (A); IP signal

(KEU) = 100% for IB-HA in (B); input signal (KN/KEU/S33) = 100% for IB-KN

and IB-GFP in (B).

(C) Seedlings harboring myc-tagged KNIE182,183AA transgene (T) in keuMM125

homozygous background. WT, wild-type; keuMM125, nontransformed mutant.

Scale bar represents 1 cm in (C).

See also Figure S5.
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embryos (Figures 7E–7G and S7E). In conclusion, the linker

separating the N-terminal Habc domain from the SNARE domain

of KN is an essential site for KN-KEU interaction at the division
Develo
plane, which, in turn, is a pivotal regulatory step for membrane

fusion during cytokinesis in Arabidopsis.

DISCUSSION

In eukaryotes, there are two types of membrane fusion: hetero-

typic fusion, which occurs between a transport vesicle and its

target membrane, and homotypic fusion, which occurs between

two biochemically identical membranes such as yeast vacuoles

and mammalian endosomes. Both types of fusion are mediated

by a core fusion machinery comprising interacting SNARE

proteins and regulatory SM proteins. In heterotypic membrane

fusion, such as neurotransmitter release or glucose-stimulated

insulin secretion, SM proteins Munc18-1 or Munc18c interact

with the closed conformation of its cognate syntaxin by binding

the N-peptide of the syntaxins Syntaxin 1 or Syntaxin 4, respec-

tively. This specific interaction appears to initiate SNARE

complex formation and extends to the open syntaxin in the

assembled SNARE complex, thus facilitating subsequent

membrane fusion (Rathore et al., 2010), although this working

model is still controversial (Burkhardt et al., 2008). Maintaining

the closed conformation of syntaxin prior to fusion of the vesicle

with its target membrane is very important for gating the initiation

of membrane fusion in neurotransmitter release (Gerber et al.,

2008). This is consistent with the notion that syntaxin kept inac-

tive (closed) during transport switches to an active (open) form

just beforemembrane fusion to prevent ectopic SNARE complex

formation and thus promote specificity of membrane fusion.

How, then, is the switch from a closed to an open conformation

of syntaxin regulated? Recently, Munc13-1 involved in neuro-

transmitter release has been demonstrated to promote the tran-

sition of the closed to the open conformation of syntaxin 1 via

weak protein-protein interaction with the SNARE domain at the

presynaptic active zone (Ma et al., 2011). This result explains

the previous observation that the overexpression of the open

conformation of syntaxin completely rescues the unc13 mutant

phenotype in Caenorhabditis elegans (Hammarlund et al.,

2007). Thus, transition of syntaxin from closed to open confor-

mation appears to be one major regulatory steps in heterotypic

membrane fusion. In contrast to the action of SM proteins in

heterotypic fusion processes, the role of SM protein in homo-

typicmembrane fusion has not beenwell defined, although yeast

vacuolar fusion and mammalian endosomal fusion have been

studied in some detail (reviewed in Carr and Rizo, 2010).

Although the issue of whether the cell plate in plants is mainly

formed through homotypic or heterotypic vesicle fusion events

remains unresolved, several lines of evidence suggest that the

cell plate in plants is mainly formed by fusion events that involve

a uniform population of membrane vesicles derived from Golgi/

TGN and might thus be regarded as homotypic membrane

fusion. This evidence includes: (1) morphologically identical

membrane vesicles �60 nm in diameter are aligned properly in

the plane of cell division in knolle or keule mutants but fail to

fuse with one another (Waizenegger et al., 2000); (2) inhibition

of the secretory, but not the endocytic, pathway entails cytoki-

nesis defects (Reichardt et al., 2007); (3) KN is newly synthesized

during mitosis (Lauber et al., 1997), delivered to the plane of cell

division, not to the plasmamembrane, via the secretory pathway

and degraded in the vacuole shortly after cytokinesis (Reichardt
pmental Cell 22, 989–1000, May 15, 2012 ª2012 Elsevier Inc. 995



Figure 6. KN Interacts with KEU at the Cell Division

Plane

Confocal images of seedlings (A and B) and embryos

(C and D) expressing 63HA:KEU and labeled with anti-HA

antibody (red) or anti-KN antiserum (green) and counter-

stained with DAPI (blue). (A) KEU displays ubiquitously

distributed punctate signals in most root cells (left) and

stronger signals at the cell division plane (right). (B) In

contrast to KN (green), KEU does not accumulate in BFA

compartments. (C) Wild-type embryo; (D) knX37-2 homo-

zygous embryo. Arrows (C and D), cell division plane.

Scale bar represents 5 mm in (A–D).

See also Figure S6.
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et al., 2007, 2011); and (4) KN-related syntaxin SYP132, which is

not endocytosed, can rescue the knolle mutant only when

expressed from the KN cis-regulatory sequences (Reichardt

et al., 2011). Endocytosis has been proposed to mediate cell

plate formation in Arabidopsis cytokinesis (Dhonukshe et al.,

2006), whereas other evidence suggests that its contribution is

locally restricted to the cortical division zone (CDZ) recruitment

pathway (Van Damme et al., 2011). Although endocytosis

delivers proteins to the forming cell plate, there is no direct

evidence for its functional requirement for cell plate formation

(Reichardt et al., 2007, 2011). Taken together, secretory traffic

of de novo synthesized proteins is far more important to cytoki-

nesis than is endocytosis. If the cell plate is indeed formed

by homotypic membrane fusion it would be interesting to

determine whether this specific mode of syntaxin-SM protein

interaction is unique to plant cytokinesis or whether it might

also apply in homotypic membrane fusion processes in other

eukaryotes.

Our study of membrane vesicles fusing with one another in

plant cytokinesis revealed that SM protein KEU binds the open

conformation of monomeric syntaxin KN but neither its closed

form nor the assembled SNARE complex, although we cannot

completely rule out the possibility of residual interaction of

KEU with the assembled SNARE complex. These results

suggest the following model of KN-KEU interaction in cytoki-

nesis (Figures 7H–7N). TGN-derived membrane vesicles carry

cis-SNARE complexes in which syntaxin KN is paired with its

SNARE partners. Upon arrival at the plane of cell division, the

cis-SNARE complexes are broken up by NSF ATPase, and resi-
996 Developmental Cell 22, 989–1000, May 15, 2012 ª2012 Elsevier Inc.
dent SM protein KEU binds to the open form of

KN to prevent its folding into the inactive closed

form. The open form of KN thus stabilized is

competent to form trans-SNARE complexes

with SNARE partners residing on adjacent vesi-

cles, promoting membrane fusion that results in

the formation of the partitioning membrane

between the daughter nuclei of the dividing

cell. In this scenario, membrane fusion in plant

cytokinesis would differ from heterotypic

membrane fusion between vesicles and their

target membrane not only in the occurrence of

cis-SNARE complexes before, rather than after,

membrane fusion but also in the interaction

between SM protein and the open, rather than
the closed, form of syntaxin. Although the interaction between

SM protein and the open conformation of syntaxin is well

supported by our results, it is not known when and where cis-

SNARE complexes of KN are formed prior to their interaction

with KEU.

Deletion of the N-peptide of KN disrupts KN function in vivo,

suggesting that the N-peptide is necessary for KN function

through its interaction with SM protein KEU, like it is in hetero-

typic membrane fusion (reviewed in Südhof and Rothman,

2009). However, an unrelated N-peptide of PEP12 can com-

pletely replace the function of the N-peptide of KN, assisting in

linker-mediated interaction with KEU and in KN function. Thus,

the N-peptide of syntaxin is not a sequence-specific binding

site for SM protein in membrane fusion during plant cytokinesis

but rather might play an auxiliary role in the interaction between

syntaxin and SM protein. In contrast to the N-peptide, the linker

adjacent to the SNARE domain of KN is a sequence-specific

binding site for KEU. By binding to the linker, KEU prevents the

transition of the open to the closed form of KN. However, the

linker sequence in itself is not sufficient to interact with the SM

protein but requires adjacent domains such as helix Hc or

SNARE domain for stabilization.

The linker sequence of syntaxin KN is a sequence-specific and

essential binding site for SM protein KEU. However, there is

some evidence for this kind of interaction in other membrane

fusions as well. For example, Munc18c and Syntaxin 4 involved

in glucose-stimulated insulin secretion interact not only via

the N-peptide but also, at least in vitro, via syntaxin residues

118–194 corresponding to Hc helix and linker sequence of KN



Figure 7. KN-KEU Interaction Promotes Mem-

brane Fusion in Cytokinesis

(A–G) Functional analysis of KEU-interacting KN fragment

including the linker. (A) Domain structure of vYFP:Hc-L.

(B–D) F1 progeny of RPS5A>>vYFP:Hc-L (B) stocky

seedlings; WT, wild-type; (C and D) root cross-sections

displaying cell-wall stubs (D, arrows). (E–G) Confocal

images of seedling root (E), wild-type (F), and keuMM125 (G)

embryos expressing KN::vYFP:Hc-L (green) and coun-

terstained with DAPI (blue). Arrowheads (E and F) indicate

cell plates; insets show cell plates labeled with vYFP:Hc-L

(green) and associated phragmoplasts counterstained

with anti-tubulin antibody (red; see also Figure S7E). Note

absence of cell plate-positive signals in keuMM125 embryo

(G), only the phragmoplast signal (red) remains (G, inset).

Scale bars represent 1 cm (B); 12 mm (C and D); 5 mm

(E–G).

(H–N) Model of KN-KEU interaction in membrane fusion

during cytokinesis. (H) Cell plate (CP) formation. (I) Delivery

of TGN-derived vesicles to the division plane along

phragmoplast microtubules. (J–N) trans-SNARE complex

formation: (J) cis-SNARE complexes are broken up by

NSF and a-SNAP, (K) KEU (blue) binds to the open, fusion-

competent, form of KN (red), (L) to prevent its refolding into

the closed form (black), (M) followed by KN complex

formation with SNARE partners (SNAP33, green; VAMP,

purple) residing on adjacent vesicles. (N)Membrane fusion

resulting in cis-SNARE complexes. Note that KEU inter-

acts with the monomeric open form of KN and might be

released after trans-SNARE complex formation. However,

continued interaction of KEU with the assembled SNARE

complex cannot be excluded (KEU, dashed blue, in M

and N). This illustration was adapted from Misura et al.

(2000) and Jürgens (2005).
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depending on the phosphorylation status of the Y219 residue of

Munc18c (Jewell et al., 2008). Another case might be Munc18-1

and Syntaxin 1A involved in neurotransmitter release. Munc18-1

interacts not merely with full-length Syntaxin 1A via the N-

peptide but also with N-terminally truncated Syntaxin 1A lacking

the N-peptide and the three helices Habc, which is sufficient to

stimulate membrane fusion in a single-vesicle fusion assay

(Diao et al., 2010). These results raise the possibility that the syn-

taxin linker is somehow involved in syntaxin-SM protein interac-

tion in other kinds of membrane fusion, although its functional
Developmental Cell 22,
relevance remains elusive, unlike the essential

and sequence-specific role of the N-peptide of

the closed monomeric syntaxin in initiating

binding of the SM protein. In contrast, mem-

brane fusion in Arabidopsis cytokinesis requires

binding of the SM protein to the linker sequence

of the open monomeric syntaxin in a sequence-

specific manner.

In conclusion, our results reveal that in

Arabidopsis cytokinesis, syntaxin interacts

in its open conformation through its linker adja-

cent to the SNARE domain with the cognate

SM protein and that this sequence-specific

interaction is a crucial step in membrane fusion.

It remains to be determined whether this

mode of interaction is unique to plant cytoki-
nesis or occurs in other eukaryotic membrane fusion processes

as well.

EXPERIMENTAL PROCEDURES

Molecular Biology

See Supplemental Experimental Procedures.

Yeast Analysis

The EGY48 yeast strain was transformed with three plasmids—lacZ reporter

pSH18-34, pEG202::KEU, and an individual pJG4-5::KN variant—using
989–1000, May 15, 2012 ª2012 Elsevier Inc. 997
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a polyethylene glycol (PEG) transformation method (33.3% [w/v] PEG3500,

100 mM LiAc, 0.3 mg/ml ssDNA). Quantitative b-galactosidase analysis was

performed as follows. In brief, cell mass was suspended in reaction solution

(buffer H [100 mM HEPES pH 7, 150 mM NaCl, 2 mM MgCl2, 1% [w/v] BSA],

6.1% [v/v] chloroform, 0.006% [w/v] SDS) followed by addition of ortho-nitro-

phenyl-b-galactoside (ONPG, 4 mg/ml in buffer H, Sigma-Aldrich). The Miller

Units of each sample were calculated [(1,000 3 OD420)/(culture volume 3

time3 OD600)] (Miller, 1972). Each measurement was done with four indepen-

dent colonies and repeated three times.

Trypsin Treatment

T7-tagged KN and KNIE182,183AA proteins were purified from BL21(DE3)pLys

bacterial cells, using anti-T7-beads (Merck-Novagen) according to the manu-

facturer’s instructions, suspended in cold PBS, immediately followed by the

addition of trypsin (1 M stock solution in PBS; always freshly prepared,

Sigma-Aldrich). The reaction was stopped by addition of 13 Laemmli buffer

and boiling for 5 min at the 95�C.

Plant Material, Growth Condition, and Transformation

Arabidopsis thaliana wild-type—Columbia (Col-O) or Landsberg (Ler)—plants

were grown on soil at 18�C or 23�C in long-day conditions (Mayer et al., 1991).

Wild-type or heterozygous plants either of knX37-2 or of keuMM125 were trans-

formed with Agrobacterium tumefaciens, using the floral-dip method (Clough

and Bent, 1998). KN::myc:KN (Müller et al., 2003) or KN::GFP:KN (Reichardt

et al., 2007) plants were crossed with KN::63HA:KEU plants for the coimmu-

noprecipitation or immunofluorescence analyses. RPS5A::GAL4 (Weijers

et al., 2003) plants were crossed with T1 plants of UAS::vYFP:Hc-L for pheno-

typic analysis. 35S (CauliflowerMosaic Virus promoter)::GFP:SNAP33 line was

provided by Dr. Liliane Sticher and crossed with the transgenic plants bearing

myc:KN, myc:KNIE182,183AA or KN::63HA:KEU for the coimmunoprecipitation

experiment.

Genetic Analysis

T1 plants grown on soil from bulk-harvested seeds were selected for trans-

formants by spraying three times with a 1:1,000 diluted BASTA (183 g/l glufo-

sinate; AgrEvo, Düsseldorf, Germany). Selected BASTA-resistant plants were

genotyped. PCR-genotyping: knX37-2, primers X37-2CIII and X37-2DIII, which

amplify a 0.5-kb fragment from knX37-2 and a 1.5-kb fragment from wild-type

KN (Müller et al., 2003); keuMM125, primers KEU in 14 and KEU in 17 giving

a 0.4-kb fragment from keuMM125 and a 0.5-kb fragment of wild-type KEU;

vYFP:KN-LS or vYFP:KNDL, primers vYFPforward and KNreverse giving an �1-

kb fragment of each transgene; myc:KNIE182,183AA, myc:KND30, or myc:KN-

NPEP12, primers mycforward and KNreverse giving an �1-kb fragment of each

transgene; 63HA:KEU, primers HAforward and KEU400 giving an�0.6-kb frag-

ment. Genomic DNA was isolated using a cetyltrimethylammonium bromide

(CTAB)-based miniscale protocol as previously reported (Assaad et al.,

2001). For seedling observation, seeds were germinated on solid medium

(2.15 g/l MS salts, 1 g/l MES, 1% [w/v] sucrose, pH 5.6) in the same growth

condition as described above. Segregation of antibiotics resistance was

counted on phosphinothricin (PPT, 15 mg/l)-supplemented medium.

Coimmunoprecipitation

Five grams of inflorescence or 5-day-old seedlings was ground thoroughly in

liquid nitrogen and suspended in lysis buffer (50mMTris pH 7.5, 150mMNaCl,

0.5% [v/v] Triton X-100) supplemented with an EDTA-free protease inhibitors

cocktail (Roche Diagnostics). After 30 min incubation on ice, cell debris-

removed supernatants were incubated with anti-HA (Sigma-Aldrich) or anti-

GFP (GFP-trap, Chromotek) beads for 2 hr in the cold room with mild rotation.

The beads were rinsed four times with washing buffer (50 mM Tris pH 7.5,

200 mM NaCl [for the interaction analysis of KN variants/GFP:SNAP33,

150 mM NaCl was used instead], 0.2% Triton X-100) supplemented with

EDTA-free protease inhibitors cocktail, and resuspended in washing buffer

and Laemmli buffer.

Pull-Down Assay

HA-tagged KEULE (63HA:KEU) or GFP-tagged SNAP33 (GFP:SNAP33) was

purified using anti-HA or anti-GFP beads as described in coimmunoprecipita-

tion method. GST, GST:KN, and GST:KNIE182,183AA proteins were purified from
998 Developmental Cell 22, 989–1000, May 15, 2012 ª2012 Elsevier
BL21(DE3)pLys bacterial cells, using anti-GST-beads and 10 mM reduced

L-glutathione (Sigma-Aldrich) according to the manufacturer’s instructions.

Equal amount of eluted GST variants was incubated with agarose beads-trap-

ped 63HA:KEULE or GFP:SNAP33 in the cold roomwith mild rotation in buffer

(50 mM HEPES 7.5; 150 mM NaCl; 1 mM MgCl2; 1 mM EDTA; 0.5% Triton

X-100) supplemented with protease inhibitors cocktail. After overnight incuba-

tion, beads were rinsed five times with washing buffer (50 mM HEPES 7.5;

200 mM NaCl; 1 mM MgCl2; 1 mM EDTA; 0.2% Triton X-100) supplemented

with protease inhibitors cocktail and subjected to immunoblot analysis.

Immunoblots and Immunofluorescence Analysis

For immunoblot analysis of proteins from yeast cells, individual yeast trans-

formants were grown overnight. The cell mass was suspended in 13 Laemmli

buffer and immediately frozen in liquid nitrogen. After incubation at 95�C for

20 min, supernatants were immuno-analyzed. For detection of BD-fused

KEU and AD-fused KN variants, anti-LexA (1:1,000, Santa Cruz Biotechnol-

ogies) and POD-conjugated anti-HA antibodies (1:1,000, Roche Diagnostics)

were used, respectively.

For immunoblot analysis of proteins from plants, inflorescences from T1

plants or entire T2 seedlings were harvested. Total proteins were extracted

with lysis buffer supplemented with an EDTA-free protease inhibitors cocktail.

Antibodies of anti-KN (rabbit, 1:5,000) (Lauber et al., 1997), anti-tubulin

(mouse, 1:1,000, Sigma-Aldrich), anti-myc 9E10 (mouse, 1:1,000, Santa

Cruz), POD-conjugated anti-HA, anti-YFP (rabbit, 1:1,000, a gift from S. de

Vries), anti-GFP (rabbit, 1:1,000, Invitrogen), and POD-conjugated anti-GST

(rabbit, 1:2,000, Sigma-Aldrich) were used to detect the indicated proteins.

POD-conjugated secondary antibodies (1:7,000, Sigma) were used in all

immunoblot analyses except for ‘‘IP-GFP/IB-myc’’ shown in Figure S5D, which

was detected with alkaline phosphatase (AP)-conjugated secondary antibody

(1:7,000, Novagen). Membranes were developed using both conventional

method (AGFA film developing system) and a chemiluminescence detection

system (Fusion Fx7 Imager, PEQlab, Germany).

Immunostaining of seedling roots was performed as previously reported

(Völker et al., 2001). In brief,�5-day-old seedlings were fixed in 4% (w/v) para-

formaldehyde and labeled with the indicated antibodies. For brefeldin A (BFA)

treatment,�5-day-old seedlings were treated with 100 mMbrefeldin A (50 mM

stock solution in 1:1 DMSO/EtOH, Invitrogen) for 1 hr followed by fixation.

For immunofluorescence, anti-KN (rabbit, 1:2,000), anti-tubulin (rat, 1:1,000,

Abcam, Boston), anti-HA (mouse, 1:1,000, BAbCO, Richmond, CA), anti-myc

9E10 (mouse, 1:1,000, Santa Cruz), two sorts of anti-ARF1 (anti-ARF1 for

Figures 3C and S4B [rabbit, 1:1,000] [Pimpl et al., 2000]: anti-ARF1 for Figures

S6E and S7D [rabbit, 1:1,000, Agrisera]), anti-mouse FITC (1:600, Dianova),

anti-rabbit-Cy3TM (1:600, Dianova), and anti-rabbit-Alexa488 (1:600, Invitro-

gen) were used.

Embryos were prepared as previously reported (Heese et al., 2001). In brief,

embryos were fixed in 4% paraformaldehyde plus 1% Triton X-100 and then

squeezed out of the seed coat on gelatin-coated slides. Fluorescence images

were taken using a confocal laser scanning microscope (Leica) and Leica TCS

software.

Phenotypic Analysis

Seedling sectioning was performed as previously reported (Heese et al., 2001).

In brief, �7-day-old seedlings were fixed in 4% paraformaldehyde, dehy-

drated in a series of ethanol, and embedded in LR-white resin (London Resin).

Sections were cut in 3- to 5-mm thick slices using a cryomicrotome (Supercut

2065) and stained with toluidine blue.

Software

Sequences were analyzed using Vector NTI (Invitrogen). Images were pro-

cessed using Adobe Photoshop CS3 and Adobe illustrator CS3. Quantification

of signal intensity in immunoblot analysis was done using ImageJ program

(NIH).

SUPPLEMENTAL INFORMATION
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Touihri, S., Knöll, C., Stierhof, Y.D., Müller, I., Mayer, U., and Jürgens, G.

(2011). Functional anatomy of the Arabidopsis cytokinesis-specific syntaxin

KNOLLE. Plant J. 68, 755–764.

Uemura, T., Ueda, T., Ohniwa, R.L., Nakano, A., Takeyasu, K., and Sato, M.H.

(2004). Systematic analysis of SNARE molecules in Arabidopsis: dissection of

the post-Golgi network in plant cells. Cell Struct. Funct. 29, 49–65.

Van Damme, D., Gadeyne, A., Vanstraelen, M., Inzé, D., Van Montagu, M.C.,
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(2002). Sly1 binds to Golgi and ER syntaxins via a conserved N-terminal

peptide motif. Dev. Cell 2, 295–305.

Zouhar, J., Rojo, E., and Bassham, D.C. (2009). AtVPS45 is a positive regulator

of the SYP41/SYP61/VTI12 SNARE complex involved in trafficking of vacuolar

cargo. Plant Physiol. 149, 1668–1678.
r Inc.


	Sec1/Munc18 Protein Stabilizes Fusion-Competent Syntaxin for Membrane Fusion in Arabidopsis Cytokinesis
	Introduction
	Results
	Mode of Interaction between KN and KEU
	The Linker Sequence of KN Is Essential for Binding of KEU
	Divergent and Convergent Contribution of N-Peptide to Membrane Fusion
	KN Without the Genuine Linker Sequence Is Not Functional In Vivo
	Overexpression of the Open Conformation of KN Bypasses the Necessity of KEU
	KN Interacts with KEU at the Cell Division Plane
	Interaction of KN with KEU Is a Pivotal Step in Plant Cytokinesis

	Discussion
	Experimental Procedures
	Molecular Biology
	Yeast Analysis
	Trypsin Treatment
	Plant Material, Growth Condition, and Transformation
	Genetic Analysis
	Coimmunoprecipitation
	Pull-Down Assay
	Immunoblots and Immunofluorescence Analysis
	Phenotypic Analysis
	Software

	Supplemental Information
	Acknowledgments
	References


