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The problem of center-of-mass (CM) contaminations in ab initio nuclear structure calculations using
configuration interaction (CI) and coupled-cluster (CC) approaches is analyzed. A rigorous and quantitative
scheme for diagnosing the CM contamination of intrinsic observables is proposed and applied to ground-
state calculations for 4He and 16O. The CI and CC calculations for 16O based on model spaces defined via a
truncation of the single-particle basis lead to sizable CM contaminations, while the importance-truncated
no-core shell model based on the Nmaxh̄Ω space is virtually free of CM contaminations.
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1. Introduction

In the realm of quantum many-body systems the atomic nu-
cleus poses unique challenges that do not appear in the theoretical
description of other systems. One of them results from the fact
that the nucleus is a finite self-bound system. Unlike, e.g., the
many-electron systems in atomic, molecular, and condensed mat-
ter physics, and chemistry, in which the binding originates from
an external potential created by much heavier atomic nuclei that
define a reference frame, the nucleus is bound solely by the in-
teractions between the constituent nucleons without any external
confinement.

In the exact theory, the many-body state |Ψ 〉 of the nucleus
factorizes into the intrinsic state |ψint〉 and a state |ψcm〉 describing
the dynamics of the center-of-mass (CM),

|Ψ 〉 = |ψint〉 ⊗ |ψcm〉. (1)
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Only this complete decoupling guarantees that the intrinsic state
of the nucleus is translationally invariant and, as result, that all
intrinsic observables are free of spuriousities induced by the CM
state of the system. The dynamics of |ψint〉 is governed solely by
the intrinsic Hamiltonian

H int = (T − Tcm) + V = T int + V , (2)

where T int = 1
2mA

∑A
i< j(pi −p j)

2 is the intrinsic kinetic energy and
V is the nuclear interaction.

Generally, the wave function factorization given by Eq. (1) no
longer holds in approximate calculations. One way to enforce it is
through the use of Jacobi coordinates, as in, e.g., the translation-
ally invariant formulation of the no-core shell model (NCSM) [1,2],
the hyperspherical harmonics approach [3], and, implicitly, also the
Green’s function Monte Carlo method [4]. Due to the computa-
tional complexity, these approaches are limited to small few-body
systems. For this reason, most approaches aimed at heavier nuclei
adopt some finite-dimensional model space spanned by Slater de-
terminants constructed with a single-particle basis set, such as the
harmonic oscillator (HO) basis. Generally, the individual Slater de-
terminants are not translationally invariant and most model spaces
do not restore this invariance automatically, i.e., the solution of
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the many-body problem for H int leads to states with a coupling
between intrinsic and CM motions which is induced by and de-
pends on the structure of the model space. The one exception is
the Nmaxh̄Ω space of NCSM [1,2]. For a Slater-determinant basis
of HO single-particle states truncated with respect to the HO exci-
tation energy Nh̄Ω there exists a unitary mapping onto a Jacobi-
coordinate basis. Thus, the exact factorization of Eq. (1) is possible
in the Nmaxh̄Ω space. For other single-particle bases or model-
space truncations, the factorization is lost and a coupling of intrin-
sic and CM states emerges. In this communication, we provide a
quantitative analysis of the CM contamination in the truncated ab
initio configuration interaction (CI) and coupled-cluster (CC) calcu-
lations for 4He and 16O.

2. Center-of-mass diagnostics

Because a direct analysis of the CI and CC wave functions with
respect to the factorization given by Eq. (1) is not feasible, we
need a practical tool to assess the degree of unphysical coupling
between intrinsic and CM motions resulting from the truncations
used in the CI and CC calculations. A stringent yet simple probe
can be proposed based on replacing H int entering the CI and CC
calculations by

Hβ = H int + βHcm, (3)

which includes a Hamilton-type operator Hcm acting exclusively
on the CM part of the many-body state of interest, with parame-
ter β controlling its strength. In principle, any operator depending
on the CM position Xcm and momentum Pcm, with a spectrum
bounded from below, could be used for this purpose, but we fur-
ther require that the exact ground state of Hcm can be represented
in the model space. Thus, in a ground-state calculation with Hβ for
non-zero β the CM is in its exact ground state if the corresponding
many-body wave function |Ψβ 〉 factorizes.

For calculations based on Slater determinants of HO single-
particle states, an operator which meets these requirements
is

Hcm = 1

2mA
P2

cm + mAΩ2

2
X2

cm − 3

2
h̄Ω, (4)

as was first adopted by Palumbo [5] as well as Gloeckner and Law-
son [6] in the context of the CM problem in the valence-space
shell model [7]. In an Nmaxh̄Ω space, the lowest Nmax + 1 eigen-
states (including both parities) of Hcm, Eq. (4), are reproduced
exactly. Hence, as long as the 0h̄Ω space is a subspace of the
model space used in the CI or CC calculation, the solution of the
Hcm eigenvalue problem leads to the exact CM ground-state en-
ergy, which is zero by construction. For a closed-shell nucleus,
the use of the 0p0h determinant as a reference state guarantees
this.

By solving the Schrödinger equation for Hβ , Eq. (3), using dif-
ferent β values we can determine to what extent the intrinsic and
CM components of the many-body wave function of interest are
coupled. If a given many-body method leads to a factorized state
|Ψ 〉, as in Eq. (1), the intrinsic component |ψint〉 and the intrinsic
observables become independent of β . In this case, the βHcm part
of Hβ can only affect the CM component of |Ψ 〉, which has no
effect on intrinsic properties. However, if the many-body scheme
used to solve the Schrödinger equation for |Ψ 〉 cannot factorize
intrinsic and CM motions, the intrinsic observables, most notably
the expectation value of H int, will acquire an unphysical depen-
dence on β . To quantify the strength of this unphysical coupling
and its impact on the intrinsic energy, we need to monitor the ex-
pectation value 〈H int〉β computed with the eigenstates |Ψβ〉 of Hβ .
A necessary condition for the wave function factorization given by
Eq. (1) is that 〈H int〉β is independent of β . Thus, we adopt the
change of the intrinsic energy, �〈H int〉β = 〈H int〉β − 〈H int〉0, when
going from β = 0 to a finite β , as a primary criterion for assessing
the CM contamination in the wave function. This criterion provides
a quantitative measure of the impact of the CM contamination on
the intrinsic energy, while identifying states |Ψ 〉 that factorize ac-
cording to Eq. (1) which satisfy �〈H int〉β = 0.

As a secondary criterion we use the expectation value of Hcm
obtained for non-zero values of β . If a given ground-state cal-
culation allows for a factorization of the wave function, we can
expect 〈Hcm〉β to be exactly equal to the lowest eigenvalue of
Hcm, i.e., zero in the case of Hcm defined by Eq. (4). The non-
zero 〈Hcm〉β value at a finite β indicates a coupling of CM and
intrinsic motions. We must emphasize, however, that the use of
〈Hcm〉β alone is treacherous, since it does not provide any quan-
titative measure of the effect of the coupling of the intrinsic and
CM motions on intrinsic properties. The expectation value of Hcm
at β = 0, which is sometimes used to judge the magnitude of CM
contamination in approximate many-body calculations, does not
provide any quantitative information, since 〈Hcm〉β=0 can assume
any positive value when the calculated wave function |Ψ 〉 is fac-
torizable.

We use Hβ , Eq. (3), solely for probing the spurious CM cou-
pling at moderate β values, although its original use as a way
to eliminate the CM contamination was tied to large values of
β (∼ 105) [6]. In a CI calculation, the use of Hβ with large β

amounts to a projection of the model space onto the largest em-
bedded Nmaxh̄Ω space. In comparison to NCSM, this approach is
inefficient and numerically problematic.

3. Many-body methods

We employ the above diagnostics to analyze CM contamina-
tions in ab initio CI and CC calculations, which rely on the model
spaces spanned by Slater determinants constructed from the HO
single-particle states that satisfy the condition e � emax, where
e = 2n + l is the principal quantum number, i.e., model spaces that
violate translational invariance from the outset. The first method
we consider is the importance-truncated CI (IT-CI) approach in-
troduced in Refs. [8–10] in which the CI eigenvalue problem in
the above model space is further reduced through the use of an
importance measure for the individual many-body basis states de-
rived from perturbation theory. We focus on the IT-CI approach
with up to 4p4h excitations from the initial reference state |Φ〉 [IT-
CI(4p4h)], which for the closed-shell nuclei examined in this work
is the determinant obtained by occupying the A lowest single-
particle HO states. In the limit of vanishing importance threshold,
IT-CI(4p4h) becomes equivalent to the CI method with all singly,
doubly, triply, and quadruply excited determinants relative to |Φ〉
[CISDTQ ≡ CI(4p4h)]. In this study, we follow the recipe described
in detail in Refs. [9,10], in which we perform a sequence of IT-
CI(4p4h) calculations with decreasing thresholds and extrapolate
the results to the vanishing importance threshold limit, thus ob-
taining a very good approximation to a complete CISDTQ calcula-
tion.

The IT-CI approach offers two important advantages for the
present study. First, it allows for a computationally inexpensive
evaluation of the exact quantum-mechanical expectation values
〈H int〉β and 〈Hcm〉β which require much less effort than the cor-
responding CISDTQ calculations. Second, we can apply the same
importance-truncation methodology to other model space trunca-
tions, such as the Nmaxh̄Ω space of NCSM. In the limit of van-
ishing importance threshold, the resulting sequential importance-
truncation IT-NCSM(seq) scheme, which we make use of in this
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study as well, reproduces the model space of the full NCSM ap-
proach [10].

The second many-body approach we employ is the single-
reference CC theory [11–14]. The specific CC models considered
in this study include CCSD (CC singles and doubles) [15] and
CR-CC(2,3) [16], both used in our recent nuclear structure work
[9,17–19]. In the CCSD approach, the cluster operator T defining
the CC ground state |Ψ 〉 = exp(T )|Φ〉, where in the exact case
T = T1 + T2 + · · · + T A and Tn designates the npnh component
of T , is truncated at the 2p2h clusters T2, i.e., T = T1 + T2. The
T1 and T2 clusters are determined by solving the system of non-
linear, energy-independent equations obtained by inserting the CC
wave function, in which T = T1 + T2, into the Schrödinger equa-
tion and projecting on the singly and doubly excited determinants
relative to |Φ〉. The CCSD energy is calculated afterwards using the
converged T1 and T2 clusters. Since T3 clusters are important to
obtain a quantitative description of closed-shell systems, we cor-
rect the CCSD results for their effect through the suitably defined
non-iterative corrections to CCSD energies, calculated using the
CCSD values of T1 and T2, defining the CR-CC(2,3) approach [16].
The main advantages of CC methods, as compared to truncated CI
approaches, are size extensivity and the computationally efficient
description of the higher-order components of the wave function
beyond a CI model space truncated at the same excitation level via
products of cluster operators. For example, the basic CCSD method
describes 4p4h excitations through, e.g., a product of two T2 clus-
ters. The details of the CCSD and CR-CC(2,3) methods and their
comparison to IT-CI can be found in Ref. [9].

In the CC approaches the evaluation of expectation values of
operators is more involved than in the CI methods. As explained
in Ref. [9], we have to rely on a response formulation or the
equivalent derivatives of CC energies, since the traditional expec-
tation value expression with the CC wave function produces a
non-terminating power series in cluster amplitudes that does not
lead to practical computational schemes. Moreover, non-iterative
CC methods, such as CR-CC(2,3), rely on corrections to the energy
only and do not have the corresponding wave function. Thus, to
determine the CC analogs of 〈H int〉β and 〈Hcm〉β , we proceed as
follows. First, we evaluate the CC energy Eβ ′ for the Hamiltonian
Hβ ′ = H int + β ′Hcm with β ′ = β − �β , β , and β + �β around the
nominal value of β we are interested in, where the step �β equals
0.01. Then, using a centered finite-difference form to approximate
the first derivative, we compute 〈Hcm〉β as (∂ Eβ ′/∂β ′)β ′=β and
from that obtain 〈H int〉β = Eβ − β〈Hcm〉β . We have checked the
stability of the finite-difference calculations of 〈H int〉β and 〈Hcm〉β
by including up to five β ′ points around β and using a few dif-
ferent �β values. A cross-check of this prescription was also per-
formed for the IT-CI approach, where a comparison with the exact
expectation values was possible. The experience with performing
CC calculations in quantum chemistry is that the difference be-
tween the conventional quantum-mechanical expectation values
and the corresponding energy derivatives, as described above, are
very small, since the approximate CC methods, such as those used
in this work, provide results close to full CI and full CI, being
an exact diagonalization, satisfies the Hellmann–Feynman theo-
rem.

All calculations were performed with the V UCOM interaction in-
troduced in Refs. [20,21] and employed in Refs. [8–10]. It is a
pure two-body interaction derived from the Argonne V18 potential
[22] via a unitary transformation to account for short-range cen-
tral and tensor correlations [23]. We consider a few representative
oscillator frequencies from the range h̄Ω = 22–38 MeV, which in-
cludes the minima of the ground-state energy of 16O obtained with
the many-body methods and single-particle basis sets used in this
work (see Ref. [9]).
Fig. 1. Dependence of the intrinsic energy change �〈H int〉β (a) and of the expecta-
tion value 〈Hcm〉β (b) on β in IT-NCSM(seq) (") and IT-CI(4p4h) (F) calculations
for the ground state of 16O. In IT-CI(4p4h), emax = 5 and h̄Ω = 30 MeV. In IT-
NCSM(seq), Nmax = 8 and h̄Ω = 30 MeV.

4. Illustration of the center-of-mass diagnostics

As a first demonstration of the impact of the model space trun-
cation on the coupling of intrinsic and CM motions, we analyze
the IT-NCSM(seq) and IT-CI(4p4h) results for the ground state of
16O. The IT-NCSM(seq) approach is based on the Nmaxh̄Ω space
of full NCSM, which allows for the exact wave function factor-
ization given by Eq. (1), but the importance truncation formally
breaks this factorization property and so we have to check the
magnitude of the resulting CM contamination. In the case of IT-
CI(4p4h), the underlying CISDTQ model space violates translational
invariance even before the importance truncation is invoked and
so we expect the unphysical coupling between intrinsic and CM
degrees of freedom to be more severe than in the IT-NCSM(seq)
case.

We study the dependence of the expectation values of the in-
trinsic Hamiltonian, 〈H int〉β , and of the CM Hamiltonian, 〈Hcm〉β ,
on the parameter β entering Hβ , Eq. (3). Fig. 1 shows this depen-
dence for an IT-NCSM(seq) calculation with Nmax = 8 and for an
IT-CI(4p4h) calculation with emax = 5, both at fixed h̄Ω = 30 MeV.
For IT-NCSM(seq), the change of the intrinsic energy �〈H int〉β =
〈H int〉β − 〈H int〉0 is always below 150 keV. Considering the error
bars resulting from the threshold extrapolation, this is consistent
with the exact NCSM value of zero. The lack of dependence of
〈H int〉β on β shows that the IT-NCSM(seq) eigenstates satisfy the
wave function factorization given by Eq. (1) to a very good approx-
imation. In contrast, the IT-CI(4p4h) calculations show a sizable
change in 〈H int〉β , of up to 3 MeV when β increases to 30, which
is a signature of the significant coupling of the intrinsic and CM
motions in the IT-CI(4p4h) wave function.

The expectation values of the CM Hamiltonian, 〈Hcm〉β , exhibit
complementary patterns. In the case of the IT-NCSM(seq) calcula-
tions, they are at the level of 70 keV for β = 0 and drop to below
20 keV already for β = 1. In contrast, the IT-CI(4p4h) calculations
result in the 〈Hcm〉β values of about 1.5 MeV for β = 0 which are
suppressed to 0.5 MeV and 0.2 MeV for β = 1 and 10, respectively.
One might think that an expectation value of Hcm of 200 keV is
sufficiently small to indicate a CM decoupling. However, despite
the smallness of 〈Hcm〉β the intrinsic energy continues to change,
by ∼ 1 MeV when going from β = 10 to β = 20. This shows that
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Table 1
Center-of-mass diagnostics for the ground state of 4He using the V UCOM interaction.
All energies are in units of MeV.

Method h̄Ω emax β = 0 β = 10

〈H int〉 〈Hcm〉 �〈H int〉 〈Hcm〉
IT-CI(4p4h) 30 4 −25.992 3.638 0.568 0.027

5 −26.809 1.149 0.311 0.028
6 −27.412 2.524 0.190 0.017
7 −27.758 1.978 0.113 0.017
8 −28.021 1.799 0.121 0.017

38 4 −26.313 3.372 0.641 0.030
5 −27.184 0.911 0.464 0.040
6 −27.777 3.234 0.203 0.020
7 −28.055 2.612 0.213 0.021
8 −28.192 3.254 0.159 0.019

CCSD 30 4 −25.537 3.639 0.699 0.038
5 −26.319 2.465 0.585 0.027
6 −26.887 2.976 0.493 0.024

38 4 −25.679 8.158 1.069 0.046
5 −26.413 6.346 0.952 0.039
6 −27.035 8.965 0.924 0.023

CR-CC(2,3) 30 4 −25.995 4.049 0.694 0.047
5 −26.867 2.291 0.605 0.042
6 −27.536 3.347 0.556 0.039

38 4 −26.390 6.282 0.901 0.070
5 −27.261 3.575 0.810 0.073
6 −27.975 7.641 0.766 0.058

a value of 〈Hcm〉β of a few hundred keV is not sufficient to claim
that intrinsic and CM motions decouple.

The general β-dependence of the IT-CI(4p4h) results shown in
Fig. 1 also holds for the CC calculations. Keeping this systematics
in mind, we simplify further discussion and consider 〈H int〉β and
〈Hcm〉β for β = 0 and 10 only, investigating their behavior as func-
tions of mass number, model-space size, and oscillator frequency.

5. Case study: 4He

As a first case, we study the systematics of the CM contamina-
tion in the IT-CI(4p4h),1 CCSD, and CR-CC(2,3) calculations for the
ground state of 4He. Table 1 summarizes the expectation values
of H int and Hcm obtained for β = 0 and 10 for different emax-
truncated model spaces and different oscillator frequencies h̄Ω .
Instead of the intrinsic energy at β = 10, we list the energy change
�〈H int〉β=10.

Let us first consider the expectation values of Hcm for β = 0.
In the case of IT-CI(4p4h), 〈Hcm〉β=0 ranges from 0.9 to 3.6 MeV
without a clear trend with respect to model-space size. For CCSD
and CR-CC(2,3), the 〈Hcm〉β=0 values range from 2.5 to 9 MeV and
2.3 to 7.6 MeV, respectively. These are large values when com-
pared to the intrinsic energies. If one used 〈Hcm〉β=0 as the sole
criterion, as has been done in the CC context (cf., e.g., [24]), one
would have to conclude that the extent of CM contamination is
dramatic. However, when considering the results for β = 10 a dif-
ferent picture emerges. For emax = 6, the change in the intrinsic
energy �〈H int〉β=10 is on the order of 200 keV for IT-CI(4p4h),
900 keV for CCSD, and 800 keV for CR-CC(2,3), implying a siz-
able CM contamination but not as severe as indicated by 〈Hcm〉β=0.
Furthermore, �〈H int〉β=10 decreases with increasing emax. This be-
havior is confirmed by the values of 〈Hcm〉β=10, which are on the
order of a few tens of keV and decrease with increasing emax as
well. Both quantities indicate that CM contaminations are larger

1 For IT-CI(4p4h) the uncertainties due to the threshold extrapolation are below
0.05 MeV for 〈H int〉 and below 0.01 MeV for 〈Hcm〉.
for h̄Ω = 38 MeV than for h̄Ω = 30 MeV, but they are not as large
as one might expect based on the fact that 4He is a light nucleus.

The above observations can be explained in the following man-
ner. The exact solution of the Schrödinger equation, which leads to
perfect decoupling of intrinsic and CM degrees of freedom, is ap-
proached when the CI or CC calculation allows for all possible npnh
excitations and when emax approaches ∞. 4He consists of only four
particles, so IT-CI(4p4h) becomes an exact theory when the impor-
tance truncation threshold vanishes and emax → ∞. The relatively
small values of �〈H int〉β=10 and 〈Hcm〉β=10 and their systematic
reduction with increasing emax are, therefore, expected and this is
what we observe in our IT-CI(4p4h) calculations in which we ex-
trapolate the results to the CISDTQ limit. When an issue of size
extensivity is of no importance, as is the case for a four-particle
4He problem, the CR-CR(2,3) approach represents a very good ap-
proximation to IT-CI(4p4h) or CISDTQ [9] and thus the systematic
reduction of �〈H int〉β=10 and 〈Hcm〉β=10 with increasing emax and
their relatively small values, though not on the same level as in
the IT-CI(4p4h) case, can be expected and our calculations confirm
this.

We can draw three conclusions from the 4He results. First, the
magnitude of 〈Hcm〉β=0 is not a viable criterion for assessing the
extent of the CM decoupling; in some cases, the 〈Hcm〉β=0 values
do not even reproduce the qualitative trends. Second, the change
of the intrinsic energy �〈H int〉β=10 when going from β = 0 to 10
provides a direct and robust measure of the degree of CM contam-
ination and its effect on the intrinsic energy, with 〈Hcm〉β=10 offer-
ing additional insights. Third, the �〈H int〉β and 〈Hcm〉β values for
non-zero β show a systematic reduction of the CM contamination
as emax → ∞. This makes sense since in the emax → ∞ limit IT-
CI(4p4h) and CR-CC(2,3) essentially recover the full Hilbert space
of the four-particle system and thus effectively approach the exact
and factorized solution of the Schrödinger equation.

6. Case study: 16O

In order to examine the CM contamination in the CI and CC
calculations for heavier nuclei, we analyze 16O. A common pre-
sumption is that CM contaminations are less severe as A increases
because of a general 1/A-scaling contained in the CM Hamiltonian,
Eq. (4).

The IT-CI(4p4h)2, CCSD, and CR-CC(2,3) results are summa-
rized in Table 2. We first focus on h̄Ω = 38 MeV, which yields
the minimum energy in the CR-CC(2,3) calculation for emax = 7
[9], the largest model space we are able to handle in the CC case.
The expectation values of Hcm for β = 0 are very large, reaching
about 3 MeV for IT-CI(4p4h) and about 15 MeV for CCSD and CR-
CC(2,3), with no clear trend as functions of emax.

For a quantitative assessment we again resort to calcula-
tions using Hβ with β = 10. When h̄Ω = 38 MeV, the typical
�〈H int〉β=10 values in the larger model spaces are about 2.5 MeV
for IT-CI(4p4h), 3 MeV for CCSD, and 2 MeV for CR-CC(2,3), i.e.,
all schemes suffer from a sizable CM contamination of the intrinsic
energies. The energy changes �〈H int〉β=10 are rather stable and do
not show a clear trend for the different model spaces considered
here, except for CR-CC(2,3) which seems to show a decrease with
increasing emax. The expectation values of Hcm for β = 10 and
h̄Ω = 38 MeV are in the 250–500 keV range. For IT-CI(4p4h) and
CCSD they decrease with increasing emax, whereas for CR-CC(2,3)
they slightly increase. Due to this behavior and our computational
limitations we are unable to draw definite conclusions on a pos-

2 For IT-CI(4p4h) the extrapolation uncertainties are 0.2–0.4 MeV for 〈H int〉 and
below 0.01 MeV for 〈Hcm〉.
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Table 2
Center-of-mass diagnostics for the ground state of 16O using the V UCOM interaction.
All energies are in units of MeV.

Method h̄Ω emax β = 0 β = 10

〈H int〉 〈Hcm〉 �〈H int〉 〈Hcm〉
IT-CI(4p4h) 22 4 −94.80 0.45 0.93 0.10

5 −103.62 0.51 1.03 0.10
6 −110.14 0.37 1.57 0.09
7 −115.03 0.37 1.92 0.08

30 4 −87.65 0.81 1.28 0.18
5 −98.67 1.47 1.56 0.18
6 −104.24 1.25 1.84 0.16
7 −108.43 1.30 2.17 0.15

38 4 −58.62 1.24 2.43 0.34
5 −74.75 2.61 1.87 0.35
6 −79.52 2.43 1.49 0.32
7 −83.72 2.73 2.58 0.31
8 −85.81 2.56 2.41 0.30
9 −88.81 2.62 3.21 0.28

CCSD 22 4 −94.79 1.11 1.13 0.18
5 −103.94 2.16 1.29 0.18
6 −109.97 1.68 1.09 0.14
7 −114.73 1.80

30 4 −93.01 1.08 1.76 0.26
5 −107.32 5.88 2.49 0.24
6 −113.06 5.31 2.37 0.20
7 −118.15 7.16

38 4 −77.09 3.78 3.65 0.44
5 −102.85 8.83 3.30 0.29
6 −109.28 8.21 3.31 0.28
7 −116.86 15.20

CR-CC(2,3) 22 4 −98.10 1.06 1.30 0.10
5 −108.12 2.60 1.45 0.11
6 −114.81 1.96 1.24 0.13
7 −120.21 2.29

30 4 −97.78 0.62 2.15 0.16
5 −113.14 5.38 1.91 0.20
6 −119.92 4.62 1.67 0.24
7 −125.92 7.45

38 4 −84.16 10.74 5.63 0.26
5 −109.77 6.46 2.10 0.38
6 −117.62 5.09 1.70 0.47
7 −126.16 14.51

sible reduction of the CM contamination when going to model
spaces with very large emax. Note, however, that unlike in the 4He
case, neither IT-CI(4p4h) nor CCSD or CR-CC(2,3) recover the full
many-body Hilbert space for 16O in the emax → ∞ limit, because
none of these approaches describes all of the relevant npnh exci-
tations. Therefore, even when emax → ∞, the factorization of the
resulting ground states is not possible.

Concerning the dependence on h̄Ω , we observe a systematic in-
crease of �〈H int〉β=10 and 〈Hcm〉β=10 with increasing h̄Ω for all CI
and CC methods and all model-space sizes used in this work. Al-
though 〈Hcm〉β=0 follows this trend as well, a closer inspection of
the behavior of 〈Hcm〉β=0 in comparison to �〈H int〉β=10 again re-
veals that the expectation value of Hcm at β = 0 cannot be used
to quantify the degree of CM contamination. For example, in the
IT-CI(4p4h) calculations for h̄Ω = 22 MeV and emax = 7 we ob-
tain 〈Hcm〉β=0 of less than 400 keV although �〈H int〉β=10 is about
1.9 MeV. We find the virtually identical �〈H int〉β=10 value in the
CR-CC(2,3) calculations for h̄Ω = 30 MeV and emax = 5, but the
corresponding 〈Hcm〉β=0 of 5.38 MeV is larger than the aforemen-
tioned IT-CI(4p4h) value of 〈Hcm〉β=0 by more than an order of
magnitude.

If we compare the general picture emerging from the IT-
CI(4p4h), CCSD, and CR-CC(2,3) calculations for 16O, where
�〈H int〉β=10 is typically in the range of 1–3 MeV, with the analo-
gous results for 4He, where �〈H int〉β=10 is typically 100–900 keV,
then the popular belief that the CM contamination is suppressed as
1/A becomes questionable. There are other mechanisms affecting
the CM contamination which counteract a simplistic 1/A scaling,
the truncation of the many-body model space at a fixed excita-
tion level n < A and the accuracy of a given many-body method
relative to full CI, which accounts for all npnh excitations, being
some of them. The restriction of the model space to up to 4p4h
states in IT-CI(4p4h) provides a far less complete approximation
to the full Hilbert space in the case of 16O than in the 4He case,
where IT-CI(4p4h) is virtually exact. For CCSD and CR-CC(2,3) the
situation is more complex, since the truncation of the cluster oper-
ator T , which enters the exponential ansatz for the wave function,
at T2 or T3 brings a variety of product excitations through the
disconnected clusters, such as (1/2)T1 T 2

2 , (1/6)T 3
2 , etc., which are

beyond the 4p4h excitation level of CI, but still, CCSD and CR-
CC(2,3) are not the exact theories, so the problem remains. For
the closed-shell nuclei described by pairwise interactions, such as
16O, the role of higher-order connected clusters, such as, e.g., T4,
in describing the intrinsic energy, is expected to be small [19], but
it is not entirely clear what the significance of the higher-order
cluster components of the wave function neglected in CCSD and
CR-CC(2,3) on the CM motion and its coupling with the intrinsic
state of the nucleus is. Therefore, the ability of the model space
used in the CI and CC calculations to represent a factorized eigen-
state |Ψ 〉 is getting progressively worse with increasing A.

7. Conclusions

We have formulated simple and rigorous criteria for diagnos-
ing the CM contamination in many-body approaches to the nuclear
structure problem. They are based on the fact that for a factorized
many-body state the CM component can be manipulated, e.g., by
adding a CM contribution βHcm to the intrinsic Hamiltonian H int,
without affecting the intrinsic part. The existence of an unphys-
ical coupling between CM and intrinsic motions manifests itself
in a dependence of the change of the intrinsic energy expectation
value �〈H int〉β on β , since �〈H int〉β = 0 for all β when the nuclear
state factorizes. The analysis of �〈H int〉β is our primary diagnostic.
A secondary measure of the magnitude of the coupling between
CM and intrinsic motions is the expectation value of Hcm at non-
zero β , which should be zero for factorizable states. In contrast
to these two quantities, the expectation value 〈Hcm〉β at β = 0,
which is sometimes used to examine the degree of CM contami-
nation, does not provide a meaningful measure since it can have
any positive value for a many-body state that factorizes. Further-
more, we have shown examples where 〈Hcm〉β=0 is on the order
of a few hundred keV when �〈H int〉β=10 is on the order of a few
MeV, indicating a sizable CM contamination.

Using our diagnostics we have demonstrated that the IT-NCSM
approach, which is based on the Nmaxh̄Ω model-space cutoff, ex-
hibits a very good approximate factorization with �〈H int〉β below
150 keV for all β in spite of the fact that the importance trun-
cation used to select the dominant contributions to the NCSM
wave function formally breaks the rigorous factorization of the
Nmaxh̄Ω space. Switching from the Nmax- to the emax-truncation
of IT-CI(4p4h) leads to a sizable CM contamination, with �〈H int〉β
reaching a few MeV as β increases. Similarly, the CCSD and
CR-CC(2,3) calculations show sizable CM contaminations, with
�〈H int〉β=10 typically somewhat larger than in the IT-CI(4p4h)
case. With increasing emax, the degree of CM contamination de-
creases for 4He, but one does not observe the same clear trend for
16O. This difference can be explained by the fixed maximum ex-
citation level of the truncated CI and CC calculations used in this
work. The exact solution of the Schrödinger equation, which leads
to perfect decoupling of intrinsic and CM degrees of freedom, is
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approached only when the CI or CC calculation allows for all pos-
sible npnh excitations and when emax → ∞. The fixed excitation
level n < A used in the CI and CC calculations for 16O prevents
this.

Our findings seem to disagree with a recent claim of Hagen et
al. [24] of a factorization of the CC ground states to a very good ap-
proximation, based on the observation that the expectation value
〈H̃cm〉β=0 for a generalized operator H̃cm defined for an oscilla-
tor frequency Ω̃ �= Ω minimizing 〈H̃cm〉β=0 is close to zero. For
16O described by the N3LO interaction [25] in a Hartree–Fock ba-
sis with emax ≈ 18 they obtain the optimum 〈H̃cm〉β=0 values in
the range of about −0.5 to 1 MeV when varying h̄Ω from 24 to
52 MeV. Aside from concerns about the interpretation of negative
expectation values for a positive definite operator and the valid-
ity of the generalization of H̃cm, the values of 〈H̃cm〉β=0 observed
in [24] are not sufficient to claim the approximate factorization of
the CC ground states. In our view, it is more appropriate to monitor
�〈H int〉β and 〈Hcm〉β at finite β to assess the degree of coupling
of intrinsic and CM degrees of freedom in truncated CI and CC cal-
culations.
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[13] J. Čížek, J. Chem. Phys. 45 (1966) 4256.
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