of radiolabeled anti-rat type II collagen antibody were detected in the synovial fluid 10 minutes and 24 hours post-IA administration relative to the non-specific antibody.

Conclusions: Rapid clearance of a non-specific antibody from the synovial fluid and joint tissues is observed after IA dosing to a normal rat knee joint. The data highlights that if sustained drug exposure is required for efficacy, the retention time of the therapeutic needs to be increased. Sustained retention of an anti-collagen II antibody in the rat joint suggests that binding to a resident protein may extend antibody retention time.

101

IN VITRO VALIDATION OF A VARUS LOADING DEVICE IN THE RABBIT KNEE

M.L. Roemhildt1, B.C. Fleming2, B.D. Beynnon1, D. Churchill3
1 Univ. of Vermont, Burlington, VT; 2 Brown Univ., Providence, RI; 3 MicroStrain, Williston, VT

Purpose: Methods of producing relevant and quantifiable load alterations in vivo with which to study load-induced cartilage degeneration are limited. A novel loading device has been developed to apply a varus moment to the knee creating a chronic overload to the medial compartment of the knee while allowing normal joint function. The objective of this study is to confirm the change in load in the medial compartment of the rabbit knee with application of a known target load.

Methods: The increase in medial compartment compressive load generated by the Varus Loading Device (VLD) was measured directly in vitro and compared to the predicted values. The VLD is mounted via transcutaneous bone plates attached to the lateral aspect of the femur and tibia (Fig. 1). The VLD allows moments to be applied only during the designated treatment period, at other times the moment can be disengaged by detaching the distal portion of the load link.

The VLD was installed on five, NZW rabbit, hind limbs. The medial joint capsule was opened and the medial tibial plateau was resected to a level 6 mm below the joint line. A load cell, 6mm dia. x 6mm tall, (ALD Design, NY) was inserted in the resection cavity and cemented in place, maintaining the original level of the joint line. The medial femoral condyle contacted the load sensor ensuring that the entire compressive load developed in the medial compartment was measured by the load cell. The femoral head was mounted in a ball joint and the distal tibia was fixed in a clamp, positioned such that the femur was horizontal, and the flexion angle was approximately 115° to orient the tibial plateau horizontally. A 100 N weight was attached to the femur just proximal to the knee joint. This generated a compressive tibiofemoral load approximately equally divided between the medial and lateral compartments to simulate the physiologic joint load normally present in the knee due to muscle activity, gravity and inertial loads. The compression load cell was zeroed with this static load in place. Moment arms were measured. The target torque level was set and measured using a spring scale acting over the moment arm L1, Three values of ΔP were targeted: 25 N, 50 N, and 100 N. Using Eqn. 1, the spring torque required to generate each of these was calculated and applied to the VLD in succession and the actual ΔP generated, as measured by the load cell, was recorded.

Results: For all data points, the measured ΔP was within 14% of the target ΔP (Fig. 2). The slope of the least squares fit line through the data points was not significantly different than 1.

Conclusions: These results demonstrate the overall feasibility of applying a known compressive overload, ΔP, to the medial compartment of the knee using the VLD. The ability to apply consistent load alteration to the knee will allow the future study of the dose response of articular cartilage to quantified levels of load alteration in vivo.

Acknowledgements: Arthritis Foundation and NIAMS: T32 AR07568-06, R21 AR052815-01

102

DIFFERENCE IN OSTEOPHYTE FORMATION AND SMAD SIGNALING BETWEEN MURINE INFLAMMATORY ARTHRITIS AND OSTEOARTHRITIS

P.M. van der Kraan, E.N. Blaney Davidson, M. Koenders, J. Matualatupauw, A.B. Blom, I. Devesa, W.B. van den Berg Radboud Univ., Med. Ctr., Nijmegen, Netherlands

Purpose: Osteophytes are hallmarks of osteoarthritis. In rheumatoid arthritis no osteophytes are found but profound bone deposition is observed in ankylosing spondylitis. In animal models the development of osteophytes is observed in both inflammatory and degenerative joint diseases. In murine (osteo)arthritis models, osteophyte formation appears to be the results of two processes. New bone deposition via differentiating stem cells and endochondral ossification or through intramembranous deposition by osteoblasts. We studied whether osteophyte formation differs between murine inflammatory arthritis (IA) and osteoarthritis (OA), and if dissimilar, what factors play a role in this unequal osteophyte development.

Methods: We compared osteophyte formation in the following OA models; spontaneous OA in Str/ort and collagenase-induced osteoarthritids in C57BI/6 mice. Inflammatory arthritis was studied in collagen-induced arthritis in DBA/1J mice, streptococcal cell wall-induced arthritis in C57BI/6 mice and serum transfer-induced arthritis in C57BI/6 x 129Sv mice. Knee joints were dissected at early as well as advanced time points during the development
of OA and IA. Coronal sections were stained with fast green and Safranin O and with specific antibodies for beta-catenin, Smad2/3P, Smad1/5/8P and Runx2. Osteophyte formation and immunohistochemical staining was scored on 11 locations in the joint. In specific experiments, osteophyte formation in IA was compared between wild-type and TNF alpha deficient mice. Since TNF-alpha-induced dickkopf1 has been suggested to be involved in blocking osteophyte formation in arthritis, we have assessed dickkopf1 expression arthritis in wild type and TNF alpha knock out mice by RT-QPCR.

Results: In all OA and IA models, osteophytes that form through endochondral bone formation were detected. Strikingly, intramembranous bone apposition, localized on the tibial and femoral bone collar, was observed in the IA but not in the OA models. Immunohistochemistry of factors reported to be important in cartilage and bone formation showed that expression of beta-catenin was found in hypertrophic chondrocytes in osteophytes undergoing terminal differentiation but not at sites that showed early osteophyte formation. Expression of Runx2 was detected in more than 50% of the cells at sites that showed early osteophyte formation in both IA and OA models. Interestingly, at the same sites, IA and OA models presented high Smad1/5/8P expression but only the OA models showed also high Smad2/3P expression. No clear Smad2/3P expression was found in the IA models.

In addition, TNF-alpha deficiency did not result in increased osteophyte formation. Moreover, severe arthritis in IA models was associated with increased osteophyte formation but not with concomitantly decreased dickkopf1-expression.

Conclusions: Intramembranous bone apposition was only observed in IA models, indicating that bone formation in IA and OA models differed. Absence of TNF-alpha did not result in increased osteophyte formation, showing that neither TNF-alpha itself nor TNF-alpha-induced dickkopf1 blocked osteophyte formation in the models studied. Runx2 and TGF-beta superfamily signaling was observed at site of early osteophyte formation. In IA, Smad1/5/8P was expressed but Smad2/3P was absent. In OA both Smad pathways were clearly activated. This suggest that expression of Smad1/5/8P is related to osteophyte formation by the endochondral route while activation of Smad2/3P blocks intramembranous bone apposition. The balance of activated Smad2/3 and Smad1/5/8 pathways appears to be involved in regulation of osteophyte formation in IA and OA.

103 ATTENUATION OF OSTEOARTHRITIS PROGRESSION BY REDUCTION OF EXPRESSION OF DISCOIDIN DOMAIN RECEPTOR 2

Y. Li1, J.M. Servais2, I. Polur2, P.L. Lee2, D. Kim2, L. Xu3

Purpose: The objective of this study is to investigate if reduction of DDR2 expression attenuates OA progression induced either by a genetic mutation or by an non-genetic factor.

Methods: We generated double-heterozygous mutant mice, type VI collagen- and Ddr2-haploinsufficient mice in this study. We also performed microsurgery on knee joints of Ddr2-deficient mice. We anticipated that the reduction of the Ddr2 expression will attenuate the OA progression in mouse knee joints induced either by deficiency of type VI collagen or by the microsurgery. A serial paraffin sections were prepared from the knee joints of the mice at different stages of the disease. The articular cartilages of the mouse knee joints were examined by Safranine O/Fast green staining. Morphological conditions of the articular cartilages of the mouse knee joints were evaluated by a modified Mankin score system. The Ddr2 and Mmp13 protein expression profiles were examined by immunohisto staining in the mouse knee joints.

Results: Results from histology showed that the OA pathological progression was delayed in knee joints of double-heterozygous mutant mice and the OA pathological progression induced surgically in knee joints of Ddr2-deficient mice was also delayed. The expression of Ddr2 and Mmp-13 was reduced in the knee joints of the double-heterozygous mutant mice, compared with that in the wild-type littermates at each time point when we examined.

Conclusions: Taken all above-mentioned results, it suggests that the reduction of Ddr2 expression attenuates the OA progression in mouse OA knee joints.

104 A POSSIBLE ROLE OF HTRA1, A SERINE PROTEASE, IN PATHOGENESIS OF OSTEOARTHRITIS

Y. Li1, I. Polur2, P.L. Lee2, J.M. Servais2, L. Xu1
1Harvard Sch. of Dental Med. and Harvard Med. Sch., Boston, MA; 2Harvard Sch. of Dental Med., Boston, MA

Purpose: The objective of this study is to investigate a possible role of Htra1, a serine protease, in pathogenesis of OA by use of four different mouse OA models.

Methods: In this study we examined the protein expression profile of Htra1 in the knee and temporomandibular (TM) joints of four mouse OA models; two of the models had genetic forms of OA and two had non-genetic forms of OA. The level of Htra1 mRNA in the articular cartilage of knee joints, taken from one of the genetically mutated models, was also examined. This was done with the purpose of determining whether the increased expression of Htra1 protein was paralleled by an up-regulated expression of Htra1. Finally, we examined whether the increased expression of Htra1 resulted in the disappearance of type VI collagen, which is a good indicator of the integrity of the pericellular matrix of chondrocytes, and thus led to the elevated expression of Ddr2 in the knee joints of the mutant mice. Paraffin sections were prepared from the knee and temporomandibular (TM) joints of four mouse OA models; two of the models had a genetic mutation (type IX collagen-deficient and type XI collagen-haploinsufficient) and two were surgically induced (destabilization of the medial meniscus of knee joint and discectomy). The Htra1 protein expression profiles of the prepared sections were examined by immunohistostaining. The level of Htra1 mRNA in the articular cartilage taken from the knee joints of one of the genetically mutated OA models was determined by real-time PCR. Double immunohistostaining was used to examine the expression of co-localization of Htra1 with type VI collagen and Htra1 with discoidin domain receptor 2 in the articular cartilage of knee joints from the genetically mutated OA model.

Results: The expression of Htra1 was found to be increased in the knee and TM joints of the four mouse OA models at early stages of the disease. An examination of the knee joint of a mutant mouse indicated an 8-fold increase in the level of Htra1 mRNA, when compared to the levels observed in the knee joints of its wild-type littermates. Pericellular type VI collagen was not present in chondrocytes expressing Htra1. Meanwhile, expression of Htra1 was associated with the expression of Ddr2 in the chondrocytes.

Conclusions: Results indicate that Htra1 may disrupt the pericellular matrix network, resulting in the alteration of chondrocyte metabolisms. This eventually leads to OA.