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Unsteady unidirectional micropolar fluid flow
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Abstract This paper considers the unsteady unidirectional flow of a micropolar fluid, produced
by the sudden application of an arbitrary time dependent pressure gradient, between two parallel
plates. The no-slip and the no-spin boundary conditions are used. Exact solutions for the velocity
and microrotation distributions are obtained based on the use of the complex inversion formula of
Laplace transform. The solution of the problem is also considered if the upper boundary of the flow is
a free surface. The particular cases of a constant and a harmonically oscillating pressure gradient are
then examined and some numerical results are illustrated graphically. c© 2011 The Chinese Society
of Theoretical and Applied Mechanics. [doi:10.1063/2.1106205]
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The theory of micropolar fluids, introduced by
Eringen,1 gives a mathematical model for a type of flu-
ids with microstructure. This type of fluids consists of
rigid, randomly oriented (or spherical) particles with
their own spins and microrotations, suspended in a vis-
cous medium. It exhibits micro-rotational effects and
micro-rotational inertia. This model includes the clas-
sical Navier-Stokes equations as a special case, but can
cover, both in theory and applications, many more phe-
nomena than the classical model. Physically, the math-
ematical model underlying micropolar fluids may repre-
sent the behavior of polymeric additives, animal blood
with rigid cells, liquid crystals, dirty oils, bubbly fluids
and other biological fluids.1,2 A comprehensive review
of micropolar fluids was provided by Ariman et al.3,4

kaszewicz5 has presented the mathematical theory of
equations of micropolar fluids and some of its applica-
tions.

The steady micropolar Poiseuille flow between two
stationary parallel plates, due to a constant pressure
gradient, was presented in Ref. 6. Cvetkovié7 discussed
the problem of steady micropolar flow between two
parallel plates with couple stress boundary conditions.
The micropolar fluid flow over a semi-infinite flat plate
has been described by using the parabolic coordinates
and the method of series truncation for low to large
Reynold numbers in Ref. 8. The problem of steady
micropolar fluid flow through a wavy tube is studied
in Ref. 9. The three dimensional micropolar fluid flow
in a straight pipe with variable cross section has been
discussed in Ref. 10. The unsteady micropolar fluid
flow has attracted the attention of a low number of re-
searchers. Debnath11 investigated the unsteady blood
flow through rigid circular tubes. Ashmawy12 discussed
the unsteady Couette micropolar fluid flow with the ef-
fect of slip boundary condition. The unsteady motion
of a micropolar fluid filling a half space has been inves-
tigated in Ref. 13.

Delhommelle et al.14 used non-equilibrium molecu-
lar dynamics to study the flow of a micropolar fluid and
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tested an extended Navier-Stokes theory for such fluids.
They found that the angular streaming velocity and the
translational streaming velocity are in good agreement
with the predictions of extended Navier-Stokes theory,
they found also that the translational streaming veloc-
ity profile deviates from the classical parabolic profile.
Piȩal15 studied Poiseuille flows in microchannel in detail
and confirmed that micropolar model is applicable for
small characteristic geometrical dimension of the flow

The field equations governing an incompressible mi-
cropolar fluid flow in the absence of body forces and
body couples are given in vector forms as

divu = 0, (1)

− (μ+ κ) curl curlu+ κcurlν − gradp = ρu̇, (2)

(α+ β + γ) grad divν − γcurlcurlν +

κcurlu− 2κν = ρ j ν̇, (3)

The field unknowns are the velocity vector u, the mi-
crorotation vector ν, and the fluid pressure p, while the
fluid density ρ, and the microinertia j are assumed to be
constants. The material constants (μ, κ) are viscosity
coefficients and (α, β, γ) are gyro-viscosity coefficients.
The dot denotes the material time derivative.

The constitutive equations for the stresses tij and
couple stresses mij can be written as

tij = −p δij + μ (uj,i + ui,j) + κ (uj,i − εijkνk) , (4)

mij = ανr,rδij + βνi,j + γνj,i, (5)

where the comma denotes partial differentiation, δij and
εijk are the Kronecker delta and the alternating tensor,
respectively.

Initially the fluid is assumed to be at rest. It is then
set in motion by a sudden application of a time depen-
dent pressure gradient. Using the Cartesian coordinates
(x, y, z) with the x-axis coincident with the central line,
the y-axis is normal to the plates (see Fig. 1). Since the
fluid flow extends to infinity and the motion is due to
the pressure gradient only, then the field unknowns are
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Fig. 1. Poiseuille flow between fixed parallel plates.

functions of y and t only, thus the velocity and micro-
rotation components become

u = [u (y, t) , 0, 0] and ν = [0, 0, ν (y, t)]
The nonlinear terms of the field equations vanish

automatically.
The equation of continuity (1) is satisfied identically

and the field Eqs. (2), (3) reduce to

(μ+ κ)
∂2u

∂y2
+ κ

∂ν

∂y
− ρ

∂u

∂t
− ∂p

∂x
= 0, (6)

γ
∂2ν

∂y2
− κ

∂u

∂y
− 2κν − ρj

∂ν

∂t
= 0. (7)

The boundary and initial conditions of the problem
have the forms

u(±b, t) = 0, ν(±b, t) = 0, for all t, (8)

u(y, 0) = 0, ν(y, 0) = 0, for all − b ≤ y ≤ b. (9)

The spin gradient viscosity coefficient j is assumed
to be a constant and is given by2

j =
2γ

2μ+ κ
. (10)

We now introduce the following non-dimensional
variables

u∗ =
ρ b

μ+ κ
u, ν∗ =

ρ κ b2

(μ+ κ)
2 ν, x∗ =

x

b
,

y∗ =
y

b
, t∗ =

μ+ κ

ρb2
t, p∗ =

ρb2

(μ+ κ)
2 p,

m∗ij =
ρκb3

γ (μ+ κ)
2mij , t∗ij =

ρb2

μ (μ+ κ)
tij . (11)

In terms of these variables, Eqs. (6), (7), take the
following forms (dropping asterisks for convenience)

∂2u

∂y2
+

∂ν

∂y
− ∂u

∂t
− ∂p

∂x
= 0, (12)

∂2ν

∂y2
− f

∂u

∂y
− g ν − h

∂ν

∂t
= 0. (13)

Also, the non-vanishing shear stresses and couple
stresses take the forms

txy = k̃
∂u

∂y
− ν, tyx =

∂u

∂y
+ ν ,

myz =
1

β̃
mzy =

∂ν

∂y
, (14)

where

f =
κ2b2

γ (μ+ κ)
, g =

2κb2

γ
, λ = g − f,

h =
(μ+ κ) j

γ
=

g

λ
, κ̃ =

μ

μ+ κ
, β̃ =

β

γ
. (15)

Introducing the Laplace transform (denoted by an
over bar) defined by the formula

F̄ (y, s) =

∫ ∞

0

e−stF (y, t)dt, (16)

into Eqs. (12) and (13) and using the initial conditions
Eq. (9), we obtain the general solutions of the field equa-
tions in the Laplace domain as

ū = A1 cosh(m1y) +A2 sinh(m1y) +

A3 cosh(m2y) +A4 sinh(m2y) +
1

s
φ̄ (s) , (17)

ν̄ = B1 cosh(m1y) +B2 sinh(m1y) +

B3 cosh(m2y) +B4 sinh(m2y), (18)

where

φ̄ (s) = −∂p̄

∂x
, m2

1 = λ+ s , m2
2 = h s.

Applying the boundary conditions Eq. (8) in the
Laplace transform domain, we get

A2 = A4 = B1 = B3 = 0 , (19)

A1 =
−φ̄

sQ (s)
(h− 1)

√
s
√
λ+ s sinh(m2),

A3 =
φ̄

sQ (s)

√
hλ sinh(m1), (20)

B2 =
φ̄

sQ (s)
λ (h− 1)

√
s sinh(m2) ,

B4 =
−φ̄

sQ (s)
λ (h− 1)

√
s sinh(m1), (21)

where

Q (s) = (h− 1)
√
s
√
λ+ s sinh(m2) cosh(m1)−

λ
√
h sinh(m1) cosh(m2). (22)

Using the complex inversion formula of the Laplace
transform,16 given by

F (y, t) =
1

2π i

∫ σ+i∞

σ−i∞
estF̄ (y, s)ds, (23)

where i =
√−1 and σ is a constant greater than all

the real parts of the singularities of F̄ (y, s) together
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with Cauchy residue theorem and convolution theorem,
we get the velocity and microrotation in the physical
domain as

u (y, t) =

∞∑
n=1

2αn

βn Δ
[(h− 1)αnβn sinβn cosαny +

λh sinαn cosβny]ψ1 (t) , (24)

ν (y, t) = 2λ (h− 1)

∞∑
n=1

αn

Δ
(sinαn sinβny −

sinβn sinαny)ψ1 (t) , (25)

where

Δ = αn

[
(h− 1)

(
λ+ α2

n

)
+ λh

]
sinαn sinβn −

(h− 1)
(
λ+ 2α2

n

)
sinβn cosαn −

βn

[
(h− 1)α2

n + λ
]
cosαn cosβn . (26)

The shear stress and couple stress thus take the
forms

tyx =
∞∑

n=1

−2αn

Δ

[
(h− 1)

(
α2
n + λ

)
sinβn sinαny +

λ sinαn sinβny
]
ψ1 (t) , (27)

myz =
1

β̃
mzy =

2λ (h− 1)

∞∑
n=1

αn

Δ

(
βn sinαn cosβny −

αn sinβn cosαny
)
ψ1 (t) , (28)

where

ψ1 (t) =

∫ t

0

φ (t− τ) e−(λ+α2
n) τdτ . (29)

The volume flux across a plane normal to the flow
can be obtained from the relation

F (t) =

∫ 1

−1

u(y, t)dy =

∞∑
n=1

4αn

[
λh+ (h− 1)β2

n

]
β2
n Δ

ψ1 (t) sinαn sinβn.

(30)

Here, we assume that the fluid region is bounded
by a fixed infinite plate at y = −b and a free surface at
y = b. The boundary conditions for this case are given
by

u(−b, t) = 0, tyx(b, t) = 0,

ν(±b, t) = 0, for all t. (31)

Following the same procedure of the previous sec-
tions, we get the corresponding solutions for this case
as

u (y, t) =

∞∑
n=1

2αn

βnΔ1

[
(h− 1)αnβn sin 2βn ·

Fig. 2. Velocity distribution for κ/μ = 2.0.

cosαn(1− y) + λh sin 2αn cosβn(1− y)
]
ψ1 (t) ,

(32)

ν (y, t) =
∞∑

n=1

2λ (h− 1)αn

Δ1

[
sin 2αn sinβn(1− y)−

sin 2βn sinαn(1− y)
]
ψ1 (t) , (33)

Δ1 = 2αn

[
(h− 1)

(
λ+ α2

n

)
+ λh

]
sin 2αn sin 2βn +

(h− 1)
(
λ+ 2α2

n

)
sin 2βn cos 2αn −

2βn

[
(h− 1)α2

n + λ
]
cos 2αn cos 2βn . (34)

The volume flux across a plane normal to the flow
is then

F (t) =

∞∑
n=1

4αn

[
λh+ (h− 1) β2

n

]
β2
n Δ1

ψ1 (t) ·

sin 2αn sin 2βn. (35)

We consider some special cases of physical interest
as follows:

(1) Constant pressure gradient: In this case the non-
dimensional pressure gradient function is −∂p/∂x =
φ (t) = 1.

Figure 2 indicates that the velocity increases at any
point with the increase of time. As expected the velocity
is an even function and reaches its maximum value at
the central line between the two plates. We observe
also in this graph that the steady state is established
in the limit as t → ∞. We observe from Fig. 3 that
the magnitude of microrotation also increases at any
point with the increase of time. It is an odd function
and vanishes at the central line. It is clear from Figs. 4
and 5 that the velocity decreases and the magnitude of
microrotation increases monotonically with the increase
of the micropolarity parameter. Figure 6 shows that
the flux decreases with the increase of the micropolarity
parameter.

(2) Harmonically oscillating pressure gradient: in
this case the non-dimensional pressure gradient function
is −∂p/∂x = φ (t) = sin t. Therefore

ψ1 (t) =
e−(λ+α2

n) t − cos t+
(
λ+ α2

n

)
sin t

(λ+ α2
n)

2
+ 1

.

It is clear from the Figs. 7 and 8 that, the flow has
no steady state, since the pressure gradient function has
an oscillating behavior.
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Table 1. Numerical values of the flux versus time for some different values of κ/μ.

t/s
Flux

κ/μ = 0 κ/μ = 1 κ/μ = 4 κ/μ = 6
0.05 0.159 664 0.070 839 0.056 912 0.051 231
0.10 0.296 604 0.130 129 0.103 162 0.092 198
0.50 0.944 554 0.406 320 0.316 214 0.278 172
1.00 1.218 600 0.523 160 0.408 879 0.359 957
2.00 1.322 482 0.567 686 0.446 643 0.394 647
3.00 1.331 410 0.571 546 0.450 315 0.398 260
4.00 1.332 178 0.571 881 0.450 673 0.398 637
5.00 1.332 244 0.571 910 0.450 707 0.398 676

Fig. 3. Microrotation distribution for κ/μ = 2.0.

Fig. 4. Velocity distribution for t.

Fig. 5. Microrotation distribution for t = 1.

Fig. 6. Flux versus time.

Fig. 7. Velocity distribution for κ/μ = 2.0.

Fig. 8. Microrotation distribution for κ/μ = 2.0.

Figures 9–11 show the distributions of the velocity,
microrotation and total flux for different values of time
with κ/μ = 2.0 in the case of one plate with a free sur-
face for a constant pressure gradient. The graphs show
similar features as those in the previous discussions. A
comparison between Tables 1 and Table 2 shows that
the volume flux in the case of two plates is less than its
corresponding value in the case of a free surface.

Exact solution has been found for the unsteady mi-
cropolar fluid flow between two parallel plates. The no
slip and no spin boundary conditions are used at the
surface of each plate. The flow is produced by the sud-
den application of an arbitrary time dependent pressure

Fig. 9. Velocity distribution for κ/μ = 2.0.
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Table 2. Flux versus time for different values of micropolarity parameter.

t
Flux

κ/μ = 0 κ/μ = 1 κ/μ = 4 κ/μ = 6
0.05 0.183 179 0.129 586 0.109 237 0.076 248
0.10 0.352 423 0.249 421 0.206 882 0.141 597
0.50 1.468 079 1.025 408 0.733 723 0.457 302
1.00 2.496 625 1.733 285 1.052 245 0.612 780
2.00 3.802 661 2.636 826 1.271 260 0.693 923
3.00 4.507 317 3.132 156 1.321 389 0.706 339
4.00 4.887 578 3.404 500 1.333 141 0.708 327
5.00 5.092 782 3.554 334 1.335 927 0.708 654

Fig. 10. Microrotation distribution for κ/μ = 2.0.

Fig. 11. Total flux against time t.

gradient function. The total flux, in general, is an in-
creasing function of time and decreases as the micropo-
larity parameter increases. Exact solution is also found

if the upper boundary of the flow is a free surface.
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(Birkhäuser, Basel, 1999).
6. T. Ariman, and A. Cakmak, Rheologica Acta 7, 236 (1968).
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