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1. Introduction

The topics of fuzzy integral equations (FIE) and fuzzy differential equations have
been rapidly growing in recent years [1-13]. The fuzzy mapping function was in-
troduced by Chang and Zadeh [14]. Later, Dubois and Prade [15] presented an ele-
mentary fuzzy calculus based on the extension principle. Also the concept of inte-
gration of fuzzy functions was first introduced by them. Then the fuzzy integration
is discussed by Allahviranloo [16], Allahviranloo and Otadi [17, 18] and Mosleh and
Otadi [19].
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In the existence of the solution of fuzzy integral equations, the Ascoli’s theorem
or metric fixed point theorems are used. For the existence and uniqueness, the main
tool is the Banach fixed point principle. Such discussions can be found in [20-24].

Babolian et al. and Abbasbandy et al. [25, 26] obtained a numerical solution of
linear Fredholm fuzzy integral equations of the second kind. Then Otadi and Mosleh
[27] considered fuzzy nonlinear integral equations of the second kind and obtained
an approximate solution to the fuzzy nonlinear integral equations. In [23] the author
considered nonlinear fuzzy Fredholm integral equations such as

F(s) = f(5)® [ K(s.t, F(0)dL,

therefore, in this paper, we generalize the nonlinear fuzzy integral equations to the
nonlinear fuzzy integro-differential equations

F'(s) = f(5)® [ K(s.t, F(§)dt, F(a) = Fy.

In this paper, we present a simple numerical method to nonlinear fuzzy Fredholm
integro-differential equations of the second kind.

2. Preliminaries

In this section, the basic notations used in fuzzy operations are introduced. We start
by defining the fuzzy number.

Definition 2.1 A fuzzy number is a function u : R — I = [0, 1] having the properties
[28]:

(i) u is normal, that is Axy € R such that u(xo) = 1;
(ii) u is a fuzzy convex set;
(iii) u is upper semicontinuous on R;
(iv) The support m is a compact set.
The set of all the fuzzy numbers is denoted by E. An alternative definition which
yields the same E is given by Kaleva [29].

Definition 2.2 A fuzzy number u is a pair (u, u) of functions u(r) and u(r), 0 < r < 1,
which satisfies the following requirements [29]:

(i) u(r) is a bounded monotonically non-decreasing, left continuous function on
(0, 1] and right continuous at 0;

(i) u(r) is a bounded monotonically non-increasing, left continuous function on
(0, 1] and right continuous at 0;

(iii) u(r) <u(r),0<r<1.

A crisp number r is simply represented by u(e@) = u(e) = ,0 < @ < 1. This
fuzzy number space as shown in [30], can be embedded into the Banach space B =
C[0, 11 x C[0,1].

For arbitrary u = (u(r), u(r)),v = (v(r),v(r)) and k € R, we define addition and
multiplication by k as
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(u+v)(r) = (u(r) + v(r),
(u+v)(r) = u(r) +v(r),
ku(r) = ku(r), ku(r) = ki(r) if k > 0,

ku(r) = ku(r), ku(r) = ku(r) if k < 0.

Definition 2.3 For arbitrary fuzzy numbers u,v, we use the Hausdorff distance D :
EXE — R, U{0}, as in [29]:

D(u,v) = Sup max({[u(r) = v(r)l, lu(r) — v(r)l}.

We denote || - ||g= D(-,a), where 0 € E,a = X(0)-
Theorem 2.1 [6]
(i) The pair (E,®) is a commutative semigroup with 0 = X0} Zero element;

(ii) For fuzzy numbers which are not crisp, there is no opposite element (that is,

(E,®) cannot be a group);

(iii) For any a,b € R with a,b > 0 or a,b < 0, and for any u € E, we have
(a+b)Ou=aCuedbou;

(iv) Forany A€ Randu,v € E, we have A0 (u®v) =A10u® A0 v;
(v) Forany A,y € Randu € E, we have 10 (u® u) = (A.u) O u;

(vi) The function || - ||g: E = Ry U {0} has the usual properties of the norm, that is,
lulle=0ifand only if u =0, | AQu llg= Al ullg and | u@v |le=Il u |l & ||

v ||g for any u,v € E;

i) [lulle = Ivlle | < D@, v) and D(u,v) <l u llg + || v lIg for any u,v € E.

Since (E, ®) is not a group, but only a commutative monoid, the structure (E, ®, O,
|| - lg) is not normed space. Some properties of the above distance are the following:

Theorem 2.2 [32]
(i) (E, D) is complete metric space;
(i) Du®v,ve®w) = D(u,w) for all u,v,w € E;
(iii) D(k©u,k©v) = |k|D(u,v) for all u,v € E and k € R;
@iv) D(u®v,w®e) < D(u,w) + D(v,e) for all u,v,w,e € E.

Definition 2.4 Let f : [a,b] — E', for each partition P = {ty,t,,--- ,t,} of [a, b]
and for arbitrary &; € [ti-1, t;],1 < i < n suppose [15].
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R, = __ilf(fi)(fi = ti1),

b .
[ f(x)dx =limp o Ry,
where
A=max{lt; - t;4|,i=1,2,--- ,n}

provided that this limit exists in the metric D.
If the fuzzy function f(t) is continuous in the metric D, its definite integral exists
[31] and also,

(7 fardn = |7 f@rr,

7 fandn = [ Fa .
Lemma 2.1 [32] If f and g are Henstock integrable functions and if the function
given by D(f (1), g(1)) is Lebesgue integrable, then
D(FH) [ f(ode,(FH) [ gwydr) < (L) [ D(f(0). g(t))dr.

Definition 2.5 [34] Let f : [a,b] — E be a bounded function. Then the function
Wiap)(f>0) 1 Ry U{0} - Ry

wap)(f,0) = sup{D(f(x), fF(M); X,y € [a, b], |x = y| < 6}
is called the modulus of continuity of f on [a, b].
Some properties of the modulus of continuity are presented below:

Theorem 2.3 [34] The following properties holds:
D) D), fO) < wiap(fs |1x =y for any x,y € [a, b];
(i) wiap(f, ) is increasing function of 6;
(iil) wep(f,0) =0;
(iv) wpp(f,01 +062) < Wy (f,01) + Wiy (f, 62) for any 61,62 > 0;
V) Wap)(f,n0) < nwiap(f,0) for any § > 0 and n € N;
Vi) Wiap)(f, 20) < (A + Dwiap(f, 6) for any 6,4 > 0;

(Vll) If [C, d] c [a, b], then Wla,b) (f, (S) < Wia,b) (f, 5)

Definition 2.6 [35] For L > 0, a function f : [a,b] — E is L-Lipschitz if

D(f(x), f(») < Llx -yl
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forany x,y € [a, b].

Definition 2.7 [36] Let f : [a,b] — E. Fix sy € [a,b]. We say X is differentiable
at s, if there exists an element f’(sg) € E such that, the H-differences f(sy + h) ©
f(s0), f(s0) © f(so — h) exist and the limits (in the metric D) presents as follows:

f(so+ 1) © fls0) _ . f(s0)© f(so—h
—0 h

. . ) ’
limy,_,o+ Y limy, = f'(sp).

Theorem 2.4 [35] Let f : [a,b] — E be a bounded and Henstock integrable function.
Then for any partitiona = s) < s; < -+ < §, = b and {; € [s;_1, 5;i], we have

D((FH) fab fndr, __il(si —8i-1) © f(§)) < __il(si = 8i-)Ws,y,51(f5 S0 = Si=1)-

Particular election of the point {; leads to the following result.
Here we present the quadrature rules obtained in [35], which contain as particular
cases with the three point, middle point and trapezoidal rules.

Corollary 2.1 [35] Let f : [a,b] — E be a bounded and Henstock integrable func-
tion. Then:

() D(FH) fub f@dt, (b —a)o f((a+b)/2)) < ((b - a)/Dwp(f,(a—b)/2);
(i) D((FH) fab f@dt,(a-b)/20[f(@) @ f(B)]) < (b - &)/ Dwap(f, (b - a)/2);

(i) D((FH) fab f®dt, (b-a)/60L f(@)@40f ((a+b) /)@ f (D)) < 3(b-a)wap(f, (b-
a)/6).
3. Fuzzy Integro-differential Equations

‘We consider the nonlinear Fredholm integro-differential equations of the second kind

b
F'(s) = f(s)eaf K(s,t, F(t))dt, F(a) = F, (1)

where
f:la,b] > Eand K : [a,b] X [a,b] X E = E
are continuous. Moreover, K is uniformly continuous with respect to s.

Theorem 3.1 Let f : [a,b] —» E and K : [a,b]X[a,b]X E — E are continuous. Con-
sider the nonlinear fuzzy Fredholm integro-differential (1). A mapping F : [a,b] — E
is a solution to (1) if and only if F is continuous and satisfies the integral equation

X s b
F(s)=F) EBf f(z)dz@f f K(z,t, F(t))dtdz, s € [a,b]. 2)
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Proof Since f and K are continuous, by [29], it must be integrable. So, for

b
F'(s) = f(s)EBf K(s,t, F(t))dt, s € [a,b],

we have equivalently [37]

s b
F(s) = F(a)® f f@® f K(z,t, F(t))dtdz;

equivalently [29]

s s b
F(s) = Fla) @ f Fodze f f K(et, F()did-.

Since F(a) = Fy, we have

X X b
F(s):FOEBf f(z)dz@f f K(z,t, F(t))dtdz.

Consider the space of functions
X ={f :[a,b] » E | f continuous}
with the metric D*(f, g) = sup D(f(s), g(s)). Recall the fact that (X, D*) is complete

. a<s<b
metric space [29].

Define the operator A by

X X b
A(F)(s) = Fo EBf f(z)dz@f f K(z,t, F(t))dtdz, s € [a,b], VfeX. (3)

Theorem 3.2 Suppose that the functions f and K are continuous. In addition, K is
uniformly continuous with respect to s and there exist L > 0, M, > 0, M, > 0 such
that

Kz t,u)lle < My, Vz.t€[a,bl, Vu€ekE,
If@lle < My, Vze€la,b]
and
D(k(z, t,u), k(z,t,v)) < LD(u,v), Vz,t€ [a,b], Yu,v € E.

Moreover, for every € > 0, there exists § > 0 such that for all s1,s, € [a,b] and
|s2 — s1] < 6, the following inequalities are satisfied:

DO f " foda) < e,

57 b
D(0, f f K(z,t, F(t))dtdz) < e,
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Lb—-a)S —a) <1,

then Eq. (1) has a unique solution F* in X, which can be obtained through the
method of successive approximations starting by any element of X. Moreover, in
the approximation of solution by terms of sequence of successive approximations,
(Fin)men, F1(s) = Fo,

X} X} b
F,,,+1(s):F0e9f f(z)dzeaf f K(z,t, F,(t)dtdz, s € [a,bl,m=1,2,---, (4)

the prior error estimate is

[LOD - a)(§ —a)]"

D(F*(s), Fins1(s)) < —Lo-06 - (S —a)M +(S —a)b-a)Mz], (5)

s€la,bl, m=1,2,---.

Proof Firstly, we prove that A(X) C X. In this aim, we see that for all

S1 ST b
DAAF)(51). AF)(s2)) = D(Fo & f fQdze f f Kot F())drdz,

57 X b
Fo+f f(z)dzeaf fK(z,t,F(t))dtdz)

<D f " s, f " o) +

S| b 52 b
D( f f K(z,t, F(t))dtdz, f f K(z,t, F(¢)dtdz)

<D( f )z 0, f ' f@dz o f fdo) +

S| b
D( f f K(z,t, F(t))dtdz &0,

S b 52 b
f f K(z,t, F(t))dtdz & f f K(z,t, F(t))dtdz)

52 52 b
=D(, f f(@dz) + DO, f f K(z,t, F(¢))dtdz)

€

<—+=-=¢€
2

N m

So, A(F) is uniformly continuous for any F € X, and consequently continuous on
[a,b]. Then, A(X) C X.
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For F,G € X and s € [a, b] follows:

X s b
D(AGF)(s). G(F)(s)) = D(Fy & f Fdz f f Kzt F(t)drds,

X s b
Fo+f f(z)deBf f K(z,t,G(1))dtdz)

X b X b
SD(f f K(z,t,F(l))dtdz,f f K(z,t,G(t))dtdz)

X b
< D(f f L.D(F(t), G(t))dtdz
<LD*(F,G)(b - a)(s — a)
= LD*(F,G)(b — a)p(s).

Let o(S) = sup {¢(s)} = (S — a). Consequently,

s€la,b]

D(A(F)(s), G(F)(s)) < LD*(F,G)(b — a)p(S), VF,G € X. 6)

Since, L(b — a)¢(S) < 1, the operator A is a contraction. Using the Banach’s fixed
point principle we infer that (1) has a unique solution F* in X and the following
inequality holds:

[LOD — a)(§ —a)]"

1—L(b—a)S — a)D*(Fn,Fz), )

D(F*(5), Frus1(8)) < D*(F*, Fpy1) <
m=1,2,---.
On the other hand,

s S b
D*(F\,Fy)= sup D(Fy®0,F, ® f f@dz® f f K(z,t, Fo(t))dtdz)

a<z<b

s s b
< sup [D(0, f f(2)dz) + D(0, f f K(z,t, Fo(t))dtdz)]

a<z<b

s X} b
< sup| f 1F@lled2) + ( f f K.t Fo(t)ledidz)]

a<z<b
<M (S —a)+ My(S —a)(b - a).
In this way, we obtain the inequality (5).

Theorem 3.2 states the existence and uniqueness of the solution to Eq. (1) and the
sequence of successive approximations (F,)nen, converges to this solution in (X, D).
To approximate, this solution by terms of the sequence of successive approximations
must compute the integral and differential.

4. The Numerical Approach

‘We replace the interval [a, b] by a set of discrete equally spaced grid points
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a=50<S§; < -<S_1<S8,=b

at which the exact solution F*(s) is approximated by some x(s). The exact and ap-
proximate solutions at s;, 0 < i < n are denoted by F(s;) and x(s;), respectively. The
grid points at which the solution is calculated are

si=sotin h=l=P 1<icn 8)
n

The first-order approximation of F’(s) is given by [38]

_F(s+hoF(s)

F’ 9
() n ®
By virtue of Eq. (9) and the quadrature formula we obtain
) nlb—a
xm+1(5i+l)=xm+l(si)®h[f(si)®J§0W (10)
[K(sis 5js Xm(2) © K(sis S j+1, Xm(t+1))]];5
x1(51) = Xmr1(s0) = Fo; i =0,1,-+- ,nym=1,2,---. an
By Theorem 5.2 in [29] we may replace (10) by the equivalent system
. . . = b —a
Xt (Sivts ) =X, (si ) + BLf(sis ) + Eo o (12)

[K(sis 875 X, () Xn(2))) + K(Sis 8415 X, (2415 X (t01))]]5
b—-a

2n
(K (Sis 8o X, (), Xon(t))) + Kty 8415 X, (1) Ton (2405

x,(si37) = X, (505 7) = Fo3 X1(8i57) = X1 (503 1) = Fos
i=0,1, - m=1,2, .

— n—1
X1 (Six1537) = X1 (553 7) + B[ f(sis7) + X
j=0

Let K(s,t,u,v) and E(s, t,u,v) be functions K and K of (12) where u and v are con-
stants and # < v. In other words, K(s,t,u,v) and E(s, t,u,v) are obtained by substi-
tuting x = (#,v) in (12). The domain where K and K are defined

B={(s,t,u,v)|a<s,t<b,—00 <V <+00,—00<u=<v}

Theorem 4.1 Let K(s,t,u,v) and E(s, t,u,v) belong to C'(B). Let the partial deriva-
tives of K, K be bounded over B also

D(Fm(sp)v -xm(sp)) = (l;nax{Dm(Fm(Si), xm(si))}s

<i<n

D(Fln+1(sk+1)’ xm+1(sk+l)) = 6r<1?-<)’(l{Dm+l(Fm+l(s[)» anl(Si))}-

Then, for arbitrary fixed r: 0 < r <1,
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limy, 0 D(F 1 (), Xme1 (1)) = 0

Proof Let

_,,,+1(5k+l) _,,,H(Sk) + h[f(sla r)+ Z 2—[K(S,, S/a_m(l/) Fm(tj))+
K(S,, S]+ls_.,,(tj+l) Fm(t/H))]] + O(hz)
m+l(sk+l) Fm+l(sk) + h[f(s,,r) + Z 7[[((3‘1’ S,,_m(l) Fm(tj))+

=
K(siv $j1 F, (t341), Futio))]] + O(?),

and
Xt (k1) = X, (50 + BLf (sis7) + Z o [K(SI,S,, (1) X))+
K(sissjr15%,(Fj41), xm(l‘_m))]],
Tyt (581) = T (50 + HF(s0) + "_il PR st 05,0 Tl )
K(si sje1 X, (tj21), xm(tj+1))]]
Consequently,

FooGir) =X, () = F, L (si) —

[K(si, s, F,, (1), F m(tj_)) K(sz, 85 X, (1), X (27))
+K(siy $j11, F, (i), Fru(tje1)) — K(siy 85415
X, (tjs 1), X (L)) + O(hz),

Frue1($601) = X1 (St1) = Frus1 (8) = X1 (55) + h[Z

[[Ssl’ S_,,_m(l_,), Fm(tj_)) K(Sl, SJ;)_Cm(tj)s xm(tj))
+K(s;, Sj+1,£m(l‘j+1)y Fm(tj+l)) - K(s;, st*ﬁm(lj*l)’
Tn(tje)]] + O(H?).

Denote W1 (si1) = F, ey (See1) = X, (ke 1), Ve 1 (k1) = Fona1 (Sks1) = T (1)
Then
n-lhb—a
[Wons1 (s Dl < Wi ()] + AL ZO 7[2Lmax{|Wm(tj)|s Vi @)1}
=
2L max{|W (1)1, [V (152 DI} + OhY),
n-lb—a
Vi1 (ke )l < Vi1 (sl + Al Zb T[ZL max{|W, ()|, [Vi(t)l}
=
+2L max{|W, (1)l [V (152 DI} + O(h?),

where L > 0 is a bound for the partial derivatives of K, K. Thus, we have

b—a
Wit (Sea D)l < (W1 (si)l + 2nLhTD(Fm(tp)vxm(tp) +0(h?),

b-a
|Vm+l(sk+l)| < IVm+l(sk)| + anhTD(Fm(tp), xm(tp) + O(hz)
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Since W,,11(tg) = Viue1(to) = 0, we obtain

b —
[Wine1 (el < 2(k + l)nLh_aD(Fm(tp)7xm(tp) + 0,
n

b-a
[Vins1 (s 1)l < 2(k + 1)nLhTD(Fm(lp), Xultp) + O(h?)

and if h — 0, we get D(Fyp1(t), Xm+1 () — 0.
5. Numerical Example

Consider the following nonlinear fuzzy Fredholm integro-differential equation

2

, 5272 3(2
Fl9=(——52-r- )eaf0 )@Fz(z)dt

F0)=0;, 0<r<1.
The exact solution in this case is given by
F(s)=(r,2-r)s.
By using of (10) and the quadrature formula we obtain

52r2 s[.2(2 - r)2
Xm+1(Sis1) = X1 (S O W[(r — —=——,2 -1 — ———

40 40
Z @[(

also by using of (8) and (11) we have
x1(8i) = Xp1(s0) = 0385, =ih,i=0,1,---,30; m=1,2,---, 10,
where
x2,(57) = (min{x, > (s 7)., X (3 1), X5 P)Xn (555 7)),

max{x,>( 87 7). X (872 1), XS5 P)Ton (53 1))

Comparison between the exact solution and the approximate solution of nonlinear
fuzzy Fredholm integro-differential equation in this example given by the numerical
approach in Section 4 are drawn in Fig. 1 and Fig. 2.
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— Exact solution
©_Approximate solution

Fig. 2 Comparison between the exact solution and approximate solution: left: The
exact solution and right: The approximate solution

6. Conclusion

This paper aims at proposing a numerical method to nonlinear fuzzy Fredholm integro-
differential equations. In this paper, the standard Newton-Cotes method is designed
for approximating integral. Also we can execute this method in a computer simply.
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