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a b s t r a c t

This paper presents a three-dimensional model to simulate the behavior of plain concrete
structures that are predominantly tensile loaded. This model, based on continuum damage
mechanics, uses a symmetric second-order tensor as the damage variable, which permits
the simulation of orthotropic degradation. The validity of the first and the second law of
thermodynamics, as well as the validity of the principle of maximum dissipation rate,
are required. That is attained by defining the loading functions in quantities that are ther-
modynamically conjugated to the damage variables. Furthermore, the evolution rule is
derived by maximizing the energy dissipation rate. This formulation is regularized by
means of the fracture energy approach by introducing a characteristic length. The basic
and new idea in this paper is that the characteristic length should always coincide with
the width of the dissipative zone appearing in the simulation. The integration points with
increasing damage in one loading increment are the dissipative zone in this loading incre-
ment. The main objective of this paper is the convenient formulation of approaches for the
characteristic length in order to attain the coincidence of the characteristic length with the
width of the dissipative zone appearing in the simulation. It is shown that simulations are
objective and yield good results if the requirement is fulfilled that the characteristic length
in the constitutive law coincides with the width of the dissipative zone in the simulation.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The tensile behavior of normal concrete, beyond its linear elastic range, is defined by the formation and growth of micro-
cracks. Over time, concentration and coalescence of these micro-defects in a process zone lead to the appearance of macro-
cracks. By observing the uniaxial, macroscopic behavior, one clearly sees the softening of concrete and a loss of stiffness in
concrete as proven by cyclic tensile tests, (Gopalaratnam and Shah, 1985). Modeling of these properties can be formulated
by means of continuum damage mechanics, (Lemaitre, 1991; Carol et al., 1994; Krajcinovic, 1996), by applying such concepts
as isotropic or anisotropic damage. The anisotropic damage concept should be used for simulating the tensile softening behav-
ior of normal concrete due to the orientation of the resulting load-induced microcracks. Many different anisotropic damage
models exist and one possible way to characterize the different formulations is to distinguish them based on the chosen dam-
age variables: (Krajcinovic and Fonseka, 1981) represented the damage with vectors; (Govindjee et al., 1995; Murakami and
Kamiya, 1996; Dragon et al., 2000 and Carol et al., 2001a) used a second order tensor; (Papa and Taliercio, 1996 and Berthaud
et al., 1990) applied a combination of second order tensors and scalars; (Chaboche, 1993) suggested a fourth order tensor and
models that use directly the stiffness or the compliance to represent the damage were suggested by Simo and Ju (1987a,b) and
Pölling (2000). Anisotropic damage models are primarily defined by either a strain-based or a stress-based loading surface. As
shown in Section 2.2, a promising approach is the formulation of loading functions in the space of the variables that are ther-
. All rights reserved.
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modynamically conjugated to the damage variables designated as dissipative forces. A physically reasonable way to derive an
evolution law for the damage variables is to maximize the energy dissipation rate. Hesebeck (2000) showed that it is neces-
sary to formulate the loading functions in the space of the dissipative forces to ensure the maximum dissipation rate. One
problem is the often complex definition of the dissipative forces without clear physical meaning. To overcome this problem,
the pseudo-logarithmic damage rate tensor, suggested by Carol et al. (2001a), is used in this approach.

Another essential topic in this framework is the localization problem. Several approaches have been proposed to over-
come this problem: crack band approach, (Bažant, 1976), micropolar continua, (Cosserat and Cosserat, 2005), nonlocal mod-
els of the integral type, e.g. (Saouridis and Mazars, 1992) and gradient enhanced models, e.g. (Aifantis, 1984). Another class of
approaches to overcome the localization phenomena introduces a discontinuity in the displacement field, see e.g. (Simo
et al., 1993; Oliver, 1996).

In this paper, the crack band approach is applied, (Bažant, 1976; Bažant and Cedolin, 1980; Bažant and Oh, 1983); this
approach is also often labeled as fracture energy approach. The basic idea is the modification of the material law in order
to ensure always correct energy dissipation. This is reached by introducing a characteristic length in the constitutive law.
In the literature, several approaches were suggested how to choose this characteristic length, see (Bažant and Oh, 1983; Rots,
1988; Oliver, 1989; Cervenka, 1995; Lackner, 1999; Winkler, 2001) or (Pölling, 2000). Simulations by using the range of sug-
gested values for the characteristic length are performed in this paper, but the simulations overestimate the experimentally
observed peak load considerably. Hence, the question is why these overestimations appear? One essential problem is that
the characteristic length has no clear meaning.

The basic and new idea in this paper is that the characteristic length should always coincide with the width of the dis-
sipative zone appearing in the simulation. The integration points with increasing damage in one loading increment are the
dissipative zone in this loading increment. But the width of the dissipative zone is not known in advance. Simulations of a
double edge notched specimen—experiment are performed in order to investigate the evolution of the dissipative zone for
varying characteristic lengths. The investigations show that the width of the dissipative zone depends on the damage at the
specific material point and the inclination angle between the damage direction and the element edges. An approach for the
characteristic length to describe this relationship is suggested. A simulation by using this approach shows a sufficient coin-
cidence of the characteristic length with the width of the dissipative zone and convincing results, like e.g. the load–displace-
ment curve, are obtained. To evaluate the validity of the suggested theory, further simulations using a finer discretization are
investigated. An influence of the element size on the width of the dissipative zone is observed. A modification of the ap-
proach for the characteristic length is necessary in order to attain the coincidence of the characteristic length with the width
of the dissipative zone in the finer mesh. A simulation by using this modified approach with the fine mesh yields good coin-
cidence and approximately the same results as the simulation with the coarse mesh and the first approach.

The paper is subdivided into two parts. The constitutive model is derived in Section 2 and the investigations concerning
the characteristic length and the dissipative zone are performed in Section 3.

2. Description of the model

2.1. Damage operator, energy equivalence approach

The basis of this model is the definition of an effective, intact material, (Carol et al., 2001a; Lemaitre, 1991), with an effec-
tive stress reff

ij and an effective strain �eff
ij . The goal of this section is the derivation of a linear damage operator, which connects

the effective material state to the nominal material state described by the nominal stress rij and the nominal strain �ij. The
relationship between these effective quantities is assumed to be linear elastic and isotropic with the stiffness E0

ijkl:
reff
ij ¼ E0

ijkl�
eff
kl :
The constitutive law for the real, damaged material with the damaged stiffness Eijkl being dependent on a general damage
variable D� is
rij ¼ EijklðD�; E0
ijklÞ�kl: ð1Þ
The variable can be both a scalar and a tensor. The relationship between the nominal and the effective quantities is assumed
to be linear. The damage operator is in the form of a fourth-order tensor based on the requirement that a second-order tensor
remains a second-order tensor after a linear operation. Utilizing this fact, it is then possible to address approaches for stress
and strain:
reff
ij ¼ Aijklrkl; �eff

ij ¼ Bijkl�kl: ð2Þ
At this point, it can only be stated that the operators have the property of minor symmetry since rij and �ij are symmetric. In
order to proceed with the definition of the damage operator, a physical assumption is needed to connect the effective mate-
rial to the actual material. The equivalence principles are such assumptions, see e.g. (Lemaitre, 1991). The energy equiva-
lence approach is used because it ensures the symmetry of the secant stiffness as shown at the end of this section. This
approach combines the actual material with the effective material based on the assumption that the accumulated elastic en-
ergy u is the same in both:
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u ¼ 1
2

rij�ij ¼
1
2

reff
ij �

eff
ij ¼

1
2

AijklrklBijrs�rs

u ¼ 1
2

r : � ¼ 1
2

r : AT : B : �: ð3Þ
From this, it follows
AT : B ¼ I4; B ¼ A�T ð4Þ
with the fourth-order identity tensor I4. With this, the relationship between A and B is derived by means of the equivalence
principle. A is chosen as the linear damage operator. Thus, (2) can be rewritten as:
reff
ij ¼ AijklðD�Þrkl; �ij ¼ AklijðD�Þ�eff

kl

�eff
ij ¼ AklijðD�Þ�kl; rij ¼ AijklðD�Þreff

kl
whereby, the inverse of A is named A. To formulate the operator A in detail, a convenient damage variable must be selected.
In order to capture the load-induced anisotropy of concrete, the use of a second-order symmetric damage tensor Dij is sug-
gested, (Carol et al., 2001a) or (Lemaitre, 1991). This enables the modeling of orthotropic damage. Matrix representation of
the tensor Dij in the principal axes
½Dij� ¼
D1 0 0
0 D2 0
0 0 D3

2
64

3
75 ð5Þ
allows a comprehensive description of its meaning. The eigenvalues are defined as 0 6 Dk < 1 and k ¼ 1;2;3; whereas, Dk ¼ 0
represents intact material and Dk ! 1 completely destroyed material both in the direction of the eigenvector pertaining to Dk.
However, it is advantageous for the formulation to use the integrity tensor �/ij in the model with the Kronecker delta dij.
�/ij ¼ dij � Dij:
Additionally, the inverse integrity tensor /ij and, for the sake of symmetry, the tensors �wij and wij are introduced, (Carol et al.,
2001a):
�/ij ¼ �wik �wkj; /ij ¼ wikwkj

�/ik/kj ¼ /ik
�/kj ¼ dij

�wikwkj ¼ wik �wkj ¼ dij:
The next step involves an approach for determining the damage operator A in one of these variables. The formulation used by
Carol et al. (2001a) is chosen:
Aijkl ¼
1
2
ðwikwjl þwilwjkÞ
and
Aijkl ¼
1
2
ð�wik �wjl þ �wil �wjkÞ: ð6Þ
The nominal, secant constitutive law can be derived by the definition of A:
rij ¼ Aijklr
eff
kl ¼ AijklE

0
klmn�

eff
mn ¼ AijklE

0
klmnAopmn�op: ð7Þ
Substituting (6) yields
rij ¼ �wip �wjq �wkr �wlsE
0
pqrs�kl ð8Þ

r ¼ EðE0;wÞ : � ¼ EðE0;/Þ : � ð9Þ
with the secant stiffness
Eijkl ¼ �wip �wjq �wkr �wlsE
0
pqrs

E ¼ K0
�/� �/þ 2G0

�/��/
ð10Þ
and the elastic isotropic parameters K0;G0. The product �means: a�a ¼ 1
2 ðaikajl þ ailajkÞei � ej � ek � el. Finally, a remark on

the symmetry of the secant stiffness: Equating (7) with (9) leads to
Eijkl ¼ AijmnE0
mnopAklop ð11Þ
and with E0
mnop ¼ E0

opmn the major symmetry of the secant stiffness follows:
Eijkl ¼ AijmnE0
opmnAklop ¼ AklopE0

opmnAijmn ¼ Eklij:
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2.2. Evolution rule, principle of maximum energy dissipation rate

The goal of this section is the derivation of an evolution rule for the damage, where / is the damage variable. With Eq. (9),
the Helmholtz free energy results for elastic degrading material:
q0wð�;EÞ ¼
1
2
� : EðE0;/Þ : �:
The internal variables are � and /, and the thermodynamically conjugate variables are r and Y/:
r ¼ q0
ow
o�
¼ E : �; Y/ ¼ q0

ow
o/

:

The variable Y/ is also often designated as the dissipative force. The total differential is
q0
_w ¼ � : E : _�þ q0

ow
o/

: _/:
If this is inserted in the Clausius–Duhem inequality for isothermal processes,
q0
_w 6 r : _�;
then follows
0 6 ½r� � : E� : _�� q0
ow
o/

: _/
whereby, the dissipative portion Pdis of the process becomes clear as shown below:
Pdis ¼ �q0
ow
o/

: _/ ¼ �Y/ : _/:
In order to be able to work with a positive quantity, �Y/ is chosen as the dual variable to /. The derivation of the evolution
law is based on the physical assumption that a system tries to dissipate stored energy as quickly as possible. Hence, the en-
ergy dissipation rate Pdis is maximized. Pdis shall be maximized under the constraints of fk ¼ 0; k ¼ 1;2;3. The constraints fk

are the loading functions Fk, which distinguish elastic material response from progressive damage. The maximization is at-
tained by converting the problem into a minimization problem which is solved by a Lagrange minimization of �Pdis, see e.g.
(Luenberger, 1984). By introducing the Lagrange multipliers _kk P 0, the Lagrange function N becomes
N ¼ �Pdis þ
X3

k¼1

_kkfk ¼ �ð�Y/ : _/Þ þ
X3

k¼1

_kkfk
and the minimization gives the evolution rule:
oN
oð�Y/Þ

¼ 0!

_/ ¼
X3

k¼1

_kk
ofk

oð�Y/Þ
¼
X3

k¼1

_kk
oFk

oð�Y/Þ
:

ð12Þ
The use of three loading functions F1; F2; F3 enables the modeling of damage in three different directions in a decoupled way.
These directions are defined by the eigenvectors of �Y/. If the loading function F1 is active, the damage increases in the
direction pertaining to the largest eigenvalue of �Y/. If F2 is active, then the damage increases only in the direction of
the second eigenvalue of �Y/ and the same analogously holds for the smallest eigenvalue of �Y/.

Given Eq. (12), the evolution rule applies for given loading functions Fk. At this point, the loading functions Fk are intro-
duced as constraints; however, nothing is known about the variables constituting the loading functions. The following con-
siderations suggest the definition Fkð�Y/Þ:

� The derivatives oFk
oð�Y/Þ

must exist in order to fulfill the principle of maximum dissipation rate and to calculate the damage
evolution _/.

� The definition of Fð�Y/Þ together with the evolution rule in Eq. (12) ensure a symmetric tangent stiffness, (Carol et al.,
1994); this is advantageous.

Furthermore, Eq. (12) constrains the freedom of the design of the loading functions. Rewriting Eq. (12) and (2) in the prin-
cipal basis yields
X3

j¼1

_/jvj � vj ¼
X3

j¼1

X3

k¼1

_kk
oFk

oð�Y/;jÞ
vj � vj ð13Þ
with the eigenvectors vj of �Y/. Assuming only F1 to be active and F2; F3 to be inactive simplifies this equation:
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X3

j¼1

_/jvj � vj ¼
X3

j¼1

_k1
oF1

oð�Y/;jÞ
vj � vj: ð14Þ
Damage can only increase, which means
_/1 > 0; _/2 > 0; _/3 > 0: ð15Þ
Using the positive definition of the Lagrange multipliers and considering Eq. (14) give the requirements
oF1

oð�Y/;1Þ
> 0;

oF1

oð�Y/;2Þ
> 0;

oF1

oð�Y/;3Þ
> 0 ð16Þ
based on Eq. (15). These equations have to be fulfilled by every formulation of a loading function F1. The same requirements
analogously hold for the loading functions F2 and F3.

2.3. Pseudo-log damage rate

In the last section the inverse /ij of the integrity tensor was defined as the damage variable and the conjugate quantity
�Y/ was suggested to be a variable of the damage surfaces. Utilizing (Carol et al., 2001a), �Y/ ¼ �q0

ow
o/

becomes
�Y/
pq ¼

�m0

E0 ðrkl/klÞrpq þ
1þ m0

E0 rpk/klrlq ð17Þ
with the Young’s modulus E0 and Poisson’s ratio m0 of the intact, isotropic material. A physical meaning of �Y/
pq is, however,

difficult to recognize and for this reason a definition of Fð�Y/
pqÞ is disadvantageous. Hence, the ‘‘pseudo-logarithmic damage

tensor rate”
_Lrs ¼ 2 �wrp
_/pq �wrs ð18Þ
is introduced as a modified damage variable in Carol et al. (2001a), which is defined only as a rate tensor, in general. The
advantage is found in the dual quantity of _Lij, which is a simple and physically comprehensive quantity by which the loading
surface is defined:
�Yik ¼
1
2

reff
ij �

eff
jk :
The detailed derivation of �Yik is given in Carol et al. (2001a). For example, the first invariant of �Yik is the stored elastic
energy. Transformation of �Yik into the principal axes yields the energy-like, but direction-dependent quantities �Ya. The
dissipation potential with these quantities is
Pdis ¼ �Yij
_Lij;
and maximization leads to the evolution rule for _Lij:
_Lij ¼
X3

k¼1

_kk
oFk

ðo� YijÞ
: ð19Þ
Additionally, Eq. (18) must be solved for _/pq for subsequent derivations.
_/pq ¼
1
2

wpr
_Lrswsq ð20Þ
The introduced pseudo-log damage rate _Lrs cannot be integrated over the time, see Eq.(18). This means that the current mate-
rial state must be stored in another damage variable. The inverse /ij of the integrity tensor is chosen.

Hence, the pseudo-log damage rate _Lrs can be seen as an auxiliary damage variable in rate-form. Its introduction enables a
formulation with loading functions being defined in physically comprehensive variables.

2.4. Loading surfaces

A loading function must contain both a loading state descriptive component defined in �Yij and a component describ-
ing the current material state. The material descriptive component must be defined in a variable that represents the
damage of the material. In the previous section, the pseudo-log damage rate _Lij was chosen as damage variable, but
the integral of _Lij over the time does generally not exist. Because the loading surface must be defined in a damage var-
iable and not in a rate of a damage variable, /ij is used as the variable of the material descriptive component of the
loading surfaces. Since this formulation is complicated due to its second-order tensor components, the loading functions
are determined in the eigenvalues of �Yij and /ij. This also enables a simple decoupling, and the proposed structure
becomes:
F1ð�Y1;/1Þ; F2ð�Y2;/2Þ; F3ð�Y3;/3Þ:
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Because the subsequent derivations are the same for all three loading surfaces Fk, the determination of F1ð�Y1;/1Þ is dem-
onstrated only. Basically, the structure of F1 is assumed to be
F1ð�Y1;/1Þ ¼ f1ð�Y1Þ � r1ð/1Þ ð21Þ
if the loading portion is f1ð�Y1Þ and the material descriptive state is r1ð/1Þ. For this approach, the following material-specific
properties are assumed:

� Concrete reacts with energy dissipation only on tensile loadings. In this way f1ð�Y1Þ becomes f1ð�bY 1Þ with
�bY 1 ¼
1
2
hreff

1 ih�eff
1 i
and the Mac Auley brackets h. . .i. The meaning of the Mac Auley brackets is hxi ¼ x, if x > 0 and hxi ¼ 0, if x 6 0.
� In the uniaxial case, concrete has the ability to store added elastic energy up to a value of ut ¼ 1

2
f 2
t

E0, with the mean tensile
strength ft . Once the value of ut is exceeded the concrete responds by dissipating a portion of the additional energy
through the formation of crack surfaces. In the uniaxial tension case �bY 1 ¼ 1

2
f 2
t

E0 is valid at the elastic boundary whereby
the following form of f ð�bY 1Þ is suitable:
f1ð�bY 1Þ ¼ �bY 1:
Based on these assumptions, Eq. (21) becomes
F1ð�bY 1;/1Þ ¼ �bY 1 � r1ð/1Þ: ð22Þ
Carol et al. (2001b) suggested a similar, but coupled formulation.
The derivation of a damage evolution r1ð/1Þ is the next step. This approach is based on the requirement that the actual

physical behavior of normal concrete be simulated in uniaxial tension; in particular, the same amount of energy must be
dissipated in the simulation as in the experiment. For the uniaxial tensile case, the equations
reff
1 ¼ r1/1; �eff

1 ¼
�1

/1
are valid and the loading function in the case of progressive damage is:
F1 ¼ �bY 1 � rð/1Þ ¼
1
2

r1�1 � r1ð/1Þ ¼ 0: ð23Þ
Next, an approach for r1ð�1Þ is formulated for r1 in Eq. (23) that models the tensile behavior of normal concrete. The first step
is a modification of the stress-crack opening relationship suggested by Gopalaratnam and Shah (1985):
r1 ¼ fte�kw ð24Þ
with the crack opening w in ½m� and a parameter k. Assuming a maximum crack opening of wc ¼ 0:15 mm, at which stress
can no longer be transferred, enables the determination of k for a given fracture energy Gf and a tensile strength ft:
Gf ¼
Z wc

0
r1dw ¼

Z wc

o
ft e�kwdw: ð25Þ
Therewith, the fracture energy is implicitly captured by k. Hence, the fracture energy Gf appears no longer in the following
formulations. In order to obtain a stress–strain law, the crack opening w must be related to a width hch, which is the assumed
width of the dissipative zone. The width hch is the characteristic length embedded into the constitutive model and must be
carefully chosen to regularize a simulation. The lower index ch represents the word chosen:
r1 ¼ fte�k�1 �hch :
Furthermore, taking into account the fact that softening is not supposed to begin before the tensile strength is reached
yields:
r1 ¼ fte�kð�1�ft=E0Þ�hch : ð26Þ
With this, the relationship r1ð�1Þ for Eq. (23) is given. Applying the uniaxial tensile conditions to Eq. (8) results in:
r1 ¼
E0

/2
1

�1: ð27Þ
Comparing Eq. (27) with Eq. (26) and solving for �1 provides
�1ð/1Þ ¼
1

khch
W

khchft/
2
1e

khch ft
E0

E0

0
@

1
A
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using the Lambert function Wð::Þ. Given a function y ¼ xex, the Lambert function is the inverse function x ¼WðyÞ. Inserting
�1ð/1Þ into Eq. (26) yields the expression r1ð/1Þ. To obtain the formulation of the damage evolution r1ð/1Þ, the expressions
�1ð/1Þ and r1ð/1Þ need only be employed in Eq. (23). This provides the damage evolution
r1ð/1Þ ¼
1
2

r1ð/1Þ�1ð/1Þ ¼
0:5
khch

V1fte
�k 1

khch
V1�

ft
E0

� �
hch

� �
with Z ¼ eð
khch ft

E0
Þ and V1 ¼Wðkhch ft/2

1Z
E0
Þ. Inserting r1ð/1Þ into Eq. (22) and parallel procedures for the surfaces F2 and F3 yield the

three sought-after loading functions:
Fkð�bY k;/kÞ ¼ �bY k �
0:5
khch

Vkfte
�k 1

khch
Vk�

ft
E0

� �
hch

� �
: ð28Þ
2.5. Final system of constitutive equations

The complete material law consists of the secant constitutive law
r ¼ EðE0;/Þ : �; EðE0;/Þ ¼ K0
�/� �/þ 2G0

�/��/;
the evolution laws
_/ ¼ 1
2

w � _L �w; _L ¼
X3

k¼1

_kk
oFk

ðo� YÞ ð29Þ
and the loading functions
Fkð�bY k;/kÞ ¼ �bY k �
0:5
khch

Vkfte
�k 1

khch
Vk�

ft
E0

� �
hch

� �
: ð30Þ
The final system of constitutive equations is solved by a Newton–Raphson-method, represented in detail in Pröchtel and
Häußler-Combe (2007), and then implemented into an FE-code being developed at the institute.
3. Localization analysis

Concrete is a heterogeneous material, which shows under tensile loading the appearance and especially the coalescence
of microcracks leading to a concentration of defects in a process zone. This behavior results in discontinuities appearing in
the strain rates of the mechanical field. Investigations about the onset of such discontinuities were performed by e.g. (Rizzi
et al., 1996) inspired by the early work of Hill (1958).

Another very important topic in localization analysis is the evolution of the localization during a simulation. This is a
rather new field and some investigations were performed by, e.g. (Patzák and Jirasék, 2002, Grassl and Jirasék, 2005). In these
studies, nonlocal continuum approaches and extended finite elements were applied to regularize the simulations.

In this paper, the evolution of the localization, which is equal to the evolution of the dissipative zone, is investigated by
applying the crack band approach as the regularization technique. The study is based on a structural application and not on
basic uniaxial considerations.

In Section 2.4, the necessity was mentioned to choose the characteristic length embedded in the constitutive model hch

carefully to regularize a simulation. The essential point is to ensure that the dissipated energy matches in simulation and
experiment. This holds true for both a complete system and a local part of the process zone. The new idea in this paper is
that the chosen parameter hch should be always equal to the width of the energy-dissipating zone that appears in a simu-
lation in order to attain the correct energy dissipation. The width of the dissipative zone that appears in the simulation has
the name hsim, the lower index sim represents the word simulation.

Other models that use the fracture energy approach to regularize are e.g. smeared crack models, (Rots, 1988; Oliver, 1989;
Cervenka, 1995), plastic models, (Winkler, 2001; Lackner, 1999) or anisotropic damage models, (Pölling, 2000). An usual ap-
proach is to choose hch as the square root of the element area. Enhancements that take into account the element geometry
and the inclination of the crack to the element edges are also applied. The important feature is that the width hch is assumed
to be constant over the loading history.

3.1. Double-edge notched specimen

A standard experiment, the double-edge notched specimen experiment of Nooru-Mohamed (1992), was simulated to
investigate the evolution of the dissipative zone and to test the validity of the mentioned values for hch from the literature.
Based on the observations in the evolution of the dissipative zone, a new formulation for the characteristic length is sug-
gested that fulfills the requirement that the characteristic length coincides with the width of the dissipative zone hsim. In
a first study, the dissipative zone was examined for a variety of chosen hch.
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The geometry of the specimen is shown in Fig. 1. Steel plates were attached to simulate the load introduction as uniformly
as possible. Compared to the experimental setup, additional steel plates were attached at the lower left and upper right sides
of the concrete specimen. These plates were necessary due to load introduction problems experienced at the lower left and
upper right-hand corners of the concrete specimen. The steel had a high Young’s modulus in the simulations in order to cap-
ture the much larger dimensions of the steel frame in the experiment. The chosen material parameters of the concrete were
E0 ¼ 30000 N=mm2; m ¼ 0:2; ft ¼ 3:0 N=mm2 and Gf ¼ 110 N=m. Inserting the parameters into Eq. (25) and solving for k
yields k ¼ 26781:8=m. The specimen was loaded following load path 4B in Nooru-Mohamed (1992).

In the first step, the shear load F was applied by dividing it into two single loads. In the second step, the force F was held
constant while the displacements u were applied. The loading in the first step was subdivided in one hundred increments
and the second step in one thousand increments. The sum of the resulting forces, corresponding to prescribed displacements
u, is labeled with P. Fig. 2 shows the range of the experimentally observed load–displacement curves and the observed crack
pattern.

The following investigation on the evolution of the width of the dissipative zone is performed by a discretization with
quadrilateral elements with four nodes and a plane stress case is assumed. In the center part of the model, the discretization
is finer and regular, and the length of an element is le ¼ 0:0025m. In the following four simulations, the discretization is
fixed. The parameter hch is changed and subsequently 1, 2, 3 and 4 times the element size.

First, a calculation with hch chosen as hch ¼ 0:0025 m, which is equal to one element length, was performed. At this point,
it must be stated that this simple choice is currently an often used approach. The existing, more advanced approaches use
values for hch that take into account the inclination of the cracks to the element edges, (Rots, 1988; Oliver, 1989; Cervenka,
1995; Lackner, 1999). In these approaches, the chosen values for hch range between one element length and approximately
two times the element length, both in the case of square elements.

In all following simulations, there was always only one damage surface active which means always /2 ¼ /3 ¼ 1 at every
integration point. This enabled the representation of the damage at every integration point by a line that is oriented in the
direction of the eigenvector according to eigenvalue /1 of / and the length of the line reflects the eigenvalue /1. Fig. 3(b)
shows the final damage path of the first simulation with hch ¼ 0:0025 m. The overlapping damaged zones conform to the
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Fig. 1. Geometry of the double egde notched specimen.

Fig. 2. (a) Experimentally observed load–displacement curves, (b) observed crack pattern (Nooru-Mohamed, 1992).



Fig. 3. Load–displacement curve (a) and damage path (b) at the displacement 2u ¼ 5 � 10�5 m, both for hch ¼ 0:0025 m.

4392 P. Pröchtel, U. Häußler-Combe / International Journal of Solids and Structures 45 (2008) 4384–4406
experimentally observed macro-cracks and their symmetry is correct, too. However, the area between the overlapping dam-
aged zones is also slightly damaged although that could not be observed in the experiments. Fig. 3(a) shows the resulting
load–displacement curves; the experimental results are shown in gray. The simulation overestimates the experimentally ob-
served peak load considerably. Comparing the width of the simulated damage to the chosen width hch shows that they do not
coincide. The width of the dissipative zone was assumed to be one length of an element, but the width of the damaged zone
seems to be much wider.

This comparison is not correct, because we must distinguish the final damaged zone from the dissipative zone. The
final damaged zone in Fig. 3(b) corresponds to the experimentally observed macrocracks at the prescribed displacement
u ¼ 0:00005 m. But the dissipative zone is the damage rate path. It is important to distinguish the damage path (dam-
aged zone) from the damage rate path (dissipative zone). The damage rate path is the volume in the specimen where
energy is dissipated in one specific loading situation, i.e. in one incremental step in the loading history. Energy dissipa-
tion occurs at these integration points, where the damage increases in the incremental step. Hence, one basic idea in this
paper is that the range of the integration points with increasing damage must be considered in every of the 1100 incre-
mental steps.

In order to attain correct energy dissipation, the width of this range, i.e. of the damage rate path, in damage direction
should always have the same value as hch at every point and is labeled as hsim. Hence, one of the main goals of the following
investigations is the comparison of the characteristic length hch in the constitutive law to the width hsim of the dissipative
zone emerging in the simulation. Because it is impossible to compare them in all increments, only four characteristic loading
situations are considered.

Fig. 4 shows the dissipative zone for four different loading situations in the magnification of the finer discretized part of
the mesh: approximately 60% of the peak load (a); shortly before reaching the peak load (b); shortly after reaching the peak
load (c) and one situation well into the softening regime (d). In the magnification of a small part of the dissipative zone, the
measurement of the width hsim is exemplarily presented in Fig. 4. The integration points with increasing damage are marked
with points. In (a), the dissipative zone is much wider at the tip than one element length and the width decreases with
increasing distance from the tip. Figures (b), (c) and (d) show that the width hsim is decreasing over the loading history. Note
that a constant width hch of one element length was assumed. However, this seems only to be a reasonable assumption in
loading situation (d); all other Figures show a much wider dissipative zone. Obviously, the choice for hch as one element
length is not correct.

In the second simulation, the width hch was chosen as hch ¼ 0:005 m, which is equal to twice the element length. The
resulting load–displacement curve and the damage path are shown in Fig. 5. The experimental peak load is still overesti-
mated compared to the experiments but clearly less in comparison to Fig. 3(a). The damage paths conform to the experi-
ments and the coupling effect between the overlapping damage paths that was observed in the last simulation is
reduced. The damage path is more slender and more curved compared to the previous simulation. Fig. 6 again shows the
dissipative zone for the four loading situations and the following can be observed:

� The width of the dissipative zone decreases over the loading history.
� The chosen hch ¼ 0:005 m is too small for the situations (a) and (b), especially at the tip in situation (b). For the last two, it

is relatively reasonable.
� A comparison of similar loading situations in the Figs. 4 and 6 shows smaller widths in Fig. 6 for all loading situations.



Fig. 4. Evolution of the damage rate path (dissipative zone) for hch ¼ 0:0025 m.

Fig. 5. Load–displacement curve (a) and damage path (b) at the displacement 2u ¼ 5 � 10�5 m, both for hch ¼ 0:005 m.
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� A relationship between the width hsim and the angle of inclination of the damage path to the element edges can be seen in
Fig. 6(d) where the material is progressively damaged. The width increases with increasing angle. This phenomenon is
known from smeared cracks analysis (Rots, 1988; Oliver, 1989).

� Fig. 6(a) and (b) show that the width of the dissipative zone seems to decrease with increasing distance from the tip of the
damage path. To realize that, it must be taken into account that the width also decreases with decreasing inclination of the
damage path to the element edges.



Fig. 6. Evolution of the damage rate path (dissipative zone) for hch ¼ 0:005 m.
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The two investigated simulations with hch ¼ le and hch ¼ 2le represent the range of suggested valued for hch in the liter-
ature, (Rots, 1988; Oliver, 1989; Cervenka, 1995; Lackner, 1999). In both simulations, the peak load is drastically overesti-
mated and hsim is generally too wide in comparison to hch.

In Fig. 7, the load-displacement curve and the damage path is represented for hch ¼ 0:0075 m. The experimental peak load
is overestimated by approximately 20%; this is an acceptable result in engineering applications. The slope of the curve after
the peak load is slightly too steep. The slenderness and curvature of the damage paths continue increasing, and the unreal-
istic coupling effect between the overlapping damage paths almost disappears. Fig. 8 shows the dissipative zone; the same
characteristics can be observed as in the previous simulations: the decrease of hsim over the loading history; the increasing
slenderness of the damage paths with increasing chosen hch; the increase of hsim with increasing angle between the damage
path and the element edges and the decrease of hsim with increasing distance from the tip of the damage path.

Regarding the question about the correlation between hch and hsim, the following can be observed: The choice of hch with
three times the element length seems reasonable up to the peak load, hsim is only a bit too wide. With larger distance from
the tip, this choice is too large in Fig. 8(b). Regarding the softening regime, Fig. 8(c)–(d) always show a smaller hsim than hch.
This is the reason of the too stiff slope in the load–displacement curve after the peak load.

In the last simulation, the assumed width was chosen as hch ¼ 0:01 m. The resulting load–displacement curve and the
damage path are represented in Fig. 9. The simulated and the experimental peak load correspond well, but the slope of
the curve is again too stiff after the peak load. The curvature and slenderness of the damage paths are similar to the previous
simulation and the coupling effect vanished. Fig. 10 exhibits the same characteristics that were observed in the previous sim-
ulations related to the evolution of the dissipative zone. The correlation between hch and hsim is similar to Fig. 8. Near the tip
of the damage rate path in Fig. 10(a) and (b), the width hsim corresponds well with hch, even better than in Fig. 8. But with
larger distance from the tip and in Fig. 10(c) and (d), hsim is too small.

The foregoing simulations had two main goals. The first was an investigation on the evolution of the dissipative zone. The
second goal was to examine the coincidence of the chosen width hch and the observed one hsim. Some basic features were
observed:



Fig. 7. Load–displacement curve (a) and damage path (b) at the displacement 2u ¼ 5 � 10�5 m, both for hch ¼ 0:0075 m.

Fig. 8. Evolution of the damage rate path (dissipative zone) for hch ¼ 0:0075 m.
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� The smaller the chosen width hch is, the wider is the width hsim of the dissipative zone in the simulations. Their development is
opposite. Hence, in each loading situation exists only one value for hch that fulfills the requirement that hsim equals hch.

� The width hsim decreases with increasing distance from the tip of the damage path. Because the damage increases with
increasing distance from the tip, it follows that the width hsim decreases with increasing damage at the specific material
point. This corresponds to experimental observations where the width of the process zone is also decreasing for increasing
damage.

� The width hsim increases with increasing angle between the damage path and the element edges.



Fig. 9. Load–displacement curve (a) and damage path (b) at the displacement 2u ¼ 5 � 10�5 m, both for hch ¼ 0:01 m.

Fig. 10. Evolution of the damage rate path (dissipative zone) for hch ¼ 0:01 m.
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During the calculation in the pre-peak regime, i.e., the damage rate path was curved, the best coincidence of hch and hsim of
the damage rate path was observed in Fig. 10(a) and (b), especially close to the tip of the damage rate path. The horizontal
parts of the damage rate path in Figs. 6(d), 8(d) and 10(d) always show the same characteristics. The width hsim amounts two
times the element length close to the tip and hsim � 1 � le holds with larger distance from the tip.

Basing on the features concerning the evolution of the dissipative zone, it seems not appropriate to use a constant value
hch over the complete loading history. The width of the dissipative zone seems to depend at least on the damage /1 at the
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specific material point and the angle between the damage path and the element edges. At the specific material point, the
angle a1 between the eigenvector corresponding to the eigenvalue /1 and the element edges is used. The element edge giving
the smaller angle is used, which means that 0 6 a1 6 p=4 holds. This yields the basic approach
hch;1ð�/1; a1Þ: ð31Þ
In a first basic approach, a bilinear relationship
hch;1ð�/1; a1Þ ¼ a1 þ a2 � �/1 þ a3 � a1 þ a4 � �/1 � a1 ð32Þ
is assumed. To determine the four parameters a1; a2; a3; a4, four boundary conditions are necessary. The goal of the following
considerations is the formulation of these boundary conditions.

First, the curved sections of a damage path are considered and after that the sections where the damage path is
approximately parallel to the element edges. The previous simulation with hch ¼ 0:01m is used for the curved regime
because the width hsim approximately corresponds with hch ¼ 0:01m close to the tip of the damage rate path. To get
more insight in the structure of the dissipative zone in a curved section, Fig. 10(b) is replotted with additional
information.

Besides the dissipative zone, the current damage value is plotted at every integration point in Fig. 11. The damage at every
integration point is represented by the value �/1 ¼ 1=/1. This is more convenient than plotting directly /1 because the values
of /1 can be very large for progressive damage and the value of �/1 tends to zero in this case. If the material is intact, then it
holds �/1 ¼ 1. In Fig. 10(b) the integration points with increasing damage were marked with points. However, in Fig. 11 they
are marked by underlining the damage value.

The magnification in Fig. 11 shows a much wider damaged zone than the dissipative zone, they only conform close to the
tip. It can be realized that the damage value �/1 is not constant over the width of the damaged zone. It is a distribution of the
damage with a concentration in the central part and less damage at the margins of the damage path. Important for the ap-
proach in Eq. (31) is the damage �/1 in the dissipative zone. The damage is distributed over the width hsim of the dissipative
zone, too. For further considerations, the estimated mean value over the width is used.

The assumption that hsim decreases with increasing damage can be observed in Fig. 11. The width amounts approximately
four times the element length close to the tip. With increasing distance from the tip of the damage path, the width is decreas-
ing up to a width of approximately hsim � 2:5 � le when a mean value of �/1 � 0:4 is attained in the dissipative zone. The incli-
nation angle of the damage to the element edges is approximately a1 ¼ p=6. With these considerations of curved sections of
the damage path, two boundary conditions are given

� for intact material with a curved path hch;1ð�/1 ¼ 1; a1 ¼ p=6Þ ¼ 3:5 � le and
� for damaged material with a curved path hch;1ð�/1 ¼ 0:4; a1 ¼ p=6Þ ¼ 2:5 � le.

More information about the dissipative zone in the horizontal part of a damage path are given by Fig. 8(d). The magni-
fication is given in Fig. 12(a). Close to the tip of the damage path, the width has the value hsim � 2 � le and some elements
behind the tip, the width is hsim � 1 � le. The width hsim � 1 � le is attained when the damage is �/1 � 0:4. Fig. 12(b) shows
the vector representation of the damage at every integration point in the same loading situation. Obviously, the vectors
are not vertical. Their inclination angle to the element edges is approximately a1 � p=18. Therewith, the last two boundary
conditions to determine the parameters in Eq. (32) are given

� for intact material with a horizontal damage path hch;1ð�/1 ¼ 1; a1 ¼ p=18Þ ¼ 2 � le and
� for damaged material with a horizontal path hch;1ð�/1 ¼ 0:4; a1 ¼ p=18Þ ¼ 1 � le.

Using the boundary conditions and solving Eq. (32) for a1::a4 yields
hch;1ð�/1; a1Þ ¼ ð�0:4167þ 1:67 � �/1 þ 4:297 � a1Þle; ð33Þ
with the restriction that, at any stage, hch;1 P le holds. The results of a simulation by applying this approach show the Figs. 13
and 14. The experimental peak load is overestimated by approximately 10%; this is an acceptable result in engineering appli-
cations. The comparison of the suggested approach hch;1ð�/1; a1Þ with the width of the simulated dissipative zone shows a
good agreement. This coincidence yields also a slope of the curve in Fig. 13(a) after the peak load which corresponds to
the experiments.

The previous investigations showed how the choice of hch influences the dissipative zone appearing in the simulation. The
widths hch and hsim should coincide as good as possible. To attain that, the relationship in Eq. (33) was suggested. But it is
clear that this is only a rough estimation. If e.g. the assumed value is hch;1 ¼ 3:5le at a specific material point, then the sim-
ulated width should be in the interval hsim � 3le . . . 4le. A more exact coincidence in all material points along the damage rate
path is not possible.

Up to now, one discretization was performed only. The next step to evaluate the validity of the suggested theory and
the approach hch;1, is to apply another discretization. A finer discretization is used and shown in Fig. 15. The length of
the square elements in the refined part is le ¼ 0:00125 m. The results of a simulation applying the hch;1-approach show
the Figs. 16 and 17.



Fig. 11. Dissipative zone and damage values �/1 in Fig. 10b.
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The overestimation of the peak load increased in comparison to the results of the coarse mesh in Fig. 13(a). The damage
rate path in Fig. 17 shows the same characteristics as in the coarse mesh. But, the width hsim seems to be generally a bit too
wide. This is particularly good to realize in sections that are relatively close to the tip of the path in the curved regime. When
comparing the damage rate path in Fig. 17 to the path in Fig. 14, the width hsim seems to be always 0:5le—1:0le wider in the
fine mesh. This is an important observation, because it means that the width of the dissipative zone in a simulation depends
on the element size, too.



Fig. 12. Dissipative zone and damage values �/1 in Fig. 8d.

Fig. 13. Load–displacement curve (a) and damage path (b) at the displacement 2u ¼ 5 � 10�5 m, both for hch;1-approach.
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Furthermore, regarding especially the sections close to the notches in Fig. 17, they seem to be even wider. This is founded
by a bifurcation of the damage rate path at the begin of the second load step. Fig. 18 shows the damage rate path before the
situation in Fig. 17(a) is attained. Two damage rate paths start growing at every notch in Fig. 18(a). The Fig. 18(b)–(d) reveal



Fig. 14. Evolution of the damage rate path (dissipative zone) for hch;1-approach.

Fig. 15. Finer discretization.

4400 P. Pröchtel, U. Häußler-Combe / International Journal of Solids and Structures 45 (2008) 4384–4406
that one becomes dominant and the second vanishes. The bifurcation has two consequences: the first consequence is that
during the bifurcation in Fig. 18(a)–(d), the width of the dissipative zone is too wide what results in a too high energy con-
sumption for increasing damage during these loading stages. This means that too much energy must be consumed in order to
degrade the material. The second consequence is that the damage rate path is directly at the notches a bit too steep as long as



Fig. 16. Load–displacement curve (a) and damage path (b) of the finer mesh at the displacement 2u ¼ 5 � 10�5 m, both for hch;1-approach.

Fig. 17. Evolution of the damage rate path (dissipative zone) in the finer mesh for hch;1-approach.
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the second path has not vanished, see Fig. 18(a)–(d). After the second path vanished, the damage rate path seems to continue
growing less steep. In this too steep parts very close to the notches, the damage rate path remains too wide, see Fig. 17(a)–
(d), what yields again a too high energy consumption for increasing damage.

Hence, two effects were observed in the damage rate path in the finer mesh deviating from the observations in the coarse
mesh. Both effects yield a too wide hsim in comparison to the assumed width hch;1 what results in a too high energy consump-



Fig. 18. Bifurcation of the damage rate path.
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tion for increasing damage. Within the suggested theory of assuming a linear approach hch;1, the bifurcation problem cannot
be solved. But the other effect, the damage rate path being generally 0:5le—1:0le wider in the fine mesh, can be taken into
account by modifying the hch;1-approach.

In order to attain an adapted approach hch;1b for the fine mesh, two boundary conditions of the hch;1-approach are substi-
tuted. First, the boundary condition for intact material in the curved path, hch;1ð�/1 ¼ 1; a1 ¼ p=6Þ ¼ 3:5 � le, is substituted by
hch;1bð�/1 ¼ 1; a1 ¼ p=6Þ ¼ 4:0 � le. Furthermore, similar considerations for the fine mesh as in Fig. 12(a) for the coarse mesh
yielded the substitution of hch;1ð�/1 ¼ 0:4; a1 ¼ p=18Þ ¼ 1 � le by hch;1bð�/1 ¼ 0:6; a1 ¼ p=18Þ ¼ 1 � le. This yields the modified
approach
hch;1bð�/1; a1Þ ¼ ð�1:5þ 2:5 � �/1 þ 5:73 � a1Þle; ð34Þ
with the restriction that, at any stage, hch;1 P le holds. The results of the simulation by applying the hch;1b-approach reveal the
Figs. 19 and 20. The hch;1b-approach and the width hsim show an acceptable coincidence in Fig. 20, better than the coincidence
of the hch;1-approach with hsim in Fig. 17. The peak load is still overestimated, but less in comparison to Fig. 16(a).

The load-displacement curves of the simulations applying the hch;1-approach in the coarse mesh and the hch;1b-approach
in the fine mesh are both given in Fig. 21. It is very interesting to see that the difference between the two curves is quite
small. Only the peak load is slightly higher in the simulation with the finer mesh. The reason is the above mentioned bifur-
cation effect.

But the coincidence of the two curves is absolutely sufficient for engineering applications. The same holds for the simu-
lated peak load. The experimentally observed peak load is overestimated by approximately 10–15% what is an acceptable
result for most engineering applications.

Additionally to the simulations using the hch;1- and hch;1b-approaches, five further simulations were performed where the
refined mesh was kept fixed and a constant parameter hch was used in every simulation. The parameter was varied from 1 up
to 5 times the element length. The characteristics of the evolution of the damage rate paths are similar to the observations in
Figs. 3–10. Therewith, the discussion is less detailed. Fig. 22 shows the load–displacement curves of the five calculations with
the fine mesh and the results of the coarse mesh, too. The load-displacement curves of the simulations b; d; e stop earlier



Fig. 19. Load–displacement curve(a) and damage path(b) of the finer mesh at the displacement 2u ¼ 5 � 10�5m, both for hch;1b-approach.

Fig. 20. Evolution of the damage rate path (dissipative zone) in the finer mesh for hch;1b-approach.
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because the iterations lasted longer and the maximum computing time was reached. All calculations were executed at the
High Performance Computing-Systems at ZIH in Dresden where the maximum computing time amounts three days. When
considering Fig. 22, two essential features can be observed:



Fig. 21. Load–displacement curves for hch;1-approach in the coarse mesh and the hch;1b-approach in the fine mesh.

Fig. 22. Load–displacement curves for constant hch and both discretizations.
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� The smaller the chosen width hch is, the higher is the simulated peak load and the ductility of the post peak behavior is
increasing. The reason is that the energy consumption being necessary for progressive damage is increasing with decreas-
ing width hch.

� The peak load in the simulations with the fine mesh is always slightly higher than the corresponding peak load resulting
from the calculations using the coarse mesh. The main reason is that hsim is always slightly wider in the simulations with
the finer mesh. This validates the above mentioned observation that an approach for the width of the dissipative zone
must depend on the discretization, too.The second, less important reason for the higher peak loads in the simulations with
the finer mesh is the above explained bifurcation effect.

Finally, a last comment to the range of the hch-approaches in the literature, hch � 1le::2le, see e.g. (Rots, 1988; Oliver, 1989;
Cervenka, 1995; Lackner, 1999; Winkler, 2001) or (Pölling, 2000). Considering the four curves when the width hch is chosen
as hch ¼ 1le and hch ¼ 2le reveals a drastically overestimated peak load in all curves, see the curves a1; b1; a; b in Fig. 22. If
simulations with the applied meshes are performed by using the approaches for hch from the literature, the resulting
load-displacement curves will all lie approximately between the a-curve and the b1-curve.

4. Conclusions

This paper presented an orthotropic model for the tensile behavior of concrete in a general three-dimensional formulation
where the pseudo-log damage rate as suggested by Carol et al. (2001a) was used to simplify the definition of the loading
surfaces. The model contains three decoupled loading functions in which every loading function takes into account one of
the three principal directions of the orthotropic damage. The evolution rule for damage is derived by using the principle
of maximum energy dissipation rate. In order to use the model for arbitrary simulations, the fracture energy approach is ap-
plied as a regularization technique. In this approach, the stress–crack opening relationship for the tensile behavior of con-
crete must be related to a characteristic length hch to obtain the stress–strain law.

The physical meaning of the characteristic length hch is the assumed width of the dissipative zone appearing in the sim-
ulation, this is one basic assumption in the paper. Because the width of the dissipative zone is not known in advance, the
assumed width hch is a chosen parameter. In order to obtain the same energy dissipation as occurs in reality, the chosen
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parameter hch should coincide with the width hsim of the dissipative zone appearing in the simulation. The problem is that
the chosen value for hch massively influences the width hsim of the dissipative zone in the simulation.In order to study these
phenomena, a series of simulations was performed with varying parameter hch. In every simulation, the evolution of the dis-
sipative zone was investigated, especially the width hsim. The following features were observed:

� The smaller the chosen width hch is, the wider the width hsim of the dissipative zone in the simulations.
� The width hsim decreases with increasing distance from the tip of the damage path. Because the damage increases with

increasing distance from the tip, it follows that the width hsim decreases with increasing damage at the specific material
point.

� The width hsim increases with increasing angle between the damage path and the element edges.

Based on these observations and analysis of plots that show the dissipative zone together with the damage at every inte-
gration point, an approach hch;1ð�/1; a1Þ for the characteristic length was formulated which depends on the damage �/1 and the
inclination angle a1 between the damage and the element edges.

A simulation by applying this approach sufficiently matched the experimentally observed peak load and showed good
agreement of the assumed width of the dissipative zone hch;1 with the width hsim of the dissipative zone appearing in the
simulation.

In order to evaluate the theory and the suggested approach, six further simulations were performed applying a refined
discretization. The same characteristics in the evolution of the dissipative zone were observed. However, the width hsim is
always 0:5—1:0 times the element length wider in comparison to the simulations using the coarse mesh.

Hence, a modified approach hch;1b was suggested. A simulation with the finer mesh and the modified hch;1b-approach
showed a good coincidence of the assumed width hch;1b with the appearing width hsim and yielded approximately the same
load-displacement relationship as the simulation with the coarse mesh and the hch;1-approach. Therefore, it can be concluded
that objective simulations are possible, if the requirement is fulfilled that the characteristic length in the constitutive law
always approximately conforms to the width of the dissipative zone appearing in the simulation. Objectivity means here
mesh independence. Of course, this objectivity is not exact, but absolutely sufficient for engineering applications.

The presented investigations showed that the current approach of using a characteristic length depending only on the
inclination angle of the damage path to the element edges, (Rots, 1988; Oliver, 1989; Cervenka, 1995; Lackner, 1999; Pölling,
2000) or (Winkler, 2001), is not sufficient.

The suggested model has only four material parameters, the Young’s modulus, the Poisson’s ratio, the tensile strength and
the fracture energy. The suggested regularization technique consists of two steps. First, an approach for the evolution of the
width of the dissipative zone is formulated, and in the second step, the convenience of the approach is evaluated by com-
paring the approach with the evolution of the simulated dissipative zone. They must approximately correspond in order
to reach a correct energy dissipation what yields mesh-independent results. In this paper, an approach based on simulations
of a double edge notched specimen was suggested. Perhaps modifications are necessary when other experiments are con-
sidered. The approaches may slightly differ when various experiments are simulated with different element types or meshes
but the requirement that the approach must approximately coincide with the width hsim appearing in the simulation must be
fulfilled. If this requirement is fulfilled, the simulations are objective. This is the basic message of the paper.
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