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a b s t r a c t

Given {Pn}n≥0 a sequence of monic orthogonal polynomials, we analyze their linear
combinations with constant coefficients and fixed length, i.e.,

Qn(x) = Pn(x)+ a1Pn−1(x)+ · · · + akPn−k, ak 6= 0, n > k.

Necessary and sufficient conditions are given for the orthogonality of the sequence {Qn}n≥0.
An interesting interpretation in terms of the Jacobi matrices associated with {Pn}n≥0 and
{Qn}n≥0 is shown.
Moreover, in the case k = 2, we characterize the families {Pn}n≥0 such that the

corresponding polynomials {Qn}n≥0 are also orthogonal.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction and basic definitions

Given a linear functional u on the linear space P of polynomials with real coefficients, a sequence of monic polynomials
{Pn}n≥0 with deg Pn = n is said to be orthogonal with respect to u if 〈u, PnPm〉 = 0 for every n 6= m and 〈u, P2n 〉 6= 0 for every
n = 0, 1, . . ..
A linear functional u is said to be quasi-definite (respectively positive definite) if the leading principal submatrices Hn

of the Hankel matrix H = (ui+j)i,j≥0 associated with u, where uk = 〈u, xk〉, k ≥ 0, are nonsingular (respectively positive
definite) for every n ≥ 0 (see [1]).
A very well known result (Favard’s theorem, see [1] for instance) gives a characterization of a quasi-definite (respectively

positive definite) linear functional in terms of the three-term recurrence relation that the sequence {Pn}n≥0 satisfies, i.e.

xPn(x) = Pn+1(x)+ βnPn(x)+ γnPn−1(x), (1)
P0(x) = 1, P1(x) = x− β0,

with γn 6= 0 (respectively γn > 0).
In particular, if u is a positive definite linear functional then there exists a positive Borel measure µ supported on an

infinite subset of R such that 〈u, q〉 =
∫

R q dµ for every q ∈ P. In such a situation, the zeros of Pn are real, simple, and they
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are located in the convex hull of the support of the measure µ. Furthermore, the zeros of Pn−1 interlace with those of Pn.
Actually, this is a relevant fact in numerical quadrature, i.e. in the discrete representation∫

R
q dµ ∼

n∑
k=1

λkq(ck), q ∈ P. (2)

If we choose (ck)nk=1 as the zeros of Pn then (2) is exact for every polynomial of degree at most 2n− 1 and, as a consequence
of the interlacing property aforementioned, the Christoffel–Cotes numbers (λk)nk=1 are positive real numbers.
In general, given the pair (q, µ)with q(x) =

∏n
k=1(x− ck) and letting λ = (λ1, . . . , λn)where λk =

∫
R

q(x)
q′(ck)(x−ck)

dµ(x),
1 ≤ k ≤ n, there exists an integer number d(q, µ)with n− 1 ≤ d(q, µ) ≤ 2n− 1, so that (2) is exact for the polynomials of
degree≤d(q, µ) but not for all polynomials of degree d(q, µ)+ 1. The number d(q, µ) is said to be the degree of precision
of (q, µ).
Shohat, in [2], proved that (q, µ) has degree of precision 2n− 1− k if and only if q = Pn + a1Pn−1 + · · · + akPn−k, where

ak 6= 0 and {Pn}n≥0 is the sequence of monic polynomials orthogonal with respect to the measure µ.
Moreover, when suppµ = (−1, 1), Peherstorfer addresses in [3] sufficient conditions on the real numbers {aj}kj=1 under

which the polynomial q = Pn + a1Pn−1 + · · · + akPn−k has n simple zeros in (−1, 1) and whose Christoffel–Cotes numbers
are positive.
In [2] a discussion about the zeros of the polynomial q = Pn+a1Pn−1 is given in terms of sign a1: they are real and simple

and at most one of them lies outside suppµ. Moreover, the zeros of the polynomial q = Pn+ a1Pn−1+ a2Pn−2 were studied.
If a2 < 0, all the zeros are real and simple and atmost two of them do not belong to the suppµ. In addition, in [4] it is proved
that if a2 < 0 then the zeros of Pn−1 interlace with the zeros of q. The position of the smallest and greatest zero of q in terms
of the smallest and greatest zero of Pn is also analyzed.
In [5] the positivity of Christoffel–Cotes numbers and the distribution of zeros of linear combinations R = Pm+· · ·+asPs,

where as 6= 0, 1 ≤ s ≤ m ≤ n and m ≤ d(q, µ), are analyzed. Here q(x) =
∏n
k=1(x − ck) with c1 < · · · < cn. If all the

Christoffel–Cotes numbers are positive, then either R is a non-zero scalar multiple of q or at least N of the intervals (ck, ck+1)
contain a zero of Rwhere N = min{s, d(q, µ)+ 1−m} ≥ 1.
Grinshpun, in [6], studied the orthogonality of special linear combinations of polynomials orthogonal with respect to a

weight function supported on an interval of the real line. Such families of orthogonal polynomials come up in some extremal
problems of Zolotarev–Markov type as well as in problems of least deviating from zero. He proved that the Bernstein–Szegő
polynomials can be represented as a linear combination of the Chebyshev polynomials of the same kind. Nevertheless, the
special feature of this representation is that the coefficients do not depend on n. The relevant question is if this property
characterizes Bernstein–Szegő polynomials. Theorem 3.1 in [6] gives a positive answer in the sense that Bernstein–Szegő
polynomials and just them can be represented as a linear combination of Chebyshev polynomials with constant coefficients
independent of n and fixed length. In other words, {Qn}n≥0 with Qn = Pn + a1Pn−1 + · · · + akPn−k, n > k, where {Pn}n≥0 is
the Chebyshev sequence of j-th kind (j = 1, 2, 3, 4) and ak 6= 0, is a sequence of orthogonal polynomials with respect to a
weight ω̃ if and only if ω̃(x) = µj(x)

hk(x)
, where hk is a polynomial of degree k positive on (−1, 1) andµj is the Chebyshev weight

of j-th kind (j = 1, 2, 3, 4).
The aim of this work is to analyze linear combinations with constant coefficients Qn = Pn + a1Pn−1 + · · · + akPn−k,

n > k, of a sequence of orthogonal polynomials {Pn}n≥0. In Section 2 we find necessary and sufficient conditions so that
the sequence {Qn}n≥0 is orthogonal with respect to a linear functional v. Moreover, we discuss the matrix representation
for the multiplication operator in terms of the bases {Pn}n≥0 and {Qn}n≥0, respectively. Such a matrix is a monic tridiagonal
(Jacobi) matrix. We prove that the leading principal submatrix associated with {Qn}n≥0 is similar to a rank-one perturbation
of the leading principal submatrix associated with {Pn}n≥0. Also, we give a simple algorithm to compute the polynomial hk
of degree k appearing in the relation between the two functionals, u = hkv.
In Section 3, the case k = 2 is addressed, describing all the families {Pn}n≥0 orthogonal with respect to a linear functional

such that the corresponding {Qn}n≥0 is also orthogonal, obtaining explicit expressions for the recurrence parameters {βn}n≥0
and {γn}n≥1 of the sequence {Pn}n≥0. Finally, in Section 4 we present some remarks and examples of such sequences {Pn}n≥0.

2. Orthogonality and Jacobi matrices

Fromnowon, {Pn}n≥0 denotes a sequence ofmonic orthogonal polynomials (SMOP)with respect to a quasi-definite linear
functional u.
Let {Qn}n≥0 be a sequence of monic polynomials with degQn = n such that, for n ≥ k+ 1, k ≥ 1,

Qn(x) = Pn(x)+ a1Pn−1(x)+ · · · + akPn−k(x), (3)

where the coefficients {aj}kj=1 are independent of n and ak 6= 0.
Here we give necessary and sufficient conditions in order for the sequence {Qn}n≥0 to be orthogonal with respect to a

quasi-definite linear functional v. In addition, the relation between the linear functionals u and v, via Jacobi matrices, is
obtained.
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Theorem 1. Let {Pn}n≥0 be a sequence of monic orthogonal polynomials with recurrence coefficients {βn}n≥0 and {γn}n≥1
(γn 6= 0) and let {Qn}n≥0 be a sequence of monic polynomials such that, for n ≥ k+ 1,

Qn(x) = Pn(x)+ a1Pn−1(x)+ · · · + akPn−k(x),

where {aj}kj=1 are constant coefficients and ak 6= 0. Then {Qn}n≥0 is orthogonal with respect to a quasi-definite linear functional if
and only if the following conditions hold:

(i) For each j, 1 ≤ j ≤ k, the polynomials Qj satisfy a three-term recurrence relation xQj(x) = Qj+1(x) + β̃jQj(x) + γ̃jQj−1(x),
with γ̃j 6= 0.

(ii) For n ≥ k+ 2

γn + a1(βn−1 − βn) = γn−k,
aj−1(γn−k − γn−j+1) = aj(βn−j − βn), 2 ≤ j ≤ k.

(iii)

γk+1 + a1(βk − βk+1) 6= 0,

ajγk−j+1 + aj+1(βk−j − βk+1) = a
(k)
j [γk+1 + a1(βk − βk+1)], 1 ≤ j ≤ k− 1,

akγ1 = a
(k)
k [γk+1 + a1(βk − βk+1)],

where a(k)j , j = 1, . . . , k, denotes the coefficient of Pk−j in the Fourier expansion of Qk in terms of the orthogonal system {Pj}
k
j=0.

Moreover, denoting by β̃n and γ̃n the coefficients of the three-term recurrence relation for the polynomials Qn, we have, for
n ≥ k+ 1,

β̃n = βn, γ̃n = γn + a1(βn−1 − βn). (4)

Proof. According to Favard’s theorem, the sequence {Qn}n≥0 is orthogonal with respect to a quasi-definite linear functional
if and only if, for every n, it satisfies a three-term recurrence relation

xQn(x) = Qn+1(x)+ β̃nQn(x)+ γ̃nQn−1(x),

where γ̃n 6= 0, n ≥ 1. Thus, condition (i) follows.
Let n ≥ k+ 2. From xQn(x) = xPn(x)+

∑k
j=1 ajxPn−j(x), expression (3), and the recurrence relation for the polynomials

Pn, one gets

xQn(x) = Qn+1(x)+ βnQn(x)+ [γn + a1(βn−1 − βn)]Qn−1(x)

+

k∑
j=2

{
aj(βn−j − βn)− aj−1[γn − γn−j+1 + a1(βn−1 − βn)]

}
Pn−j(x)

− ak[γn − γn−k + a1(βn−1 − βn)]Pn−(k+1)(x).

Then, whenever n ≥ k+ 2, Qn satisfies a three-term recurrence relation if and only if

γn + a1(βn−1 − βn) 6= 0, (5a)

aj−1[γn − γn−j+1 + a1(βn−1 − βn)] = aj(βn−j − βn), j = 2, . . . , k (5b)

γn + a1(βn−1 − βn) = γn−k. (5c)

Notice that, since γn 6= 0, n ≥ 1, (5a) is a consequence of (5c). Moreover, using (5c), the formula (5b) can be rewritten in the
form

aj−1(γn−k − γn−j+1) = aj(βn−j − βn), j = 2, . . . , k.

Thus, (ii) holds.
Next, we study the case n = k + 1. Let Qk(x) = Pk(x) +

∑k
j=1 a

(k)
j Pk−j(x) be the Fourier expansion of Qk in terms of the

orthogonal system {Pn}n≥0. Handling in the same way as above we have

xQk+1(x) = Qk+2(x)+ βk+1Qk+1(x)+ [γk+1 + a1(βk − βk+1)]Qk(x)

+

k−1∑
j=1

[
aj+1(βk−j − βk+1)− a

(k)
j [γk+1 + a1(βk − βk+1)] + ajγk−j+1

]
Pk−j(x),

+ [akγ1 − a
(k)
k (γk+1 + a1(βk − βk+1))]P0(x).

Thus, (iii) holds.
Finally, (4) is a consequence of the obtained results. �
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Remark. Let us to point out that, because of (iii), the coefficients {a(k)j }
k
j=1 are determined by the recurrence parameters

{βn}n≥0 and {γn}n≥1 as well as the constants {aj}kj=1. So, the relation (3) and the orthogonality of {Qn}n≥k+1 fix the polynomial
Qk. As a consequence, in the particular case k = 1, the sequence {Qn}n≥0 is completely determined by (3) and the
orthogonality property.
Now, we consider two families of monic orthogonal polynomials {Pn}n≥0 and {Qn}n≥0 with respect to the quasi-definite

linear functionals u and v, respectively, satisfying the condition (3). It is well known (see, e.g., [7]) that the relation between
the two linear functionals is u = hkv, where hk is a polynomial of degree k.
Writing P = (P0, P1, . . . , Pn, . . .)T and Q = (Q0,Q1, . . . ,Qn, . . .)T for the column vectors associated with these

orthogonal families, and JP and JQ for the corresponding Jacobi matrices, we get

x P = JP P, x Q = JQ Q. (6)

IfM denotes the matrix associated with the change of bases Q = MP, thenM is a lower triangular matrix with diagonal
entries equal to 1 and zero subdiagonals from the (k+ 1)-th one.
From (6) it follows thatM JP P = xMP = JQ MP, and, therefore,

M JP = JQ M. (7)

From this simple relation the entries of the matrix JQ follow straightforwardly.
Moreover, from Eq. (6), we get

x(P)n = (JP)n(P)n + Pn+1en+1, (8)

x(Q)n = (JQ )n(Q)n + Qn+1en+1, (9)

where en+1 = (0, . . . , 0, 1)T ∈ Rn+1. Here, the symbol (A)n stands for the truncation of any infinite matrix A at level n+ 1.
Using the relation (3), the representation of the change of bases (Q)n = (M)n (P)n and (9), we deduce

x(M)n(P)n = (JQ )n(M)n(P)n + Pn+1en+1 + Ln(P)n
where

Ln =


0 . . . 0 0 . . . 0
. . . . . . . . . .
0 . . . 0 0 . . . 0
. . . . . . . . . .
0 . . . 0 ak . . . a1

 ∈ R(n+1,n+1).

Thus,

x(P)n = (M)−1n
[
(JQ )n(M)n + Ln

]
(P)n + Pn+1en+1.

Comparing this formula with (8), we get

(JP)n = (M)
−1
n

[
(JQ )n(M)n + Ln

]
;

that is,

(JQ )n = (M)n [(JP)n − Ln] (M)−1n .

This last expression means that (JQ )n is similar to a rank-one perturbation of the matrix (JP)n and this perturbation is given
by the matrix Ln. In particular, the zeros of the polynomial Qn are the zeros of the characteristic polynomial of the matrix
(JP)n − Ln.
Next, we are going to describe an explicit algebraic relation between the Jacobi matrices JP and JQ , keeping in mind

basically the relationship between the linear functionals u and v; that is, u = hkv.
To do this, we first observe that QQT = MPPTMT. Writing DP = 〈u, PPT〉 and DQ = 〈v,QQT〉we have

〈v, hkQQT〉 = 〈hkv,QQT〉 = 〈u,QQT〉 = M〈u, PPT〉MT = MDPMT.

Since 〈v, hkQQT〉 = 〈v, hk(JQ )QQT〉 = hk(JQ )DQ , then

hk(JQ ) = MDPMTD−1Q . (10)

On the other hand, from (7), it follows that

hk(JQ ) = Mhk(JP)M
−1. (11)

From (10) and (11), we deduce

hk(JP) = DPMTD−1Q M. (12)

Thus, we have a simple algorithm to compute the polynomial hk.
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(1) From the dataM and JP , we have (7) and we can deduce JQ .
(2) From JP and JQ we deduce DP and DQ , respectively.
(3) Using (12) and taking into account that hk is a polynomial of degree k, hk(x) = c0 + c1x+ · · · + ckxk, we get

hk(JP) = c0I + c1JP + · · · + ckJ
k
P = DPMTD−1Q M,

which is a system of linear equations with k + 1 unknowns. Notice that the matrices of the first and second terms are
2k+ 1 diagonal.

If the monic polynomials {Pn}n≥0 and {Qn}n≥0 were replaced by the corresponding orthonormal polynomials {P̃n}n≥0 and
{Q̃n}n≥0, similar computations would have led to

hk(J̃P) = M̃TM̃, hk(JQ̃ ) = M̃M̃T,

where M̃ denotes thematrix of the change of bases; that is, Q̃ = M̃P̃. This gives us an interesting interpretation of thematrix
operation involving the linear combination of the orthogonal polynomials:Qn(x) = Pn(x)+a1Pn−1(x)+· · ·+akPn−k(x), n ≥
k+ 1.

3. The case k = 2

Among the classical orthogonal polynomial families, the Chebyshev polynomials are unique families such that the
sequence of polynomials {Qn}n≥0 defined by (3) is orthogonal (see for example [8]). But, what happens if the sequence
{Pn}n≥0 is not a classical one?
In this Section, our main goal will be to describe, for the case k = 2, all the families of monic polynomials {Pn}n≥0

orthogonal with respect to a quasi-definite linear functional such that the new families {Qn}n≥0 are also orthogonal.

Theorem 2. Let {Pn}n≥0 be an SMOP with respect to a quasi-definite linear functional. Assume that a1 and a2 are real numbers
with a2 6= 0 and Qn the monic polynomials defined by

Qn(x) = Pn(x)+ a1Pn−1(x)+ a2Pn−2(x), n ≥ 3. (13)

Then the orthogonality of the sequence {Qn}n≥0 depends on the choice of a1 and a2. More precisely, {Qn}n≥0 is an SMOP if and
only if γ3 + a1(β2 − β3) 6= 0, and

(i) if a1 = 0, for n ≥ 4, βn = βn−2 and γn = γn−2.
(ii) if a1 6= 0 and a21 = 4a2, then, for n ≥ 2,

βn = A+ Bn+ Cn2, γn = D+ En+ Fn2, (14)

with a1C = 2F , a1B = 2E − 2F , (A, B, C,D, E, F ∈ R).
(iii) if a1 6= 0 and a21 > 4a2, then, for n ≥ 2,

βn = A+ Bλn + Cλ−n, γn = D+ Eλn + Fλ−n,

with a1C = (1+ λ)F , a1λB = (1+ λ)E, (A, B, C,D, E, F ∈ R), where λ is the unique solution in (−1, 1) of the equation
a21λ = a2(1+ λ)

2.
(iv) if a1 6= 0 and a21 < 4a2, and we let λ = e

iθ be the unique solution of the equation a21λ = a2(1+ λ)
2 with θ ∈ (0, π), then,

for n ≥ 2,

βn = A+ Beinθ + Be−inθ , γn = D+ Eeinθ + Ee−inθ ,

with a1λ B = (1+ λ) E, (A,D ∈ R, B, E ∈ R).

Proof. Applying Theorem 1 to the particular case k = 2, we have that {Qn}n≥0 is an SMOP if and only if γ3+a1(β2−β3) 6= 0
and, for n ≥ 4,

a1(γn−2 − γn−1) = a2(βn−2 − βn), (15)

γn − γn−2 = a1(βn − βn−1). (16)

Observe that (i) follows directly.
In what follows, we will assume that a1 6= 0. From (15) and (16), we deduce that βn and γn are solutions of the difference

equation with constant coefficients

yn +
(
1−

a21
a2

)
yn−1 −

(
1−

a21
a2

)
yn−2 − yn−3 = 0, n ≥ 5. (17)
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According to the solutions of the associated characteristic equation

(λ− 1)
[
λ2 +

(
2−

a21
a2

)
λ+ 1

]
= 0, (18)

we can analyze three cases (see, for instance, [9]).
(ii) If a21 = 4a2, then λ = 1 is a root with multiplicity 3 and therefore

βn = A+ Bn+ Cn2, γn = D+ En+ Fn2, n ≥ 5.

Note that the obtained expressions for βn and γn also hold for n ≥ 2, just applying (17) for n equal to 7, 6, and 5.
Inserting these expressions of βn and γn in (15) and (16), we have

n[2a1F − a21C] =
1
2
a21B− a1E + a1F , n ≥ 4,

n[4F − 2a1C] = a1B− a1C − 2E + 4F , n ≥ 4,

which is equivalent to

a1C − 2F = 0, a1B− 2E + 2F = 0.

Moreover, since βn, γn ∈ R, n ≥ 1, it is easy to check that A, B, C,D, E, F ∈ R.
Conversely, the values of βn and γn given by (14) and the above relations lead, through (15) and (16), to the orthogonality

of the sequence {Qn}.
(iii) and (iv) If a21 6= 4a2, then

βn = A+ Bλn + Cλ−n, γn = D+ Eλn + Fλ−n, n ≥ 5,

where λ is the unique solution of the Eq. (18) such that λ ∈ (−1, 1) if a21 > 4a2 and λ = e
iθ with θ ∈ (0, π), if a21 < 4a2.

By applying the procedure described in case (ii) we get that the previous formulas hold for n ≥ 2.
Inserting these values of βn and γn in both formulas (15) and (16), we have

λ2n−2[a1E − a2B(λ+ 1)] = a1Fλ− a2C(λ+ 1), n ≥ 4,
λ2n−2[a1Bλ− (λ+ 1)E] = a1C − (λ+ 1)F , n ≥ 4.

Then, since λ is a solution of the equation a21λ = a2(1 + λ)
2, we have that the above both formulas are equivalent to the

following system:

a1C = (λ+ 1)F , a1λB = (λ+ 1)E.

Again, since βn and γn, n ≥ 1, are real numbers, one gets that in case (iii) that A, B, C,D, E, F are real numbers.
Nevertheless, in case (iv), A and D are real numbers and B, C, E, F could be complex numbers with C = B, F = E. �

4. Further remarks and comments

Based on the results of Section 3 it is natural to ask us the following question: It is possible to give explicitly the SMOP
{Pn}n≥0, aswell as their orthogonalitymeasure, such that the sequence {Qn}n≥0 defined by (13) is also an SMOP? This problem
might be quite difficult. In this Section we make some remarks concerning it, and we show some examples.
First, we point out a difference between the cases k = 1 and k = 2. Let Qn be the monic polynomials defined by

Qn(x) = Pn(x)+ a1Pn−1(x), n ≥ 2,

with a1 6= 0. From Theorem 1 written for k = 1, it follows that {Qn}n≥0 is an SMOP (see [10] in a more general setting) if
and only if

γ2 + a1(β1 − β2) 6= 0, (19)
γn − γ2 = a1(βn − β2), n ≥ 3.

Thus, in the case k = 1, for any sequence of {γn}n≥1 with γn 6= 0, if we take β0, β1 ∈ R, and βn (n ≥ 2) satisfying (19),
we obtain all the SMOP {Pn}n≥0 such that {Qn}n≥0 is also an SMOP. However, in the case k = 2, Theorem 2 implies that the
recurrence coefficients γn and βn have to be solutions of Eq. (17). Therefore, although in both cases we get that βn and γn
have a similar asymptotic behaviour, roughly speaking, for k = 2, there are much fewer families {Pn}n≥0.
Examples. According to Theorem 2, all the SMOP {Pn}n≥0 such that the sequence {Qn}n≥0, where Qn = Pn + a2Pn−2, n ≥ 3
with a2 6= 0 is again an SMOP, satisfy, for n ≥ 4, βn = βn−2 and γn = γn−2.
The families of monic orthogonal polynomials which fulfill these conditions were explicitly given in terms of Chebyshev

polynomials in [11, Example 2, p. 109]. Observe that this situation corresponds to the case a1 = 0. However, in the case
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a1 6= 0, the explicit description of all sequences {Pn}n≥0 still remains open. Besides the four Chebyshev families, we have
identified some explicit solutions, for instance, the continuous big q-Hermite polynomials (see [12]).
Whenever k = 1, an interesting case arises when βn = β0, for all n and γn = γ1, n ≥ 2. In particular, it follows that

the only symmetric orthogonal polynomials {Pn} such that the sequence Pn + a1Pn−1 is also an SMOP are the Chebyshev
polynomials (up to a linear change in the variable).
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