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Suppose that k runners having different constant speeds run laps
on a circular track of unit length. The Lonely Runner Conjecture
states that, sooner or later, any given runner will be at distance
at least 1/k from all the other runners. We prove that, with
probability tending to one, a much stronger statement holds for
random sets in which the bound 1/k is replaced by 1/2 − ε.
The proof uses Fourier analytic methods. We also point out some
consequences of our result for colouring of random integer distance
graphs.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Suppose that k runners run laps on a unit-length circular track. They all start together from the
same point and run in the same direction with pairwise different constant speeds d1,d2, . . . ,dk . At
a given time t , a runner is said to be lonely if no other runner is within a distance of 1/k, both
in front and rear. The Lonely Runner Conjecture states that for every runner there is a time at
which he is lonely. For instance if k = 2, one can imagine easily that at some time or other, the
two runners will find themselves on antipodal points of the circle, both becoming lonely at that mo-
ment.

To give a precise statement, let T = [0,1) denote the circle (the one-dimensional torus). For a real
number x, let {x} be the fractional part of x (the position of x on the circle), and let ‖x‖ denote the
distance of x to the nearest integer (the circular distance from {x} to zero). Notice that ‖x − y‖ is just
the length of the shortest circular arc determined by the points {x} and {y} on the circle. It is not
difficult to see that the following statement is equivalent to the Lonely Runner Conjecture.
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Conjecture 1. For every integer k � 1 and for every set of positive integers {d1,d2, . . . ,dk} there exists a real
number t such that

‖tdi‖ � 1

k + 1

for all i = 1,2, . . . ,k.

The above bound is sharp as is seen for the sets {1,2, . . . ,k}. The paper of Goddyn and Wong [11]
contains items of interesting exemplars of such extremal sets. The problem was posed for the first
time by Wills [16] in connection to Diophantine approximation. Cusick [8] raised the same question
independently, as a view obstruction problem in discrete geometry (cf. [5]). Together with Pomer-
ance [9], he confirmed the validity of the conjecture for k � 4. Bienia et al. [3] gave a simpler proof
for k = 4 and found interesting application to flows in graphs and matroids. Next the conjecture was
proved for k = 5 by Bohman et al. [4]. A simpler proof for that case was provided by Renault [13].
Recently the case k = 6 was established by Barajas and Serra [2], using a new promising idea.

Let D = {d1,d2, . . . ,dk} be a set of k positive integers. Consider the quantity

κ(D) = sup
x∈T

min
di∈D

‖xdi‖

and the related function κ(k) = infκ(D), where the infimum is taken over all k-element sets of posi-
tive integers. So, the Lonely Runner Conjecture states that κ(k) � 1

k+1 . The trivial bound is κ(k) � 1
2k ,

as the sets {x ∈ T: ‖xdi‖ < 1
2k } simply cannot cover the whole circle (since each of them is a union

of di open arcs of length 1
kdi

each). Surprisingly, nothing much better was proved so far. Currently the
best general bound is

κ(k) � 1

2k − 1 + 1
2k−3

for every k � 5 [6]. A slightly improved inequality κ(k) � 1
2k−3 holds when k � 4 and 2k − 3 is

prime [7]. Using the probabilistic argument we proved in [10] that every set D contains an element d
such that

κ
(

D \ {d})� 1

k
.

In this paper we prove another general result supporting the Lonely Runner Conjecture.

Theorem 1. Let k be a fixed positive integer and let ε > 0 be fixed real number. Let D ⊆ {1,2, . . . ,n} be
a k-element subset chosen uniformly at random. Then the probability that κ(D) � 1

2 − ε tends to 1 with
n → ∞.

The proof uses elementary Fourier analytic technique for subsets of Zp . We give it in the next
section. In the last section we point to a striking consequence of our result for colouring of integer
distance graphs.

2. Proof of the main result

Let k be a fixed positive integer and let p � k be a prime number. For a ∈ Zp , let ‖a‖p =
min{a, p − a} be the circular distance from a to zero in Zp . We will need the following notion in-
troduced by [14]. Let L be a fixed positive integer. A set D = {d1, . . . ,dk} ⊆ Zp is called L-independent
in Zp if equation

d1x1 + d2x2 + · · · + dkxk = 0
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has no solutions satisfying

0 <

k∑
i=1

‖xi‖p � L.

We will show that for appropriately chosen L, any L-independent set can be pushed away arbitrar-
ily far from zero. Then we will demonstrate that for such L, almost every set in Zp is L-independent.

Let f : Zp →C be any function and let f̂ : Zp →C denote its Fourier transform, that is

f̂ (r) =
∑
x∈Zp

f (x)ωrx,

where ω = e
2π
p i . For a set A ⊆ Zp , by A(x) we denote its characteristic function. We will make use of

the following basic properties of the Fourier transform:

(F1) | f̂ (r)| = | f̂ (−r)| for every r ∈ Zp .

(F2) f (x) = 1
p

∑
r∈Zp

f̂ (r)ω−rx for every x ∈ Zp .

(F3) Â(0) = |A| for every subset of Zp .

In the lemma below we give a bound for the Fourier coefficient Â(r) for the sets of the form

A = {s, s + 1, . . . , l}, (∗)

where l and s are elements of Zp , such that s < l. This bound does not depend on l and s. The
following lemma can be easily proved, as for instance in [12, p. 39]. We proved this for the reader
convenience.

Lemma 1. If 0 < r <
p
2 , then∣∣ Â(r)

∣∣ � p

2r
.

Proof. By simple calculations we have

∣∣ Â(r)
∣∣ =

∣∣∣∣∣
l∑

x=s

ωrx

∣∣∣∣∣ =
∣∣∣∣ωr(l+1) − ωrs

ωr − 1

∣∣∣∣
=

∣∣∣∣ω
r(l+s+1)

2

ω
r
2

· ω
r(l+1−s)

2 − ω
−r(l+1−s)

2

ω
r
2 − ω

−r
2

∣∣∣∣ =
∣∣∣∣ sin(πr

p )

sin(πr
p )

∣∣∣∣.
Using inequality sin(x) � 2x

π for x < π
2 , we get∣∣ Â(r)

∣∣ � p

2r
. �

Now, we state and prove the aforementioned property of L-independent sets.

Theorem 2. Let 0 < ε < 1
2 be a fixed real number. Let D be a k-element, L-independent set in Zp , where

L >

√
k33k−1

2k+1ε2k
.

Then

κ(D)� 1/2 − ε.
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Proof. Let

C =
{

x ∈ Zp:

(
1

4
− ε

2

)
p < x <

(
1

4
+ ε

2

)
p

}
and let C(x) be the characteristic function of the set C . Define convolution of two functions f and g
by

( f ∗ h)(x) =
∑
y∈Zp

f (y) · g(x − y).

Denote by B(x) = (C ∗C)(x) convolution of function C with itself. It is easy to see that B̂(r) = Ĉ(r) · Ĉ(r)
for all r ∈ Zp .

So, if we find t ∈ Zp such that t D ⊆ supp B , where supp B = {x ∈ Zp: B(x) �= 0}, then at the same
time we push the set D away into the small arc ( 1

2 − ε, 1
2 + ε) on the torus T.

Then the expression

I =
∑
t∈Zp

B(td1)B(td2) · · · B(tdk)

counts those numbers t which push the set D away to a distance 1
2 − ε from zero. We will show that

I �= 0. From properties of the Fourier transform it results that

I =
∑
t∈Zp

(
1

p

∑
r1∈Zp

B̂(r1)ω
−td1r1

)
· · ·

(
1

p

∑
rk∈Zp

B̂(rk)ω
−tdkrk

)
.

Denoting −→r = (r1, r2, . . . , rk), we get

pk I =
∑

−→r ∈Zk
p

B̂(r1) · · · B̂(rk)
∑
t∈Zp

ω−t(d1r1+···+dktk).

The expression
∑

t ω
−t(d1r1+···+dktk) is equal to p when

d1r1 + · · · + dkrk ≡ 0 (mod p), (∗∗)

and is equal to zero in the contrary case. As a consequence we may write

pk−1 I =
∑

−→r ∈Zk
p

B̂(r1) · · · B̂(rk)R(
−→r ),

where R(
−→r ) = 1 for r1, . . . , rk satisfying Eq. (∗∗), and R(

−→r ) = 0 in the opposite situation. Since
D is L-independent, the identity R(

−→r ) = 1 holds only for those r1, . . . , rk satisfying condition∑k
i=1 ‖ri‖p > L, or r1 = r2 = · · · = rk = 0. Hence,

pk−1 I − |C |2k =
∑

−→r ∈Zk
p ,

∑‖ri‖p>L

B̂(r1) · · · B̂(
−→r ),

as for ri = 0 the Fourier coefficient B̂(ri) is equal to square of the size of C . So, by showing that

|C |2k >
∑

∑‖ri‖p>L

∣∣B̂(r1)
∣∣ · · · ∣∣B̂(rk)

∣∣R(
−→r ),

we will confirm that I �= 0.
The property of L-independence of the set D implies that in any nontrivial solution of (∗∗) there

is some ri satisfying ‖ri‖p > L
k . The estimates for those ri

∣∣B̂(ri)
∣∣ = ∣∣Ĉ(ri)

∣∣2 �
(

p

2ri

)2

�
(

kp

2L

)2

result from Lemma 1.
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Denote by −→r j = (r1, . . . , r j−1, r j+1, . . . , rk), the vector −→r with jth coordinate missing. Substituting
this to the previous sum we obtain∑

∑‖ri‖p>L

∣∣B̂(r1)
∣∣ · · · ∣∣B̂(rk)

∣∣R(r1, . . . , rk)

�
(

kp

2L

)2 k∑
j=1

∑
−→r j ∈Zk−1

p

∣∣B̂(r1)
∣∣ · · · ∣∣B̂(r j−1)

∣∣∣∣B̂(r j+1)
∣∣ . . . ∣∣B̂(rk)

∣∣

� k

(
kp

2L

)2 ∑
−→rk∈Zk−1

p

∣∣B̂(r1)
∣∣ · · · ∣∣B̂(rk−1)

∣∣.
The last sum may be estimated further. Let S p = {0,1, . . . ,

p−1
2 } and we get∑

−→rk∈Zk−1
p

∣∣B̂(r1)
∣∣ · · · ∣∣B̂(rk−1)

∣∣ � 2k−1
∑

−→rk∈Sk−1
p

∣∣B̂(r1)
∣∣ · · · ∣∣B̂(rk−1)

∣∣.
Thus, applying Lemma 1 again we get∑

∑‖ri‖p>L

∣∣B̂(r1)
∣∣ · · · ∣∣B̂(rk)

∣∣R(
−→r )

� k

(
kp

2L

)2

· 2k−1 ·
(

pk−1

2k−1

)2

·
(

1 +
∑
r∈S p

1

r2

)k−1

� k

(
kp

2L

)2

· 2k−1 ·
(

pk−1

2k−1

)2

·
(

1 + π2

2

)k−1

since 1 + π2

2 � 3, we obtain

∑
∑‖ri‖p>L

∣∣B̂(r1)
∣∣ · · · ∣∣B̂(rk)

∣∣R(
−→r )� k3 p2k3k−1

2k+1L2
.

So, by the assumption on L we obtain∑
∑‖ri‖p>L

∣∣B̂(r1)
∣∣ · · · ∣∣B̂(rk)

∣∣R(
−→r ) < (εp)2k � |C |2k.

This completes the proof. �
Proof of Theorem 1. Let L be a number satisfying inequalities√

k33k−1

2k+1ε2k
< L < k+1

√
p.

Such numbers L exist provided that p is sufficiently large. By Theorem 2, κ(D) � 1
2 − ε for every

L-independent set D . We show that the second inequality implies that almost every set in Z
∗
p is

L-independent. Indeed, the number of sets that are not L-independent is at most

(2L + 1)k
(

p − 1

k − 1

)
.
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So, the fraction of those sets in Z
∗
p is equal

(2L + 1)k
(p−1

k−1

)
(p−1

k

) = (2L + 1)kk

p − k
<

(2 k+1
√

p + 1)kk

p − k
.

The last expression tends to zero with p tending to infinity. This completes the proof, as the ratios of
two consecutive primes tend to one. �
3. Integer distance graphs

We conclude the paper with a remark concerning integer distance graphs. For a given set D , consider
a graph G(D) whose vertices are positive integers, with two vertices a and b joined by an edge if and
only if |a − b| ∈ D . Let χ(D) denote the chromatic number of this graph. It is not hard to see that
χ(D) � |D| + 1.

To see a connection to parameter κ(D), put N = �κ(D)−1� and split the circle into N intervals
Ii = [(i − 1)/N, i/N), i = 1,2, . . . , N (cf. [15]). Let t be a real number such that mind∈D ‖dt‖ = κ(D).
Then define a colouring c :N → {1,2, . . . , N} by c(a) = i if and only if {ta} ∈ Ii . If c(a) = c(b) then {ta}
and {tb} are in the same interval Ii . Hence ‖ta − tb‖ < 1/N � κ(D), and therefore |a − b| is not in D .
This means that c is a proper colouring of a graph G(D). So, we have a relation

χ(D) �
⌈

1

κ(D)

⌉
.

Now, by Theorem 1 we get that χ(D) � 3 for almost every graph G(D).
A different proof of a stronger version of this result has been recently found by Alon [1]. He also

extended the theorem for arbitrary Abelian groups, and posed many intriguing questions for general
groups.

Acknowledgments

I would like to thank Tomasz Schoen for an inspiring idea of using independent sets, and to
Jarek Grytczuk for stimulating discussions and help in preparation of the manuscript. I thank the
anonymous referees for valuable suggestions concerning the merit of the paper. I also acknowledge a
support from Polish Ministry of Science and Higher Education (MNiSW) (N N201 271335).

References

[1] N. Alon, The chromatic number of random Cayley graphs, European J. Combin., in press.
[2] J. Barajas, O. Serra, The lonely runner with seven runners, Electron. J. Combin. 15 (1) (2008), Paper R48.
[3] W. Bienia, L. Goddyn, P. Gvozdjak, A. Sebö, M. Tarsi, Flows, view obstructions, and the lonely runner, J. Combin. Theory

Ser. B 72 (1) (1998) 1–9.
[4] T. Bohman, R. Holzman, D. Kleitman, Six lonely runners. In honor of Aviezri Fraenkel on the occasion of his 70th birthday,

Electron. J. Combin. 8 (2) (2001), Research paper 3, 49 pp. (electronic).
[5] P. Brass, W. Moser, J. Pach, Research Problems in Discrete Geometry, Springer, New York, 2005.
[6] Y.G. Chen, View-obstruction problems and a generalization in En , Acta Math. Sinica 37 (1994) 551–562.
[7] Y.G. Chen, T.W. Cusick, The view-obstruction problem for n-dimensional cubes, J. Number Theory 74 (1999) 126–133.
[8] T.W. Cusick, View-obstruction problems, Aequationes Math. 9 (1973) 165–170.
[9] T.W. Cusick, C. Pomerance, View-obstruction problems. III, J. Number Theory 19 (2) (1984) 131–139.
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