Random runners are very lonely

Sebastian Czerwiński

Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, 65-546 Zielona Góra, Poland

A R T I C L E I N F O

Article history:

Received 8 March 2011
Available online 28 February 2012

Keywords:

Lonely runner problem
Diophantine approximation
Integer distance graphs

Abstract

Suppose that k runners having different constant speeds run laps on a circular track of unit length. The Lonely Runner Conjecture states that, sooner or later, any given runner will be at distance at least $1 / k$ from all the other runners. We prove that, with probability tending to one, a much stronger statement holds for random sets in which the bound $1 / k$ is replaced by $1 / 2-\varepsilon$. The proof uses Fourier analytic methods. We also point out some consequences of our result for colouring of random integer distance graphs.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Suppose that k runners run laps on a unit-length circular track. They all start together from the same point and run in the same direction with pairwise different constant speeds $d_{1}, d_{2}, \ldots, d_{k}$. At a given time t, a runner is said to be lonely if no other runner is within a distance of $1 / k$, both in front and rear. The Lonely Runner Conjecture states that for every runner there is a time at which he is lonely. For instance if $k=2$, one can imagine easily that at some time or other, the two runners will find themselves on antipodal points of the circle, both becoming lonely at that moment.

To give a precise statement, let $\mathbb{T}=[0,1$) denote the circle (the one-dimensional torus). For a real number x, let $\{x\}$ be the fractional part of x (the position of x on the circle), and let $\|x\|$ denote the distance of x to the nearest integer (the circular distance from $\{x\}$ to zero). Notice that $\|x-y\|$ is just the length of the shortest circular arc determined by the points $\{x\}$ and $\{y\}$ on the circle. It is not difficult to see that the following statement is equivalent to the Lonely Runner Conjecture.

[^0]Conjecture 1. For every integer $k \geqslant 1$ and for every set of positive integers $\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$ there exists a real number t such that

$$
\left\|t d_{i}\right\| \geqslant \frac{1}{k+1}
$$

for all $i=1,2, \ldots, k$.

The above bound is sharp as is seen for the sets $\{1,2, \ldots, k\}$. The paper of Goddyn and Wong [11] contains items of interesting exemplars of such extremal sets. The problem was posed for the first time by Wills [16] in connection to Diophantine approximation. Cusick [8] raised the same question independently, as a view obstruction problem in discrete geometry (cf. [5]). Together with Pomerance [9], he confirmed the validity of the conjecture for $k \leqslant 4$. Bienia et al. [3] gave a simpler proof for $k=4$ and found interesting application to flows in graphs and matroids. Next the conjecture was proved for $k=5$ by Bohman et al. [4]. A simpler proof for that case was provided by Renault [13]. Recently the case $k=6$ was established by Barajas and Serra [2], using a new promising idea.

Let $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$ be a set of k positive integers. Consider the quantity

$$
\kappa(D)=\sup _{x \in \mathbb{T}} \min _{i} \in D .\left\|x d_{i}\right\|
$$

and the related function $\kappa(k)=\inf \kappa(D)$, where the infimum is taken over all k-element sets of positive integers. So, the Lonely Runner Conjecture states that $\kappa(k) \geqslant \frac{1}{k+1}$. The trivial bound is $\kappa(k) \geqslant \frac{1}{2 k}$, as the sets $\left\{x \in \mathbb{T}:\left\|x d_{i}\right\|<\frac{1}{2 k}\right\}$ simply cannot cover the whole circle (since each of them is a union of d_{i} open arcs of length $\frac{1}{k d_{i}}$ each). Surprisingly, nothing much better was proved so far. Currently the best general bound is

$$
\kappa(k) \geqslant \frac{1}{2 k-1+\frac{1}{2 k-3}}
$$

for every $k \geqslant 5$ [6]. A slightly improved inequality $\kappa(k) \geqslant \frac{1}{2 k-3}$ holds when $k \geqslant 4$ and $2 k-3$ is prime [7]. Using the probabilistic argument we proved in [10] that every set D contains an element d such that

$$
\kappa(D \backslash\{d\}) \geqslant \frac{1}{k} .
$$

In this paper we prove another general result supporting the Lonely Runner Conjecture.

Theorem 1. Let k be a fixed positive integer and let $\varepsilon>0$ be fixed real number. Let $D \subseteq\{1,2, \ldots, n\}$ be a k-element subset chosen uniformly at random. Then the probability that $\kappa(D) \geqslant \frac{1}{2}-\varepsilon$ tends to 1 with $n \rightarrow \infty$.

The proof uses elementary Fourier analytic technique for subsets of \mathbb{Z}_{p}. We give it in the next section. In the last section we point to a striking consequence of our result for colouring of integer distance graphs.

2. Proof of the main result

Let k be a fixed positive integer and let $p \geqslant k$ be a prime number. For $a \in \mathbb{Z}_{p}$, let $\|a\|_{p}=$ $\min \{a, p-a\}$ be the circular distance from a to zero in \mathbb{Z}_{p}. We will need the following notion introduced by [14]. Let L be a fixed positive integer. A set $D=\left\{d_{1}, \ldots, d_{k}\right\} \subseteq \mathbb{Z}_{p}$ is called L-independent in \mathbb{Z}_{p} if equation

$$
d_{1} x_{1}+d_{2} x_{2}+\cdots+d_{k} x_{k}=0
$$

has no solutions satisfying

$$
0<\sum_{i=1}^{k}\left\|x_{i}\right\|_{p} \leqslant L
$$

We will show that for appropriately chosen L, any L-independent set can be pushed away arbitrarily far from zero. Then we will demonstrate that for such L, almost every set in \mathbb{Z}_{p} is L-independent.

Let $f: \mathbb{Z}_{p} \rightarrow \mathbb{C}$ be any function and let $\hat{f}: \mathbb{Z}_{p} \rightarrow \mathbb{C}$ denote its Fourier transform, that is

$$
\hat{f}(r)=\sum_{x \in \mathbb{Z}_{p}} f(x) \omega^{r x},
$$

where $\omega=e^{\frac{2 \pi}{p} i}$. For a set $A \subseteq \mathbb{Z}_{p}$, by $A(x)$ we denote its characteristic function. We will make use of the following basic properties of the Fourier transform:
(F1) $|\hat{f}(r)|=|\hat{f}(-r)|$ for every $r \in \mathbb{Z}_{p}$.
(F2) $f(x)=\frac{1}{p} \sum_{r \in \mathbb{Z}_{p}} \hat{f}(r) \omega^{-r x}$ for every $x \in \mathbb{Z}_{p}$.
(F3) $\hat{A}(0)=|A|$ for every subset of \mathbb{Z}_{p}.
In the lemma below we give a bound for the Fourier coefficient $\hat{A}(r)$ for the sets of the form

$$
\begin{equation*}
A=\{s, s+1, \ldots, l\}, \tag{*}
\end{equation*}
$$

where l and s are elements of \mathbb{Z}_{p}, such that $s<l$. This bound does not depend on l and s. The following lemma can be easily proved, as for instance in [12, p. 39]. We proved this for the reader convenience.

Lemma 1. If $0<r<\frac{p}{2}$, then

$$
|\hat{A}(r)| \leqslant \frac{p}{2 r}
$$

Proof. By simple calculations we have

$$
\begin{aligned}
|\hat{A}(r)| & =\left|\sum_{x=s}^{l} \omega^{r x}\right|=\left|\frac{\omega^{r(l+1)}-\omega^{r s}}{\omega^{r}-1}\right| \\
& =\left|\frac{\omega^{\frac{r(l+s+1)}{2}}}{\omega^{\frac{r}{2}}} \cdot \frac{\omega^{\frac{r(l+1-s)}{2}}-\omega^{\frac{-r(l+1-s)}{2}}}{\omega^{\frac{r}{2}}-\omega^{\frac{-r}{2}}}\right|=\left|\frac{\sin \left(\frac{\pi r}{p}\right)}{\sin \left(\frac{\pi r}{p}\right)}\right| .
\end{aligned}
$$

Using inequality $\sin (x) \geqslant \frac{2 x}{\pi}$ for $x<\frac{\pi}{2}$, we get

$$
|\hat{A}(r)| \leqslant \frac{p}{2 r}
$$

Now, we state and prove the aforementioned property of L-independent sets.
Theorem 2. Let $0<\varepsilon<\frac{1}{2}$ be a fixed real number. Let D be a k-element, L-independent set in \mathbb{Z}_{p}, where

$$
L>\sqrt{\frac{k^{3} 3^{k-1}}{2^{k+1} \varepsilon^{2 k}}}
$$

Then

$$
\kappa(D) \geqslant 1 / 2-\varepsilon .
$$

Proof. Let

$$
C=\left\{x \in \mathbb{Z}_{p}:\left(\frac{1}{4}-\frac{\varepsilon}{2}\right) p<x<\left(\frac{1}{4}+\frac{\varepsilon}{2}\right) p\right\}
$$

and let $C(x)$ be the characteristic function of the set C. Define convolution of two functions f and g by

$$
(f * h)(x)=\sum_{y \in \mathbb{Z}_{p}} f(y) \cdot g(x-y) .
$$

Denote by $B(x)=(C * C)(x)$ convolution of function C with itself. It is easy to see that $\hat{B}(r)=\hat{C}(r) \cdot \hat{C}(r)$ for all $r \in \mathbb{Z}_{p}$.

So, if we find $t \in \mathbb{Z}_{p}$ such that $t D \subseteq \operatorname{supp} B$, where $\operatorname{supp} B=\left\{x \in \mathbb{Z}_{p}: B(x) \neq 0\right\}$, then at the same time we push the set D away into the small arc $\left(\frac{1}{2}-\varepsilon, \frac{1}{2}+\varepsilon\right)$ on the torus \mathbb{T}.

Then the expression

$$
I=\sum_{t \in \mathbb{Z}_{p}} B\left(t d_{1}\right) B\left(t d_{2}\right) \cdots B\left(t d_{k}\right)
$$

counts those numbers t which push the set D away to a distance $\frac{1}{2}-\varepsilon$ from zero. We will show that $I \neq 0$. From properties of the Fourier transform it results that

$$
I=\sum_{t \in \mathbb{Z}_{p}}\left(\frac{1}{p} \sum_{r_{1} \in \mathbb{Z}_{p}} \hat{B}\left(r_{1}\right) \omega^{-t d_{1} r_{1}}\right) \cdots\left(\frac{1}{p} \sum_{r_{k} \in \mathbb{Z}_{p}} \hat{B}\left(r_{k}\right) \omega^{-t d_{k} r_{k}}\right) .
$$

Denoting $\vec{r}=\left(r_{1}, r_{2}, \ldots, r_{k}\right)$, we get

$$
p^{k} I=\sum_{\vec{r} \in \mathbb{Z}_{p}^{k}} \hat{B}\left(r_{1}\right) \cdots \hat{B}\left(r_{k}\right) \sum_{t \in \mathbb{Z}_{p}} \omega^{-t\left(d_{1} r_{1}+\cdots+d_{k} t_{k}\right)} .
$$

The expression $\sum_{t} \omega^{-t\left(d_{1} r_{1}+\cdots+d_{k} t_{k}\right)}$ is equal to p when

$$
\begin{equation*}
d_{1} r_{1}+\cdots+d_{k} r_{k} \equiv 0 \quad(\bmod p) \tag{**}
\end{equation*}
$$

and is equal to zero in the contrary case. As a consequence we may write

$$
p^{k-1} I=\sum_{\vec{r} \in \mathbb{Z}_{p}^{k}} \hat{B}\left(r_{1}\right) \cdots \hat{B}\left(r_{k}\right) R(\vec{r}),
$$

where $R(\vec{r})=1$ for r_{1}, \ldots, r_{k} satisfying Eq. ($\left.* *\right)$, and $R(\vec{r})=0$ in the opposite situation. Since D is L-independent, the identity $R(\vec{r})=1$ holds only for those r_{1}, \ldots, r_{k} satisfying condition $\sum_{i=1}^{k}\left\|r_{i}\right\|_{p}>L$, or $r_{1}=r_{2}=\cdots=r_{k}=0$. Hence,

$$
p^{k-1} I-|C|^{2 k}=\sum_{\vec{r} \in \mathbb{Z}_{p}^{k}, \sum\left\|r_{i}\right\|_{p}>L} \hat{B}\left(r_{1}\right) \cdots \hat{B}(\vec{r}),
$$

as for $r_{i}=0$ the Fourier coefficient $\hat{B}\left(r_{i}\right)$ is equal to square of the size of C. So, by showing that

$$
|C|^{2 k}>\sum_{\sum\left\|r_{i}\right\|_{p}>L}\left|\hat{B}\left(r_{1}\right)\right| \cdots\left|\hat{B}\left(r_{k}\right)\right| R(\vec{r}),
$$

we will confirm that $I \neq 0$.
The property of L-independence of the set D implies that in any nontrivial solution of ($* *$) there is some r_{i} satisfying $\left\|r_{i}\right\|_{p}>\frac{L}{k}$. The estimates for those r_{i}

$$
\left|\hat{B}\left(r_{i}\right)\right|=\left|\hat{C}\left(r_{i}\right)\right|^{2} \leqslant\left(\frac{p}{2 r_{i}}\right)^{2} \leqslant\left(\frac{k p}{2 L}\right)^{2}
$$

result from Lemma 1.

Denote by $\overrightarrow{r_{j}}=\left(r_{1}, \ldots, r_{j-1}, r_{j+1}, \ldots, r_{k}\right)$, the vector \vec{r} with j th coordinate missing. Substituting this to the previous sum we obtain

$$
\begin{aligned}
& \sum_{\sum\left\|r_{i}\right\|_{p}>L}\left|\hat{B}\left(r_{1}\right)\right| \cdots\left|\hat{B}\left(r_{k}\right)\right| R\left(r_{1}, \ldots, r_{k}\right) \\
& \leqslant\left(\frac{k p}{2 L}\right)^{2} \sum_{j=1}^{k} \sum_{\vec{r}_{j} \in \mathbb{Z}_{p}^{k-1}}\left|\hat{B}\left(r_{1}\right)\right| \cdots\left|\hat{B}\left(r_{j-1}\right)\right|\left|\hat{B}\left(r_{j+1}\right)\right| \cdots\left|\hat{B}\left(r_{k}\right)\right| \\
& \leqslant k\left(\frac{k p}{2 L}\right)^{2} \sum_{\vec{r}_{k} \in \mathbb{Z}_{p}^{k-1}}\left|\hat{B}\left(r_{1}\right)\right| \cdots\left|\hat{B}\left(r_{k-1}\right)\right| .
\end{aligned}
$$

The last sum may be estimated further. Let $S_{p}=\left\{0,1, \ldots, \frac{p-1}{2}\right\}$ and we get

$$
\sum_{\vec{r}_{k} \in \mathbb{Z}_{p}^{k-1}}\left|\hat{B}\left(r_{1}\right)\right| \cdots\left|\hat{B}\left(r_{k-1}\right)\right| \leqslant 2^{k-1} \sum_{\vec{r}_{k} \in S_{p}^{k-1}}\left|\hat{B}\left(r_{1}\right)\right| \cdots\left|\hat{B}\left(r_{k-1}\right)\right| .
$$

Thus, applying Lemma 1 again we get

$$
\begin{aligned}
& \sum_{\sum\left\|r_{i}\right\|_{p}>L}\left|\hat{B}\left(r_{1}\right)\right| \cdots\left|\hat{B}\left(r_{k}\right)\right| R(\vec{r}) \\
& \leqslant k\left(\frac{k p}{2 L}\right)^{2} \cdot 2^{k-1} \cdot\left(\frac{p^{k-1}}{2^{k-1}}\right)^{2} \cdot\left(1+\sum_{r \in S_{p}} \frac{1}{r^{2}}\right)^{k-1} \\
& \leqslant k\left(\frac{k p}{2 L}\right)^{2} \cdot 2^{k-1} \cdot\left(\frac{p^{k-1}}{2^{k-1}}\right)^{2} \cdot\left(1+\frac{\pi^{2}}{2}\right)^{k-1}
\end{aligned}
$$

since $1+\frac{\pi^{2}}{2} \leqslant 3$, we obtain

$$
\sum_{\sum\left\|r_{i}\right\| p>L}\left|\hat{B}\left(r_{1}\right)\right| \cdots\left|\hat{B}\left(r_{k}\right)\right| R(\vec{r}) \leqslant \frac{k^{3} p^{2 k} 3^{k-1}}{2^{k+1} L^{2}} .
$$

So, by the assumption on L we obtain

$$
\sum_{\sum\left\|r_{i}\right\| \|_{p}>L}\left|\hat{B}\left(r_{1}\right)\right| \cdots\left|\hat{B}\left(r_{k}\right)\right| R(\vec{r})<(\varepsilon p)^{2 k} \leqslant|C|^{2 k} .
$$

This completes the proof.
Proof of Theorem 1. Let L be a number satisfying inequalities

$$
\sqrt{\frac{k^{3} 3^{k-1}}{2^{k+1} \varepsilon^{2 k}}}<L<\sqrt[k+1]{p}
$$

Such numbers L exist provided that p is sufficiently large. By Theorem $2, \kappa(D) \geqslant \frac{1}{2}-\varepsilon$ for every L-independent set D. We show that the second inequality implies that almost every set in \mathbb{Z}_{p}^{*} is L-independent. Indeed, the number of sets that are not L-independent is at most

$$
(2 L+1)^{k}\binom{p-1}{k-1}
$$

So, the fraction of those sets in \mathbb{Z}_{p}^{*} is equal

$$
\frac{(2 L+1)^{k}\binom{p-1}{k-1}}{\binom{p-1}{k}}=\frac{(2 L+1)^{k} k}{p-k}<\frac{(2 \sqrt[k+1]{p}+1)^{k} k}{p-k}
$$

The last expression tends to zero with p tending to infinity. This completes the proof, as the ratios of two consecutive primes tend to one.

3. Integer distance graphs

We conclude the paper with a remark concerning integer distance graphs. For a given set D, consider a graph $G(D)$ whose vertices are positive integers, with two vertices a and b joined by an edge if and only if $|a-b| \in D$. Let $\chi(D)$ denote the chromatic number of this graph. It is not hard to see that $\chi(D) \leqslant|D|+1$.

To see a connection to parameter $\kappa(D)$, put $N=\left\lceil\kappa(D)^{-1}\right\rceil$ and split the circle into N intervals $I_{i}=[(i-1) / N, i / N), i=1,2, \ldots, N(c f .[15])$. Let t be a real number such that $\min _{d \in D}\|d t\|=\kappa(D)$. Then define a colouring $c: \mathbb{N} \rightarrow\{1,2, \ldots, N\}$ by $c(a)=i$ if and only if $\{t a\} \in I_{i}$. If $c(a)=c(b)$ then $\{t a\}$ and $\{t b\}$ are in the same interval I_{i}. Hence $\|t a-t b\|<1 / N \leqslant \kappa(D)$, and therefore $|a-b|$ is not in D. This means that c is a proper colouring of a graph $G(D)$. So, we have a relation

$$
\chi(D) \leqslant\left\lceil\frac{1}{\kappa(D)}\right\rceil .
$$

Now, by Theorem 1 we get that $\chi(D) \leqslant 3$ for almost every graph $G(D)$.
A different proof of a stronger version of this result has been recently found by Alon [1]. He also extended the theorem for arbitrary Abelian groups, and posed many intriguing questions for general groups.

Acknowledgments

I would like to thank Tomasz Schoen for an inspiring idea of using independent sets, and to Jarek Grytczuk for stimulating discussions and help in preparation of the manuscript. I thank the anonymous referees for valuable suggestions concerning the merit of the paper. I also acknowledge a support from Polish Ministry of Science and Higher Education (MNiSW) (N N201 271335).

References

[1] N. Alon, The chromatic number of random Cayley graphs, European J. Combin., in press.
[2] J. Barajas, O. Serra, The lonely runner with seven runners, Electron. J. Combin. 15 (1) (2008), Paper R48.
[3] W. Bienia, L. Goddyn, P. Gvozdjak, A. Sebö, M. Tarsi, Flows, view obstructions, and the lonely runner, J. Combin. Theory Ser. B 72 (1) (1998) 1-9.
[4] T. Bohman, R. Holzman, D. Kleitman, Six lonely runners. In honor of Aviezri Fraenkel on the occasion of his 70th birthday, Electron. J. Combin. 8 (2) (2001), Research paper 3, 49 pp . (electronic).
[5] P. Brass, W. Moser, J. Pach, Research Problems in Discrete Geometry, Springer, New York, 2005.
[6] Y.G. Chen, View-obstruction problems and a generalization in E^{n}, Acta Math. Sinica 37 (1994) 551-562.
[7] Y.G. Chen, T.W. Cusick, The view-obstruction problem for n-dimensional cubes, J. Number Theory 74 (1999) 126-133.
[8] T.W. Cusick, View-obstruction problems, Aequationes Math. 9 (1973) 165-170.
[9] T.W. Cusick, C. Pomerance, View-obstruction problems. III, J. Number Theory 19 (2) (1984) 131-139.
[10] S. Czerwiński, J. Grytczuk, Invisible runners in finite fields, Inform. Process. Lett. 108 (2008) 64-67.
[11] L. Goddyn, E. Wong, Tight instances of the lonely runner, Integers 6 (2006), \#A38, 14 pp.
[12] H.L. Montgomery, Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1994.
[13] J. Renault, View-obstruction: a shorter proof for 6 lonely runners, Discrete Math. 287 (1-3) (2004) 93-101.
[14] I. Ruzsa, Arithmetic progressions in sumset, Acta Arith. 60 (2) (1991) 191-202.
[15] I. Ruzsa, Z. Tuza, M. Voigt, Distance graphs with finite chromatic number, J. Combin. Theory Ser. B 85 (2002) 181-187.
[16] J.M. Wills, Zwei Sätze über inhomogene diophantische Approximation von Irrationalzahlen, Monatsch. Math. 71 (1967) 263-269.

[^0]: E-mail address: s.czerwinski@wmie.uz.zgora.pl.

 0097-3165/\$ - see front matter © 2012 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jcta.2012.02.002

