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Summary

Many aspects of physiology and behavior are tempo-
rally organized into daily 24 hr rhythms, driven by an
endogenous circadian clock. Studies in eukaryotes
have identified a network of interacting genes forming
interlocked autoregulatory feedback loops which un-
derlie overt circadian organization in single cells [1,
2]. While in mammals the master oscillator resides in
the suprachiasmatic nuclei of the hypothalamus [2],
semiautonomous circadian oscillators also exist in pe-
ripheral tissues [3-5] and in immortalized fibroblasts,
where rhythmicity is induced following a serum shock
[6, 7]. We used this model system in combination with
high-density cDNA microarrays to examine the magni-
tude and quality of clock control of gene expression
in mammalian cells. Supported by application of novel
bioinformatics tools, we find ~2% of genes, including
expected canonical clock genes, to show consistent
rhythmic circadian expression across five indepen-
dent experiments. Rhythmicity in most of these genes
is novel, and they fall into diverse functional groups,
highlighted by a predominance of transcription fac-
tors, ubiquitin-associated factors, proteasome com-
ponents, and Ras/MAPK signaling pathway compo-
nents. When grouped according to phase, 68% of the
genes were found to peak during estimated subjective
day, 32% during estimated subjective night, with a
tendency to peak at a phase corresponding to antici-
pation of dawn or dusk.

Results and Discussion

To examine circadian expression of mammalian genes,
we used immortalized rat-1 fibroblasts as a model system
of the peripheral clock, with the expectation of identi-
fying genes that might be elements of the central oscilla-
tor and of its input or output pathways, i.e., clock-con-
trolled genes (ccgs). This in vitro system behaves
surprisingly like the suprachiasmatic nucleus (SCN),
which contains the major mammalian circadian oscilla-
tor, and peripheral tissues such as the liver, in that
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known clock genes and ccgs exhibit similar rhythmic
(e.g., per2) and nonrhythmic (e.g., Clock) expression
profiles, adopt normal phase relationships among one
another, and display typical temporal kinetics in re-
sponse to light/serum/pharmacological treatment [1,
3-7]. Five biologically independent experiments were
conducted in which confluent and quiescent cells were
serum treated at time = 0 hr to initiate rhythmicity. RNA
was subsequently harvested every 4 hr over a period of
2 days and used for Northern and RT-PCR analysis and
for RT labeling as targets for microarray analysis. In
control studies, immediate early gene (IEG) expression
and subsequent rhythmicity of previously characterized
genes [6, 7] rPer1 (data not shown) and rPer2 (Figure
1A) were confirmed. IEG expression following serum
shock has been well characterized [8]; 12 well character-
ized IEGs and another 40 genes were identified on our
arrays by their increased expression levels at time = 1
hr (see Supplementary Material including Figure S1 and
Table S1, available with this article online). The excellent
correspondence between expected and identified IEGs
and rhythmic genes confirms the rhythmicity of the cell
cultures and supports the validity of the microarray
assay.

Having established the rhythmic behavior of gene ex-
pression of these RNA collections, cDNA microarrays
were used to investigate the temporal expression pro-
files of RNA from the five experiments. Cy3-labeled DNA
targets were constructed from the time-specific RNA
samples and hybridized to duplicate microarrays, each
consisting of 2147 cDNAs representing 2124 distinct
genes (see Experimental Procedures). Our experimental
design effectively yielded ten individual circadian cycles
of expression data, with five immediately following the
synchronizing serum treatment, and 5 days in free-run.
The CORRCOS algorithm was used to objectively iden-
tify rhythmically expressed genes exhibiting a circadian
periodicity (20-28 hr) [9]. This was applied to individual
experiments and averaged group data (see Experimen-
tal Procedures). Table 1 lists the 41 genes, derived from
44 cDNA probes, that were identified as oscillating, us-
ing the CORRCOS analyses. The range of fluorescent
intensity values, as a measure of transcript abundance,
covers the range of values on the array. The mean =
SD period length of the identified circadian rhythms was
24.1 = 1.3 hr. This compares well with the observations
of Balsalobre et al. [6] of 22.5 = 1.7 hr and a range of
20-27 hr.

As further validation that rhythmicity was being accu-
rately reported, three of the genes identified in the mi-
croarray screen (triose phosphate isomerase, ATP syn-
thase subunit d, and rPer2) were examined using
quantitative real-time RT-PCR for validation purposes
(Figure S2). All three genes showed matching temporal
profiles but with 2-fold greater amplitudes than that
found by microarray analysis. The molecular mechanism
of the circadian clock is comprised of a series of coupled
transcriptional-translational regulatory feedback loops:
three period genes (per1-3) and two cryptochrome
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Figure 1. Validation of Microarray Analysis of
Circadian Rhythmic Gene Expression in the
Fibroblast Cell Culture Model

(A) (Top) Representative Northern blot of rat-1
fibroblast RNA hybridized with a probe for
rPer2 and showing a rhythmic pattern of ex-
pression (6.2 kb band). Samples were col-
lected at time = 0, 1 hr, and every 4 hr through
to 48 hr. Note large induction of rPer2 at 1 hr
and 4 hr and peak of rhythm at ~24 hr and
48 hr. (Bottom left) Densitometric analysis of
the above Northern blot is plotted after nor-
malization using ethidium bromide-stained
28S ribosomal RNA. Values are mean and
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SEM s ratios of median values of three North-
ern blots from experiments 1, 2, and 5. (Bot-
tom right) RNA from time courses in experi-
ments 3 and 4 were examined using
quantitative RT-PCR and show acute serum
cry2 response and rhythmic pattern in rPer2 tran-
script. Values are mean = SEM ratio of ex-
pression relative to medial expression value
from three repeat samples from the same
cDNA source for each of the two experiments
(n = 6).
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ined using microarray analysis show expec-
tant rhythmic and nonrhythmic patterns of
behavior. per2, bmal1 (rat cDNA probe, circle;
mouse cDNA probe, square), and cry1 (left)
show reproducible significant rhythmicity
(p < 0.05, CORRCOS) in group-averaged data
and in all four experiments tested with PPs
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of expression predicated from observations
using Northern blot analysis of rat-1 and
mouse NIH3T3 cells ([6, 7]; Duffield et al.,
2000, SRBR abstract). Consistent with these
other studies, the expression of the clock
gene cry2, the nuclear orphan receptor, ROR
«, and casein kinase I5 were not found to be
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genes (cry1 and cry2) comprise the negative loop, and
their transcription, being driven at consensus E-box ele-
ments by CLOCK:BMALT1 heterodimers, forms the posi-
tive loop. Casein kinase | € (CKle) and 3 (CKI3) phosphor-
ylate PER1 and PER2 and in turn regulate their stability
[1, 2, 10]. cDNA probes on our microarray yielded clear
confirmation of expected rhythmicity among controls:
per2, bmal1, and cry1 showed reproducible significant
rhythmicity with appropriate phasing in all experiments
tested (p < 0.05, CORRCOS; Table 1 and Figure 1B),
while cry2, CKI3, and the nuclear orphan receptor rora
were not found to be rhythmic on the microarrays (Figure
1B), this being consistent with other studies ([6, 7];
G.E.D. et al., 2000, Society for Research on Biological
Rhythms, SRBR, abstract). Overall, the confirmatory RT-
PCR studies and the rhythmic expression of canonical
clock genes per2, cry1,and bmal1 indicate that the other
38 mRNA species are also differentially expressed in a
circadian manner.

rhythmic in rat-1 cells. The immediate early
gene response of per2 is as expected from
the RT-PCR and Northern blot data, with a
clear peak at 1 hr and drop below t = 0 hr
levels at 8 hr. Values are mean = SEM ratio
of time-specific expression relative to medial
expression value from the five independent
experiments (n = 3 to 5 each time point).

A Clock for All Times of Day

All phases of the circadian cycle are represented among
the rhythmic genes (Figure 2A), suggesting diverse path-
ways are used to connect the core oscillatory system
with output. When the genes were grouped according
to phase, the majority (68%) were found to peak between
36 and 44 hr post serum treatment (predicted day, Fig-
ures 2B and 2C), 32% between 24 and 32 hr (predicted
night, Figures 2B and 2C). Within these two groups,
there was a tendency to peak at a phase in the middle
of the day or night or at a phase anticipating onset of
dawn or dusk. This finding is surprisingly similar to that
observed in an analysis of ccg expression in Arabidopsis
[9]. Consistent with this, the only other known ccgs ex-
amined in rat-1 fibroblasts are rev-erb o and D-box bind-
ing protein (dbp), and these also fall within this dominant
group of genes that peak at 16-20 hr and 40-44 hr post
serum shock and that precede the per2 peak by 4-8 hr
[6, 7]. It is noteworthy that the peak in expression of
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Figure 2. All Phases of the Circadian Cycle
Are Represented by the Rhythmic Genes

(A) Six profiles of rhythmic gene expression
were identified from the microarray analysis
clustered according to phase of second peak,
starting at t = 24 hr (top chart) through to t =
42-44 hr (bottom chart). Mean peak phases
represent four experiments, estimated using
CORRCOS algorithm (see Table 1). Values are
mean ratio of time-specific expression rela-

Relative bmalt intensity (ratio)

tive to medial expression value from the five
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genes is that of transcriptional regulators. Nine tran-
scription factors in addition to the three transcription-
associated clock genes were found to oscillate with a
circadian period (Table 1). Expression of these genes
was not all coincident, but, instead, all phases apart
from 24 hr and 36 hr were represented by their mean
peak expression values. Two of these genes, encoding
basic-leucine zipper transcription factor (maf-g) and the
transcriptional enhancer factor ETF-related factor-2
(etf2), exhibit a combination of an immediate response
to serum and a circadian rhythm with a peak phase
(PP) of 28 hr, similar to that seen for per1 and per2,
suggestive of a possible influence on the core oscillatory
mechanism of the circadian clock (Figure 3 and Table 1).
Additional details of transcription factors can be found in
the Supplementary Material and Table S2.

Chromatin modification by deacetylation of histones
can also regulate transcription [18]. Histone deacetylase
1 was found to oscillate in rat-1 cells with a PP of 40-44
hr (predicted late subjective day/dusk). A correlation has
been observed in the SCN between clock resetting by
light and light-induced histone phosphorylation [19],
highlighting a potential role for chromatin modification
in the signaling pathways to the circadian clock. It is
also possible that histone regulation by acetylation/

40
o Time of peak phase (h post serum shock)

estimated peak phase of the second peak of
rhythm.

(B) Based on the peak and nadir phases of
the per2 and bmal1 rhythms, it is possible to
estimate circadian time and subjective night
and day in rat-1 cells. Observations of rat and
mouse peripheral tissues (heart, kidney, lung,
liver, and skeletal muscle) in vivo (e.g., [3, 4])
reveal the per2 rhythm to peak at ~ZT/CT14-
15 (early night) and bmal1 rhythm to peak at
~ZT23-2 (transition between night and day,
dawn; ZT, Zeitgeber time; CT, circadian time).
Since expression of bmal1 and per2 are ap-
propriately rhythmic and phased with respect
to one another and to other rhythmic genes, we
can estimate that 24-32 hr post serum shock
represents night phase and 36-44 hr, day
phase. Values are mean ratio of time-specific
expression relative to medial expression
value from two experiments (per2, RT-PCR
analysis, solid line) and from five experiments
(bmal1, microarray analysis, dashed line).
(C) Histogram of the number of rhythmic genes
at each of the six circadian phases and their
predicted day:night assignment. Twenty-eight
genes (68%) were found to peak during pre-
dicted subjective day, and 13 (32%) during
estimated subjective night. Within these two
groups, there was a tendency to peak at the
phase toward the middle of the day or night
and a phase anticipating onset of dawn or dusk.

42-44

deacetylation and phosphorylation are major systems
by which the clock might orchestrate differential expres-
sion of downstream ccgs.

Protein Turnover

Another major facet of cellular and circadian regulation
is protein turnover. Five cycling genes have functions
in cellular degradation; three encode components of the
ubiquitin system, ubiquitin conjugating enzymes Ube2V
and UbcH?7, and ubiquitin C-terminal hydrolase; two are
components of the proteasome, the C2 component and
o 6 subunit. Additionally, two ubiquitin-like proteins of
unconfirmed function were also identified as circadianly
regulated. All seven genes have similar PPs of ~40 hr
in mRNA abundance (predicted mid-late day). Clearly,
cellular degradation is an event that is under phase-
specific circadian regulation; see Supplementary Mate-
rial also.

Signaling: The Ras/MAPK Pathway, Cell

Movement, and Cell-Cell Interaction

Two genes encoding components of the Ras/MAPK (mi-
togen-activated protein kinase) signaling pathway, the
small Rho like GTPases rac and its activator cdc42, were
identified as oscillating, with peaks in the late subjective
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Figure 3. Microarray Analysis Identified Two Transcription Factors
and an Intercellular Adhesion Protein that Show a per1/per2-like
Pattern of Expression

The transcriptional enhancer factor (ETF-related factor-2), the basic-
leucine zipper transcription factor (maf-g), and the intercellular ad-
hesion molecule (icam1) show consistent peaks in expression be-
tween 1-4 hr and at 24-28 hr. This highlights both an early gene
response and a circadian rhythm with a similar phase to that of the
canonical clock genes per? and per2. Values are mean = SEM ratio
of time-specific expression relative to medial expression value from
the five independent experiments (n = 3 to 5 each time point). Gray
bars indicate CORRCOS estimated phase of the second peak of
rhythm.

day (40-44 hr). The Ras/MAPK signaling pathway has
been linked to both input to and output (ccgs) from the
circadian oscillator. Ras/MAPK signaling is implicated
in light-induced phase shifting of the SCN clock [20], in
inducing rhythmicity in fibroblasts [21], and in circadian
output in Drosophila [22, 23]. Indeed, the concurrent
study of Akhtar et al. [16] of mouse liver also identified
ccg expression of components of the Ras/MAPK path-
way. Light during subjective day is unable to trigger the
MAPK pathway in the SCN, nor phase shift the clock
[20]. That is, light input is gated [24], and since both
cdc42 and rac expression profiles peak late in the day,
a rhythm in components of the Ras pathway could en-
hance the sensitivity of the cell to extracellular changes
at the transition from light to dark.

The activated Rho GTPases Rac and Cdc42 also regu-
late integrins, cell surface adhesion molecules, via ef-
fects on the actin cytoskeleton; and the gene product
of intercellular adhesion molecule 1 (icam1, PP 28 hr)
interacts with integrins in regulation of cellular adhesion
to the extracellular matrix [25]. Rho and Ras GTPases
are pivotal regulators of cellular migration, through mod-

ifications of the actin cytoskeleton; movement is ef-
fected in part by myosin alkali light chain, whose mRNA
is also circadianly regulated in rat-1 cells (PP 43 hr).
Another related GTPase, Ras acting through MAPK,
leads to phosphorylation of myosin light chain kinase,
which in turn phosphorylates myosin, causing increased
contraction of actin-myosin filaments [26]. Advillin,
which is rhythmically expressed (PP 39 hr), shares 59%
amino acid sequence homology with the actin binding
protein Gelsolin, which is a downstream effector of Rac
signaling [27]. The finding that cdc42, rac, myosin alkali
light chain, and advillin mRNA all peak at a similar phase
highlights a possible gating of migration in the fibro-
blasts. Genes encoding VEGF and Annexin V are also
circadianly regulated: VEGF binds to its extracellular
receptor VEGFR-2 to promote cell proliferation, migra-
tion, and permeability, and Annexin V interacts directly
with the intracellular domain of the VEGFR-2 [28].

Circadian regulation of icam1 (CD54) also bears signif-
icance in the context of another rhythmic adhesion pro-
tein, polysialylated neural cell adhesion molecule (PSA-
NCAM, CD56), which peaks during the subjective day in
the hamster SCN (J.D. Glass, personal communication),
and has been implicated in circadian rhythm function in
the SCN [29]. icam1 expression is also striking, since it
exhibits a combination of an immediate early response
to serum and a circadian rhythm with a PP of 28 hr,
similar to that seen for per1 and per2 (Figure 3 and Table
1, see also Transcriptional Regulation, above). Based
on the observations of NCAM in the SCN, we speculate
that ICAM1 and cell adhesion processes may have a
role in the maintenance of circadian rhythms in fibro-
blasts. Note that two other cellular adhesion molecules,
Vcam1 and Glycam1, were identified as ccgs in mouse
liver and hypothalamus, respectively ([16]; C.P. Kyriacou
and M.H. Hastings, personal communication), making
extracellular adhesion a common theme in different
tissues.

Conclusions

The current study has identified a set of genes that are
under clock control, and, while some fall into a small
number of key functional groups, it is the diversity of
functional groups that is perhaps most striking. We used
a cell culture system to estimate the significance of
circadian regulation of gene expression in these cells
and in the organism. Despite sampling only a portion of
the genome, the proportion of ccgs we found, ~2%, is
quite consistent with other available analyses from
whole organisms from a variety of taxa: 2% and 6% in
Arabidopsis [9, 30], 2% in Neurospora (M. Nowrousian,
J.J. Loros and J.C. Dunlap, unpublished data), 1%-4%
in Drosophila [23, 31], and 9% in the mouse liver [16].
While there are small differences in these values due
to methodological and analytical differences between
studies and between species and tissue, the global simi-
larities are apparent: circadian regulation is a notable but
not a common aspect of gene expression. It is difficult to
gauge how this proportion of circadian mRNA regulation
(1%-9%) willimpact regulation at the physiological level.
Precedents clearly exist for robust posttranscriptional
circadian regulation as in Neurospora WC-1 [32], and
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circadian regulation of the cellular protein turnover ap-
paratus (see above) provides an additional mechanism
by which this could occur.

Supplementary Material

Supplementary Material including additional data, figures, tables,
Results, Discussion, and the Experimental Procedures are available
at http://images.cellpress.com/supmat/supmatin.htm.
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