Complexity of Grammars by Group Theoretic Methods

John Rhodes* and Eliahu Shamir ${ }^{\dagger}$
Department of Mathematics, University of California, Berkeley, California 94720
Communicated by Gian-Carlo Rota

Abstract

Let \mathscr{G} be a context free (phrase) structure grammar generating the context free language L. The set $P=P(\mathscr{G})$ of all "generation histories" of words in L can be coded as words in some augmented alphabet. It is proved here that $P=R \cap G$ where R is a regular (finite automaton definable) set and G is a "free group kernel" or Dyck set, a result first proved by Chomsky and Schützenberger [3].

We can construct the lower central series of the free group kernel $$
G_{1} \supset G_{2} \supset \cdots \supset G_{n} \supset \ldots
$$ so $\cap G_{n}=G$. Let $P_{n}=R \cap G_{n}$, so $\cap P_{n}=P . P_{n}$ is the n-th order approximation of P. P_{n} need not be a context free language but it can be computed by n cascade or sequential banks of counters (integers). We give two equivalent characterizations of P_{n}, one "grammatical" and one "statistical," which follow from the theorems of Magnus, Witt, M. Hall, etc. for free groups. The main new theoretical tool used here for the study of grammars is the Magnus transform on the free group, $a \rightarrow 1+a$, $a^{-1} \rightarrow 1-a+a^{2}-a^{3}+a^{4} \ldots$, which acts like a non-commutative Fourier transform.

1. Introduction

Let V be a finite set. ΣV is the free non-commutative semigroup without identity generated by V. A context free (phrase) structure grammar \mathscr{G} over V is given by a finite set of rewriting rules

$$
\begin{equation*}
\xi_{i} \rightarrow a_{i}, \quad \xi_{i} \in V, \quad a_{i} \in \Sigma V, \quad 1 \leqslant i \leqslant n \tag{1.1}
\end{equation*}
$$

For $x, y \in \sum V, x \Rightarrow y$ signifies that
$x=u \xi_{i} v, \quad y=u a_{i} v \quad$ and $\quad \xi_{i} \rightarrow a_{i} \quad$ for some $\quad 1 \leqslant i \leqslant n$.

[^0]We write

$$
\begin{equation*}
x \Rightarrow \Rightarrow z \quad \text { if } x=y_{0} \Rightarrow y_{1} \Rightarrow \cdots \Rightarrow y_{r}=z, \quad r \geqslant 0 \tag{1.3}
\end{equation*}
$$

for suitable y_{1}, \ldots, y_{r} in ΣV. By taking $r=0$, we see that $x \Rightarrow x$ is always true. The set $V_{1}=\left\{\xi_{i}: 1 \leqslant i \leqslant n\right\}$ is the set of auxiliaries and $V_{2}=V-V_{1}$ is the set of terminals.

The set of words

$$
\begin{equation*}
L_{i}(\mathscr{G})=\left\{x \in \sum V_{2}: \xi_{i} \Rightarrow \Rightarrow x\right\} \tag{1.4}
\end{equation*}
$$

is called the language generated by \mathscr{G} with ξ_{i} as initial symbol; and, abstractly, L is called a context free ($C F$) language iff it can be obtained as $L_{i}(\mathscr{G})$ for some \mathscr{G}. An algorithm (a decision procedure) for the relation $x \in L_{i}(\mathscr{G})$ exists, but the actual computation is quite tedious (in particular it involves finding all the generation histories of x). In fact the very definition (1.4) makes it hopeless to give a direct characterization of the language $L_{i}(\mathscr{G})$ in an "easily computable" form.

One can pose the same general questions, not for $L_{i}(\mathscr{G})$, but for the set of all "generation histories" of words in $L_{i}(\mathscr{G})$. These generations can be coded as linear words in some augmented alphabet-and these codes will be called phrase-markers. We can indeed characterize the collection of all phrase-markers, $P(\mathscr{G})$, as the intersection of a regular (finite automaton definable) set and a "free group kernel" (or Dyck set). This result (which under some slight restriction on the form of \mathscr{G}, was first proved by Chomsky and Schützenberger) is proved in Section 2. Our straightforward proof is obtained by separating the canonical role of bracketing engendered in all phrase structures (the free group kernel) from the particular form of the rewriting rule given by the specified grammar (the regular set).

Next we use the representation of the set $P=P(\mathscr{G})$ of phrase-markers above to construct approximations P_{n} of P which are easier to compute. Let $P=R \cap G$ where R is a regular set and G is a free group kernel (or Dyck set). Using some classical group theoretic results (which for the convenience of the reader are reviewed in Section 3 and the appendix of this paper) we can construct the lower central series of the free group kernel

$$
G_{1} \supset G_{2} \supset \cdots \supset G_{n} \supset \cdots
$$

so that $\cap\left\{G_{k}: k=1,2,3, \ldots\right\}=G$. And thus

$$
P_{1} \supset P_{2} \supset \cdots \supset P_{n} \supset \cdots, \quad \cap\left\{P_{k}: k=1,2,3, \ldots\right\}=P
$$

where $P_{n}=R \cap G_{n} . P_{n}$ is the nth order approximation of P.
P_{n} need not be a context free (phrase structure) language, but this is of
little importance. However, P_{n} can be computed by n cascade or sequential banks of counters (the integers). Hence, it is "easy to compute P_{n}."

Further, we can give the following two equivalent characterizations of $P_{n}:$ (a) We call the elements in the free group kernel (i.e., those elements which represent the identity) "grammatical." The standard collection process of free group elements [4, Chapter 11] can be likened to a human or a machine reading a string and trying to compute its grammatical status. Then P_{n} consists of those strings in R whose grammatical construction is correct up to depth n; that is, when they are unraveled up nth commutators, they agree with some string in P (or equivalently in G). By the same token, the set R (which is regular and determined by local conditions only) can be considered as the set of strings whose "spelling" is correct. Thus $x \in P_{n}$ if and only if the spelling is correct and the grammatical constructions are correct up to depth n. (b) P_{n} consists of those strings in R which agree with a string in P (or equivalently in G) up to " nth order statistical information." For two positive strings (meaning no inverses occur) t and r, we say that t and r agree up to " nth order statistical information" iff the number of times s occurs as a subsequence of t and r is the same for all sequences s of length $\leqslant n$. This concept is generalized to arbitrary strings via the Magnus transform.

The main new theoretical tool used here for the study of grammars is the Magnus transform, $a \rightarrow 1+a, a^{-1} \rightarrow 1-a+a^{2}-a^{3}+a^{4}-\cdots$, which is essentially a non-commutative Fourier transform. In changing the strings of $\sum A$ into statistical coordinates via this transform, we find sequential computations with counters easy and natural to perform. Further, by (a) and (b) above, we see that these coordinates have a natural grammatical interpretation since (by well-known theorems) these coordinates are simply related to nth order commutators and " nth order statistical information."

It seems remarkable that, from only the context free phrase structure grammar assumption, we can show that humans and machines which employ structural approximations to those grammars actually use language on a statistical basis.

The results contained herein were formulated by the authors during a seminar entitled "Mathematical Theory of Languages" given at the University of California, Spring 1964, by Professor E. Spanier and the authors. We thank Professor Spanier and Mr. B. F. Wells for stimulating conversations and lectures. The first named authors also thanks Dr. S. Ginsburg, whose publications and lectures aroused his interest in languages.

We thank Mr. Y. Zalcstein and Mr. W. Leffler for their generous help in preparing this manuscript.

2. Recognition of Phrase-Markers

Let \mathscr{G} be a context free grammar with vocabulary V and rewriting rules

$$
\begin{gather*}
\xi_{p} \rightarrow a_{p}=a_{p 1} \cdots a_{p \pi(p)}, \quad 1 \leqslant p \leqslant m, \quad \xi_{p} \in V, \tag{2.1}\\
a_{p} \in \sum V, \quad a_{p j} \in V .
\end{gather*}
$$

The set $\left\{\xi_{p}: 1 \leqslant p \leqslant m\right\}$ is the set of auxiliary symbols of \mathscr{G}.
Consider a set $V^{\#}$ which we take to be disjoint from V with

$$
V^{\#}=\left\{A_{p q}: 1 \leqslant p \leqslant m, 0 \leqslant q \leqslant \pi(p)\right\}
$$

Define $\varphi: V^{\#} \rightarrow V$ by $\varphi\left(A_{p q}\right)=a_{p q}$ for $q>0$ and $\varphi\left(A_{p 0}\right)=\xi_{p}$. Thus we have made the $A_{p q}$ formally different even they denote the same element of V (under φ). We extend φ to a length preserving homomorphism $\varphi: \Sigma V^{\#} \rightarrow \Sigma V$ by $\varphi\left(x_{1}, \ldots, x_{n}\right)=\left(\varphi\left(x_{1}\right), \ldots, \varphi\left(x_{n}\right)\right)$. We define an equivalence relation \sim on $V^{\#}$ by $x, y \in V^{\#}, x \sim y$ iff $\varphi(x)=\varphi(y)$.

We also consider a new grammar \mathscr{G}^{*} with vocabulary

$$
V^{*}=V^{\#} \cup\left\{L_{p q}^{j}, R_{p q}^{j}: 1 \leqslant p \leqslant m \text { and } A_{j 0} \sim A_{p q}\right\}
$$

and rewriting rules

$$
\begin{align*}
& A_{j 0} \rightarrow L_{p q}^{j} A_{j 1} \cdots A_{j \pi(j)} R_{p q}^{j} \quad \text { for } \quad(p, q, j) \tag{2.2a}\\
& \text { satisfying } A_{j 0} \sim A_{p q}, \\
& A_{p q} \rightarrow A_{j 0} \quad \text { if } \quad A_{p q} \sim A_{j 0} \tag{2.2b}
\end{align*}
$$

We say that ($L_{p q}^{j}, R_{p q}^{j}$) is a matching pair of $L-R$ symbols when (p, q, j) satisfies $A_{j 0} \sim A_{p q}$.

If $A_{p q} \sim A_{j 0}$, then the triple

$$
D=(x, j, y)=\left(u A_{p q} v, j, u A_{j 1} \cdots A_{j \boldsymbol{\pi}(j)} v\right)
$$

with $x, y \in \sum V^{\#}$ is called a direct generation of \mathscr{G} with left component x and right component y. A sequence D_{1}, \ldots, D_{n} of direct generations is connected iff
$D_{i}=\left(x_{i}, j_{i}, y_{i}\right), \quad 1 \leqslant i \leqslant n, \quad \varphi\left(y_{i}\right)=\varphi\left(x_{i+1}\right) \quad$ for $1 \leqslant i \leqslant n-1$.
A generation of \mathscr{G} is a connected sequence D_{1}, \ldots, D_{n} of direct generations. A j-derivation of $y \in \Sigma V^{\#}$ in \mathscr{G} is a generation D_{1}, \ldots, D_{n} of \mathscr{G} such that the left component of D_{1} is $A_{j 1} \cdots A_{j \pi(j)}$ and the right component of D_{n} is y.

Clearly, if there exists a j-derivations of y in \mathscr{G}, then $\varphi\left(A_{j 0}\right) \Rightarrow \Rightarrow \varphi(y)$. Conversely, if $s \Rightarrow \Rightarrow w$ in $\mathscr{G}, s \neq w, s=\varphi\left(A_{j 0}\right)$, then for some $y \in \sum V^{\#}$, $w=\varphi(y)$ and there exists a j-derivation of y in \mathscr{G}.

A direct generation in $\mathscr{G} *$ is a triple

$$
E=(x, j, y)=\left(u^{*} A_{p q} v^{*}, j, u^{*} L_{p q}^{j} A_{j 1} \cdots A_{j \pi(j)} R_{p q}^{j} v^{*}\right)
$$

where $A_{p q} \sim A_{j 0}$. The definitions of generation and j-derivation in \mathscr{G}^{*} are exactly the same as those for \mathscr{G} except that \mathscr{G} is replaced by \mathscr{G}^{*} and $V^{\#}$ by V^{*}.

We define a homomorphism $h: \sum V^{*} \rightarrow\left(\Sigma V^{\#}\right)^{1}$ (where for an arbitrary semigroup $S, S^{\text {I }}$ is obtained from S by adjoining a new symbol 1 and letting it operate as the identity if S has none, and letting $S^{1}=S$ otherwise)

$$
h\left(A_{p q}\right)=A_{p q}, h\left(L_{p q}^{j}\right)=h\left(R_{p q}^{j}\right)=1 .
$$

For $x=\left(x_{1}, \ldots, x_{n}\right) \in \sum X$, let $|x|=n$ (the length of x). Also let $|1|=0$.

Lemma 2.1. Let D_{1}, \ldots, D_{n} be a j-generation of \mathscr{G}. Then there exists a unique generation E_{1}, \ldots, E_{n} of \mathscr{G}^{*} such that for $1 \leqslant i \leqslant n$ we have:

$$
\begin{equation*}
\text { if } D_{i}=\left(x_{i}, j_{i}, y_{i}\right), \text { then } E_{i}=\left(x_{i}^{*}, j_{i}, y_{i}^{*}\right) \tag{2.3a}
\end{equation*}
$$

where $x_{i}=h\left(x_{i}^{*}\right)$ and $y_{i}=h\left(y_{i}^{*}\right)$. (Note also that $x_{i+1}=y_{i}$ and $x_{i+1}^{*}=y_{i}^{*}$ for $1 \leqslant i \leqslant n-1$.) Further, if $\pi(p) \geqslant 2$ for $1 \leqslant p \leqslant n$, i.e., all the rewriting rules of (2.1) are strictly length increasing, then

$$
\begin{equation*}
\left|x_{i}^{*}\right| \leqslant 2\left|x_{i}\right|, \quad\left|y_{i}^{*}\right| \leqslant 2\left|y_{i}\right| \tag{2.3b}
\end{equation*}
$$

Proof: We construct E_{1}, \ldots, E_{n} inductively. Given $A_{j 1} \cdots A_{j \pi(j)}=u A_{j q} v$ and $D_{1}=\left(A_{j 1} \cdots A_{j \pi(j)}, k, u A_{k 1} \cdots A_{k \pi(k)} v\right)$ let

$$
E_{1}=\left(A_{i 1} \cdots A_{j \pi(j)}, k, u L_{j q}^{k} A_{k 1} \cdots A_{k \pi(k)} R_{j q}^{k} v\right)
$$

Assume that E_{1}, \ldots, E_{i} have been defined and satisfy (2.3a), and let

$$
D_{i}=\left(\ldots, \ldots, u A_{s t} v\right), \quad D_{i+1}=\left(u A_{s t} v, l, u A_{l 1} \cdots A_{l \pi(l)} v\right)
$$

and

$$
E_{i}=\left(\ldots, \ldots, u^{*} A_{s t} v^{*}\right)
$$

where by induction $u=h\left(u^{*}\right), v=h\left(v^{*}\right)$. Let

$$
E_{i+1}=\left(u^{*} A_{s t} v^{*}, l, u^{*} L_{s t}^{l} A_{l 1} \cdots A_{l \pi(l)} R_{s t}^{b} v^{*}\right)
$$

Then clearly E_{i+1} satisfies (2.3a). This proves (2.3a).

Now (2.3b) is immediate for $i=1$ and by the above construction the right component of D_{i+1} has length

$$
(|u|+|v|+1)+(\pi(l)-1)
$$

while the right component of E_{i+1} has length

$$
\left(\left|u^{*}\right|+\left|v^{*}\right|+1\right)+(\pi(l)+1)
$$

Now by induction hypothesis,

$$
\left|u^{*}\right|+\left|v^{*}\right|+1 \leqslant 2(|u|+|v|+1)
$$

Hence

$$
\left(\left|u^{*}\right|+\left|v^{*}\right|+1\right)+(\pi(l)+1) \leqslant 2[(|u|+|v|+1)+\pi(l)-1]
$$

and so (2.3b) is proved.
The sequence E_{1}, \ldots, E_{n} is thus a code for the generation D_{1}, \ldots, D_{n}. However, the right component of E_{n} contains essentially all the information about the generation, except for its order. More precisely, an interchange of two consecutive generations D_{i}, D_{i+1} will not change the right component of E_{n} when D_{i} and D_{i+1} only rewrite two distinct symbols of the right component of D_{i-1}.

We call the right component of E_{n} the phrase-marker of D_{1}, \ldots, D_{n} and define two generations to be equivalent iff they give rise to the same phrase-marker. (If one represents the generation in "tree form," then two generations are equivalent iff they have the same tree.) We also include $A_{p 1} \cdots A_{p \pi(p)}$ among the phrase-markers of the j-derivations of \mathscr{G}.

We now define subsets K_{1}, K_{2} of

$$
\sum\left\{A_{p q}, L_{p q}^{j}, R_{p q}^{j}: 1 \leqslant p, j \leqslant m, 0 \leqslant q \leqslant \pi(p), A_{j 0} \sim A_{p q}\right\}
$$

as follows: K_{1} is the smallest set containing

$$
\sum\left\{A_{p q}: 1 \leqslant p \leqslant m, 0 \leqslant q \leqslant \pi(p)\right\}
$$

such that if $x, y \in K_{1}$, then $x y \in K_{1}$ and $L_{p q}^{j} x R_{p q}^{j} \in K_{1} . K_{1}$ is called the free half-group kernel.
K_{2} is the smallest set containing $\sum\left\{A_{p q}: 1 \leqslant p \leqslant m, 0 \leqslant q \leqslant \pi(p)\right\}$ such that if $x, y \in K_{2}$ then $x y \in K_{2}, L_{p q}^{j} x R_{p q}^{j} \in K_{2}$, and $R_{p q}^{j} x L_{p q}^{j} \in K_{2} . K_{2}$ is called the free group kernel.

Theorem 1. There is a regular set F_{j} such that the set of all phrasemarkers of j-derivations of \mathscr{G} is given by $K_{1} \cap F_{j}$. Moreover,

$$
K_{1} \cap F_{j}=K_{2} \cap F_{j}
$$

Proof: We construct a finite automaton \mathscr{M} which will defined (or accept) all the sets F_{j} by suitable choice of initial and final states.

The alphabet of \mathscr{M} is

$$
X=\left\{A_{p q}, L_{p q}^{j}, R_{p q}^{j}: 1 \leqslant p \leqslant m, 0 \leqslant q \leqslant \pi(p), A_{j 0} \sim A_{p q}\right\}
$$

The set of states is

$$
Q=\left\{\alpha_{p q}: 1 \leqslant p \leqslant m, \quad 0 \leqslant q \leqslant \pi(p)\right\} \cup\left\{\beta^{j}: 1 \leqslant j \leqslant m\right\} \cup\{\gamma\}
$$

The next state function $M: Q \times Y \rightarrow Q$ is defined by the following transition rules

$$
\begin{align*}
M\left(\alpha_{p q}, L_{p q}^{k}\right) & =\alpha_{k 1}(\text { an } L \text {-transition }) \tag{2.4a}\\
M\left(\beta^{k}, R_{p q}^{k}\right) & =\left\{\begin{array}{ll}
\alpha_{p, q+1} & \text { if } q \neq \pi(p) \\
\beta^{p} & \text { if } \\
q=\pi(p)
\end{array} \text { (an } R\right. \text { transition) } \\
M\left(\alpha_{p q}, A_{p q}\right) & =\left\{\begin{array}{ll}
\alpha_{p, q+1} & \text { if } q \neq \pi(p) \\
\beta^{p} & \text { if } q=\pi(p)
\end{array} \text { (an } A\right. \text { transition) } \\
M(s, x) & =\gamma \text { in all other cases (an absorbing transition) } \tag{2.4~d}
\end{align*}
$$

As usual we extend M to $Q \times\left(\sum X\right)^{1}$ by

$$
M(s, 1)=s \quad \text { and } \quad M(s, x y)=M(M(s, x), y)
$$

The proof of Theorem 1 proceeds via Lemmas 2.2-2.4.
Lemma 2.2. Let z be a phrase-marker of a j-derivation of \mathscr{G}. Then $z \in K_{1}$ and $M\left(\alpha_{j 1}, z\right)=\beta^{j}$.

Lemma 2.3. Let $z \in K_{1}$, and let $M\left(\alpha_{j 1}, z\right)=\beta^{j}$. Then z is a phrasemarker of a j-derivation of \mathscr{G}.

Proof of Lemma 2.2: By (2.3a) there is an associated j-derivation of $\mathscr{G}^{*}, E_{1}, \ldots, E_{n}$ such that z is the right component of E_{n}. Let

$$
E_{n}=\left(u A_{p q} v, k, u L_{p q}^{k} A_{k 1} \cdots A_{k \pi(k)} R_{p q}^{k} v=z\right)
$$

We proceed by induction on n. Since the (inductive) proof that $z \in K_{1}$ is trivial, and since $M\left(\alpha_{j 1}, A_{j 1} \cdots A_{j \pi(j)}\right)=\beta^{j}$ is immediately verified, it suffices to show that

$$
\begin{equation*}
M\left(\alpha_{j 1}, u A_{p q} v\right)=\beta^{j} \quad \text { implies } \quad M\left(\alpha_{j 1}, z\right)=\beta^{j} \tag{2.5}
\end{equation*}
$$

Now $M\left(\alpha_{j 1}, u A_{p q}\right)=M\left(M\left(\alpha_{j 1}, u\right), A_{p q}\right) \neq \gamma$ so by (2.4) we see that this state was obtained by an A-transition.

Thus

$$
\begin{align*}
& M\left(\alpha_{j 1}, u\right)=\alpha_{p q} \quad \text { and } \quad M\left(\alpha_{f 1}, u A_{p q}\right)=\alpha_{p, \alpha+1} \\
& \left(\text { or } \beta^{p} \text { if } q=\pi(p)\right) ; \tag{2.6}
\end{align*}
$$

continuing along the initial substrings of z we have

$$
\begin{align*}
M\left(\alpha_{j 1}, u L_{p q}^{k} A_{k 1} \cdots A_{k \pi(k)} R_{p q}^{k}\right) & =M\left(\alpha_{p q}, L_{p q}^{k} A_{k 1} \cdots A_{k \pi(k)} R_{p q}^{k}\right) \\
& =M\left(\beta^{k}, R_{p q}^{k}\right) \\
& =\alpha_{p, q+1}\left(\text { or } \beta^{p} \text { if } q=\pi(p)\right) \tag{2.7}
\end{align*}
$$

Now from (2.6) and (2.7) and the hypothesis of (2.5):

$$
M\left(\alpha_{j 1}, z\right)=M\left(\alpha_{p, q+1}, v\right)=M\left(\alpha_{j 1}, u A_{p q} v\right)=\beta^{j}
$$

This proves Lemma 2.2.
Proof of Lemma 2.3: Since $z \in K_{1}$, we have either

$$
z=x \in \sum\left\{A_{p q}: 1 \leqslant p \leqslant m, 0 \leqslant q \leqslant \pi(p)\right\}
$$

or

$$
\begin{gather*}
z=u L_{p q}^{k} x R_{p q}^{k} v \text { for some } u, v \in K_{1} \text { and } \\
x \in \sum\left\{A_{p q}: 1 \leqslant p \leqslant m, 0 \leqslant q \leqslant \pi(p)\right\} \tag{2.8}
\end{gather*}
$$

and also $u A_{p q} v \in K_{1}$. We claim that in this case

$$
\begin{equation*}
M\left(\alpha_{j 1}, u A_{p q} v\right)=\beta^{j}=M\left(\alpha_{j 1}, z\right) . \tag{2.9}
\end{equation*}
$$

Indeed

$$
\begin{equation*}
M\left(\alpha_{j 1}, u L_{p q}^{k}\right)=M\left(M\left(\alpha_{j 1}, u\right), L_{p q}^{k}\right) \neq \gamma . \tag{2.10}
\end{equation*}
$$

So the left transitions was an L-transition and

$$
\begin{gather*}
M\left(\alpha_{j_{1}}, u\right)=\alpha_{p q} \tag{2.11}\\
M\left(\alpha_{j 1}, u L_{p q}^{k}\right)=\alpha_{k 1} . \tag{2.12}
\end{gather*}
$$

Again, since we do not encounter any absorbing transitions,

$$
\begin{gather*}
M\left(\alpha_{j 1}, u L_{p q}^{k} \gamma R_{p q}^{k}\right)=\alpha_{p, \alpha+1} \quad\left(\text { or } \beta^{v} \text { if } q=\pi(p)\right), \tag{2.13}\\
M\left(\alpha_{j 1}, u L_{p q}^{k} x\right)=\beta^{k .} . \tag{2.14}
\end{gather*}
$$

From (2.11) we obtain

$$
M\left(\alpha_{j 1}, u A_{p q}\right)=\alpha_{p, q+1} \quad\left(\text { or } \beta^{p} \text { if } q=\pi(p)\right) .
$$

Comparing this with (2.13), we clearly obtain (2.19). Now by comparing (2.12) with (2.14), we have

$$
\begin{equation*}
M\left(\alpha_{k 1}, x\right)=\beta^{k} \tag{2.15}
\end{equation*}
$$

Since $x \in \sum\left\{A_{p q}\right\}$, the only transitions in (2.15) are of type A, and (2.15) is possible only if

$$
\begin{equation*}
x=A_{k 1} \cdots A_{k \pi(k)} \tag{2.16}
\end{equation*}
$$

In particular if $x=z$ (then (2.15) holds with $k=j$), we find z is the phrase-marker of the trivial j-derivation. Otherwise we proceed by induction (on the length of z). By induction hypothesis and (2.9), we have $u A_{p q} v$ the phrase-marker of E_{1}, \ldots, E_{r}. Consequently by (2.16), z itself will be the phrase-marker of E_{1}, \ldots, E_{r+1} where

$$
E_{r+1}=\left(u A_{p q} v, k, u L_{p q}^{k} A_{k \mathbf{1}} \cdots A_{k \pi(k)} R_{p q}^{k} v\right)
$$

This proves Lemma 2.3 .
Lemmas 2.2 and 2.3 clearly establish Theorem 1, except for the last assertion, which will follow from the next lemma.

Lemma 2.4. Let $x \in \sum\left\{A_{p q}: 1 \leqslant p \leqslant m, 0 \leqslant q \leqslant \pi(p)\right\}$ and let $M\left(s, R_{p q}^{k} x L_{p q^{\prime}}^{k}\right)=s^{\prime}$ with $s, s^{\prime} \neq \gamma$. Then $q<q^{\prime}$.

Proof: Indeed by (2.4) s must be β^{k} and $M\left(s, R_{p q}^{k}\right)=\alpha_{p, q+1}$, cannot be β^{p} since the next transition cannot be of type R; indeed if $x \neq 1$ the next transition must be of type A and any additional transition increases the second index of the state until finally (or immediately if $x=1$) we end with an L transition with $q^{\prime}>q$. This proves Lemma 2.4.

Now we can prove that $K_{1} \cap F_{j}=K_{2} \cap F_{j}$. If not, there is a $z \in K_{2} \cap F_{j}$ with $z \notin K_{1}$. Then every substring of z (we say x is a substring of y iff $y=u x v$ for some u, v) effects a non-absorbing transition of the automaton (starting from some state) and there is a substring w of the form

$$
w=R_{\mathrm{oq}}^{0} x_{1} L_{\mathrm{oq}}^{1} y_{1} R_{\mathrm{oq}} x_{2} \cdots x_{s-1} L_{\mathrm{oq}} y_{s} y_{s} R_{\mathrm{oq}} x_{s} L_{\mathrm{oq}}^{0}
$$

where $L_{\mathrm{o} q_{j}}$ and $R_{o q_{j}}(0 \leqslant j \leqslant s)$ match (we have omitted the upper index and the first lower index), and where $x_{j} \in \sum\left\{A_{p q}\right\}$ (and $y_{j} \in K_{1}$, but we will not use this fact). But then, by Lemma 2.4, $q_{0}<q_{1}<\cdots<q_{s}<q_{0}$ (in case $s=0$, we have $q_{0}<q_{0}$ too) and this is a contradiction.

This proves Theorem 1.
Corollary 1. If $L=L(\mathscr{G})$ is the language generated by the auxiliary
symbol $\xi=\varphi\left(A_{j_{0}}\right)$, then there is a regular set F and a non-length increasing homomorphism $\psi: \sum V^{*} \rightarrow\left(\sum V\right)^{1}$ such that

$$
L=\psi\left(K_{1} \cap F\right)=\psi\left(K_{2} \cap F\right)
$$

Proof: Let $F_{j}^{\prime}=\left\{z \in F_{j}: z\right.$ contains no $A_{p 0}$ and no $A_{p q}$ with $A_{p q} \sim A_{j 0}$, $1 \leqslant j, p \leqslant m\}$. Then $F_{j}^{\prime} \cap K_{1}$ is the set of all terminated j-derivations of \mathscr{G}. Let

$$
F=\cup\left\{F_{j}^{\prime}: \varphi\left(A_{j 0}\right)=\xi\right\}
$$

Clearly F is regular since F_{j} is regular. Let $\psi\left(A_{p q}\right)=\varphi\left(A_{p q}\right)$ for $q \geqslant 1$ and let $\psi\left(L_{p q}^{j}\right)=\psi\left(R_{p q}^{j}\right)=\psi\left(A_{p 0}\right)=1$. That is, $\psi=\varphi h$. Corollary 1 now follows from Theorem 1.

Remark 2.1. (a) If \mathscr{G} has only strictly length increasing rules (2.1) (i.e., $\pi(p) \geqslant 2$ in all the rules), then

$$
K_{1} \cap F=K_{1} \cap F \cap E=K_{2} \cap F \cap E
$$

where E is the regular set $\{t:|t| \leqslant 2|h(t)|\}$. The proof is immediate by Lemma 2.1.
(b) We note in passing that neither of the restrictions that we have put on the grammar, namely that $1 \leqslant \pi(p)$ (i.e., no rule $\xi_{i} \rightarrow 1$) and that $2 \leqslant \pi(p)$ (i.e., that all rules are strictly length increasing) involves a loss of generality, as has been shown in [1].
(c) The finite semigroup of the reduced automaton defining F of Corollary 1 has no subgroups of order greater than one.

3. Approximation of Free Group and Free Half-Group Kernels

Let A be a set. ($\left.\sum A\right)^{1}$ is the free semigroup with identity generated by A; i.e., $\left(\sum A\right)^{1}=\left\{\left(a_{1}, \ldots, a_{n}\right): n \geqslant 0\right.$ and $a_{i} \in A$ for $\left.i=1, \ldots, n\right\}$ with concatenation serving as the multiplication in $\left(\sum A\right)^{1}$.

Let $\bar{A}=\{\bar{a}: a \in A\}$ where $A \cap \bar{A}$ is empty.
Let $W_{n}(A)=\left\{t \in\left(\sum A\right)^{1}:|t| \leqslant n\right\}$ for $n=1,2, \ldots, \omega$, and $W_{\omega}=\left(\sum A\right)^{1}$.
Let Z be the ring of integers.
Let $R_{n}(A), n=1,2, \ldots, \omega$ be the set of integer valued functions on $W_{n}(A)$.
For $f \in R_{n}(A), t \in\left(\sum A\right)^{1}$ we denote $f(t)$ by $\langle f, t\rangle$. Then f can be represented as $\sum\left\{\langle f, t\rangle t: t \in\left(\sum A\right)^{1}\right\}$ and we will identify f with its formal expansion. R_{n} can be given a ring structure by defining

$$
\begin{aligned}
\langle f+g, t\rangle & =\langle f, t\rangle+\langle g, t\rangle \\
\langle f g, t\rangle & =\sum\left\{\left\langle f, t_{1}\right\rangle\left\langle g, t_{2}\right\rangle: t_{1} t_{2}=t\right\}
\end{aligned}
$$

$R_{\omega}(A)$ is thus the ring of formal power series in non-commuting variates $a \in A$ and with coefficients in Z.

There is a canonical ring homomorphism $P_{n}: R_{\omega}(A) \rightarrow R_{n}(A)$ given by $P_{n}(f)=f$ restricted to $W_{n}(A)$.

Let $H_{n}(A)=\left\{f \in R_{n}(A):\langle f, 1\rangle=1\right\} n=1,2, \ldots, \omega$. It is easy to check that $H_{n}(A)$ is a group under multiplication. In fact,

$$
(1+f)^{-1}=1-f+f^{2}-\cdots+(-1)^{n} f^{n}
$$

when $\langle f, 1\rangle=0$. We denote $H_{\omega}(A)$ by $H(A)$.
For any group G, let

$$
G_{1}=G, G_{2}=\left\{\left\{\left(g_{1}, g_{2}\right): g_{1}, g_{2} \in G\right\}\right\}, \ldots, G_{n}=\left\{\left\{\left(g_{1}, \ldots, g_{n}\right): g_{i} \in G\right\}\right\}
$$

where, for $S \subseteq G,\{S\}$ denotes the subgroup generated by S, and the higher order commutators are defined inductively by

$$
\begin{aligned}
\left(g_{1}, g_{2}\right) & =g_{1}^{-1} g_{2}^{-1} g_{1} g_{2} \\
\left(g_{1}, \ldots, g_{n}\right) & =\left(\left(g_{1}, \ldots, g_{n-1}\right), g_{n}\right)
\end{aligned}
$$

The series $G_{1} \supset G_{2} \supset \cdots$ is called the lower central series of G. Let $G(A)$ denote the free group with generators A. The following lemma is well known.

Lemma 3.1. Let $G=G(A)$ and $G_{1} \supset G_{2} \supset \cdots$ be its lower central series.
(a) The map $a \rightarrow 1+a$

$$
a^{-1} \rightarrow 1-a+a^{2}-a^{3}+\cdots=\sum\left\{(-1)^{n} a^{n}: n=0,1, \ldots\right\}
$$

extends to a 1-1 homomorphism τ of $G(A)$ into $H(A)$.
(b) Kernel $\left(P_{n} \circ \tau\right)=G_{n+1}$
(c) $\cap\left\{G_{n}: n=1,2, \ldots\right\}=\{e\}$.

The map τ will be referred to as the Magnus transform.
(d) Kernel $\left(P_{n} \circ \tau\right)=\{g \in G(A)$: the unique expansion of g, by the collection process, into basic commutators has no terms of weight $\leqslant n\}$ (see the Appendix). Notice, for $\left(a_{1}, \ldots, a_{n}\right) \in \sum A \subset G(A)$,

$$
\tau\left(a_{1}, \ldots, a_{n}\right)=\left(1+a_{2}\right) \cdot \ldots \cdot\left(1+a_{n}\right)=f
$$

where $\langle f, t\rangle$ is the number of times t occurs as a subsequence of $\left(a_{1}, \ldots, a_{n}\right)$. Thus we can view the Magnus transform as the unique extension of the "statistical transform" τ on $\sum A$, defined above, to a homomorphism on $G(A)$.

Proof: The reader can find all the proofs in Fox [7]. An alternative method is sketched below. The assertion of (c) is the Magnus theorem (see Kurosh [5, p. 38]). To prove (a) we need some properties of the collecting process (Hall [4, Chapter 11]). For the convenience of the reader these properties are summarized in the appendix.

Let $g \in G$, then g has a unique ordered expansion in terms of basic commutators (the expansion may have infinite length). Now (c) implies that, conversely, this expansion determines g uniquely. For, if g_{1} and g_{2} have identical expansions, then, for all $n, g_{1} g_{2}^{-1} \in G_{n}$; thus

$$
g_{1} g_{2}^{-1} \in \cap\left\{G_{n}: n=1,2, \ldots\right\}=\{e\} \quad \text { and } \quad g_{1}=g_{2}
$$

Let $g_{1} \neq g_{2}$. Then by the above, the expansions of g_{1} and g_{2} differ. Let w be the maximal initial subword common to both expansions. Then

$$
\begin{aligned}
& g_{1} \equiv w c_{i_{1}}^{k_{1}} \cdots c_{i_{m}}^{k_{m}} \bmod G_{n+1} \\
& g_{2} \equiv w c_{i_{1}}^{\prime k_{1}} \cdots c_{i_{l}}^{\prime k_{l}} \bmod G_{n+1}
\end{aligned}
$$

where $c_{i_{1}} \neq c_{i_{1}}^{\prime}, c_{i}, c_{i}^{\prime}$ basic commutators of weight w. Now, by lemma proved in the appendix, the leading term of $\tau\left(c_{i_{1}}\right) \neq$ leading term of $\tau\left(c_{i_{1}}^{\prime}\right)$. Hence $\tau\left(g_{1}\right) \neq \tau\left(g_{2}\right)$ and (a) is proved. Moreover, by the lemma quoted above, the leading term of $\tau\left(c_{j}\right)$ is a ring commutator of weight n and so $P_{n} \circ \tau\left(g_{1}\right) \neq P_{n} \circ \tau\left(g_{2}\right)$. Now, let $g \notin G_{n+1}$; then $g \not \equiv e \bmod G_{n+1}$. Thus $g \equiv x \bmod G_{n+1}$ where $x \neq e$ is a product of basic commutators of weight n and thus, as above, $P_{n} \circ \tau(g) \neq P_{n} \circ \tau(e)=1$, i.e., $g \notin$ Kernel $\left(P_{n} \circ \tau\right)$. On the other hand, if $g \in G_{n+1}, g$ is a product of basic commutators of weight $n+1$ and their inverses. Hence the leading term of $\tau(g)$ has weight $\geqslant n+1$, implying $P_{n} \circ \tau(g)=1$ and $g \epsilon \operatorname{Kernel}\left(P_{n} \circ \tau\right)$. Hence (b) is proved.

Finally, (d) follows from (b) and Theorem 11.-24 of Hall [4]. See the appendix.

Let T be a finite set. Let

$$
\varphi:\left(\sum(T \cup A \cup \bar{A})\right)^{1} \rightarrow G(A)
$$

be the semigroup homomorphism given by $\varphi(a)=a, \varphi(\bar{a})=a^{-1}, \varphi(t)=e$ for $a \in A, \bar{a} \in \bar{A}, t \in T$.

Let ${ }^{T} K_{G}^{A}=\operatorname{Ker} \varphi=\left\{x \in\left(\sum(T \cup A \cup \bar{A})\right)^{-1}: \varphi(x)=e\right\} .{ }^{T} K_{G}^{A}$ is called the free group kernel. Let $K_{G}^{A}={ }^{T} K_{G}^{A}$ where T is empty.

Let ${ }^{T} K_{S}^{A}$ be the smallest set containing 1 such that $\alpha, \beta \in{ }^{T} K_{B}^{A}, u \in T$, $a \in A$ implies $\alpha u \beta, \alpha \beta, a \alpha \bar{a} \in{ }^{T} K_{S}^{A}$ (so $\alpha a \bar{a} \beta \in{ }^{T} K_{S}^{A}$ by $1 \in^{T} K_{S}^{A}$). ${ }^{T} K_{S}^{A}$ is called the free half-group kernel. Let $K_{S}^{A}={ }^{T} K_{S}^{A}$ where T is empty.

By virtue of Lemma 3.1 it is reasonable to consider the elements of G_{n} as approximate to the identity and thus to try to approximate ${ }^{T} K_{G}^{A}$ by ${ }^{T} K_{G_{n}}^{A}=\left\{t \in(\Sigma(T \cup A \cup \bar{A}))^{1}: \varphi(t) \in G_{n}\right\}$.

4. An Approximation Theorem for Context Free Languages

To begin with, we observe that the sets K_{1} and K_{2} defined in Section 2 above are ${ }^{T} K_{S}^{A}$ and ${ }^{T} K_{G}^{A}$, respectively, where we let $T=\left\{A_{p q}\right\}, A=\left\{L_{p q}^{j}\right\}$, $\bar{A}=\left\{\boldsymbol{R}_{p q}^{j}\right\}$.

Let \mathscr{G} be a grammar with strictly length increasing rules (see Remark 2.1(b)). Let $L=L_{1}(\mathscr{G})$ and $P=P_{1}(\mathscr{G})$, the phrase-markers of 1-derivations of \mathscr{G}. Then by Theorem 1, Corollary 1, and Remark 2.1(a) we have

$$
\begin{align*}
& L=\psi\left({ }^{T} K_{G}^{A} \cap F \cap E\right) \tag{4.1}\\
& P=\boldsymbol{T}_{G}^{A} \cap F \cap E
\end{align*}
$$

where ψ is defined in Corollary $1, F$ is a regular set, and

$$
E=\left\{t \in \sum(T \cup A \cup \bar{A}):|t| \leqslant 2|\psi(t)|\right\}
$$

Let $P_{n}={ }^{r} K_{G_{n}}^{A} \cap F \cap E$, and $L_{n}=\psi\left(P_{n}\right)$.
Theorem 2. (a) $L_{1} \supseteq \cdots \supseteq L_{n} \supseteq \cdots \supseteq \cap\left\{L_{i}: i=1,2,3, \ldots\right\}=L$
(b) $\quad P_{1} \supseteq \cdots \supseteq P_{n} \supseteq \cdots \supseteq \cap\left\{P_{i}: i=1,2,3, \cdots\right\}=P$
(c) P_{k} has "grammatical depth" $\leqslant k$ in the sense that $t \in P_{k}$ iff $t \in F$, $t \in E$ and the unique expansion of $\varphi(t)$ in $G(A)$ by the collection process into basic commutators has no terms with weight $\leqslant k$.
(d) P_{k} is the k-th order "grammatical statistical approximation" in the sense that $t \in P_{k}$ iff $t \in F, t \in E$ and the Magnus transform of $t, \tau \circ \varphi(t)$, has no terms of n-th order for $n \leqslant k$; i.e., $\langle\tau \circ \varphi(t), r\rangle=0$ for $1 \leqslant|r| \leqslant k$
(e) P_{k} is "easy to compute" in the sense that P_{k} is accepted by an automaton \mathscr{M}_{k} which is the direct sum of a finite state machine and another automaton which is the sequential composition of a finite number of (infinite) counters (precise definitions given below).

Proof: The assertion of (b) follows from Lemma 3.1(c) and equation (4.1).

It is immediate that $\left\{L_{n}\right\}$ is decreasing and $L \subseteq \cap L_{n}$. Now let $y \in \cap L_{n}$. Then for each n there is an x_{n} satisfying

$$
x_{n} \in{ }^{T} K_{G_{n}}^{\mathcal{A}} \cap F, \quad \psi\left(x_{n}\right)=y, \quad\left|x_{n}\right| \leqslant 2|y| .
$$

Only finitely many words satisfy the last conditions; so some $x=x_{i}$ occurs in infinitely many, and hence all, ${ }^{T} K_{G_{n}}^{A}$. Thus $x \in \cap{ }^{T} K_{G_{n}}^{A}={ }^{T} K_{G}^{A}$. Thus $x \in^{T} K_{G}^{A} \cap F \cap E$ and $y \in L$. This proves (a).

The assertions of (c) and (d) follow from Lemmas 3.1(d) and (b), respectively, and equation (4,1).

We now prove (e). We introduce the following notation. Let S be a semigroup. Then $S^{f}: \sum S \rightarrow S$ with $S^{f}\left(s_{1}, \ldots, s_{n}\right)=s_{1} \cdot \ldots \cdot s_{n}$. Let $f: \sum A \rightarrow B$; such an f is called a machine, and we define $f^{\sigma}: \sum A \rightarrow \sum B$ by $f \cdot\left(a_{1}, \ldots, a_{n}\right)=\left(f\left(a_{1}\right), f\left(a_{1}, a_{2}\right), \ldots, f\left(a_{1}, \ldots, a_{n}\right)\right)$. In particular

$$
S^{f \sigma}\left(s_{1}, \ldots, s_{n}\right)=\left(s_{1}, s_{1} s_{2}, \ldots, s_{1} \ldots s_{n}\right)
$$

If $f: \sum A \rightarrow\{0,1\}$ then $\mathscr{A}(f)=\left\{t \in \sum A: f(t)=1\right\}$, the set of tapes accepted by f. If $h: A \rightarrow B$ then $h^{\Gamma}: \sum A \rightarrow \sum B$ with $h^{\Gamma}\left(a_{1}, \ldots, a_{n}\right)=$ ($h\left(a_{1}\right), \ldots, h\left(a_{n}\right)$). Z denotes the additive group of integers. Z^{f} is called the (infinite) counter. Let $f_{k}: \sum A_{k} \rightarrow B_{k}$ for $k=1, \ldots, n$. Then

$$
f_{1} \times \cdots \times f_{n}: \sum\left(A_{1} \times \cdots \times A_{n}\right) \rightarrow B_{1} \times \cdots \times B_{n}
$$

(the direct sum of the f_{i}) with

$$
\begin{aligned}
f_{1} \times \cdots \times f_{n}\left(\left(a_{11}, \ldots, a_{1 n}\right), \ldots,\right. & \left.\left(a_{m 1}, \ldots, a_{m n}\right)\right)= \\
& =\left(f_{1}\left(a_{11}, \ldots, a_{m 1}\right), \ldots, f_{n}\left(a_{1 n}, \ldots, a_{m n}\right)\right) .
\end{aligned}
$$

We first notice that $E=\mathscr{A}(f)$ where $f: \sum(A \cup A \cup T) \rightarrow\{0,1\}$ with $f=h_{2} Z^{f} h_{1}{ }^{\Gamma}$ where $h_{1}: A \cup \bar{A} \cup T \rightarrow Z$ with $h_{1}(a)=h_{1}(\bar{a})=-1$ for $a \in A$, and $h_{1}(t)=2$ for $t \in T$. Further, $h_{2}: Z \rightarrow\{0,1\}$ with $h_{2}(x)=1$ when $x \geqslant 0$ and $h_{2}(x)=0$ when $x<0$.

We next show that ${ }^{T} K_{G_{n}}^{A}$ are accepted by automata constructed from a finite number of counters. In fact, we can construct a representation of ${ }^{T} K_{G}{ }^{A}$ by infinite triangular matrices using the Magnus transform, and using Lemma 3.1(b) one could "abstract" to ${ }^{T} K_{G_{n}}^{A}$. Then one could use the methods of Schützenberger [6]. However, we follow the methods of [8], using the fact that the right regular representation of $R_{\omega}\left(S_{0}\right)$ is in the wreath product of counters with respect to the natural coordinates. Another way to view the matter is that the construction of [8, Lemma 3.4] is effective for any group G and any subnormal series of G (e.g., $G(A)$ and its lower central series). We will now show that, for $r \in \sum(A \cup \bar{A} \cup T)$, $t \rightarrow \boldsymbol{\tau} \cdot \varphi(r)$ can be computed by a "bank" of counters of depth n.

We use the following notation. We write

$$
\alpha_{n}=\left(f_{n}, \varphi_{n}, \ldots, f_{2}, \varphi_{\mathbf{2}}, f_{\mathbf{1}}, \varphi_{\mathbf{1}}\right),
$$

where $f_{k}: \sum A_{k} \rightarrow B_{k}$ is a machine for $k=1, \ldots, n$ and $\varphi_{1}: B_{0} \rightarrow A_{1}$, $\varphi_{2}: B_{1} \times B_{0} \rightarrow A_{2}, \ldots, \varphi_{n-1}: B_{n-2} \times \cdots \times B_{0} \rightarrow A_{n-1}$,

$$
\varphi_{n}: B_{n-1} \times \cdots \times B_{0} \rightarrow A_{n}
$$

Then α_{n} determines a machine $M\left(\alpha_{n}\right): \sum B_{0} \rightarrow B_{1} \times \cdots \times B_{n}$ in a natural way. We consider φ_{1} as mapping basic inputs in B_{0} into basic inputs of f_{1}, and φ_{k} as mapping the last basic outputs of f_{k-1}, \ldots, f_{1} and the original last basic input into a basic input of f_{k}. Precisely

$$
\begin{aligned}
& M\left(\alpha_{0}\right)^{\sigma} \text { equals the identity map on } \sum B_{0}, \\
& M\left(\alpha_{1}\right)=f_{1} \varphi_{1}{ }^{\Gamma} \\
& M\left(\alpha_{k}\right)=f_{k} \varphi_{k}^{r}\left(M\left(\alpha_{k-1}\right) \times \cdots \times M\left(\alpha_{1}\right) \times M\left(\alpha_{0}\right)\right)^{\sigma} .
\end{aligned}
$$

Let $\mathscr{M}_{n}: \Sigma(A \cup \bar{A} \cup T) \rightarrow R_{n}(A)$ be defined by $\mathscr{M}_{n}(r)=\left(P_{n} \circ \tau \circ \varphi(r)\right)$ (see Section 3 for the definitions).

Let $\Omega_{n}\left(\sum X\right)=\left\{r \in \sum X:|r|=n\right\}$ and

$$
\Delta_{n}\left(\sum X\right)=\left\{r \in \sum X: 1 \leqslant|r| \leqslant n\right\}
$$

We now let

$$
\alpha_{n}=\left(S_{n}^{f}, \varphi_{n}, \ldots . S_{2}^{f}, \varphi_{2}, S_{1}^{f}, \varphi_{1}\right)
$$

where $S_{k}=F\left(\Omega_{k}\left(\sum A\right), Z\right)=\left\{f: \Omega_{k}\left(\sum A\right) \rightarrow Z\right\}$ with pointwise multiplication $\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x)(Z \times \cdots \times Z$, the free Abelian group of rank $|A|^{k}$). Now $S_{k-1} \times \cdots \times S_{1}$ can be naturally identified with $T_{k-1}=F\left(\Delta_{k-1}\left(\sum A\right), Z\right)$ by $\left(f_{k-1}, \ldots, f_{1}\right) \leftrightarrow f$ where $f(r)=f_{j}(r)$ for $1 \leqslant|r|=j \leqslant k-1$.

Let $S_{0}=A \cup \bar{A} \cup T$. Next we define $\varphi_{1}: S_{0} \rightarrow S_{1}$ and for $k=2, \ldots, n$ $\varphi_{k}:\left(\left(S_{l k-1} \times \cdots \times S_{1}\right) \times S_{0}\right) \cong T_{k-1} \times S_{0} \rightarrow S_{k}$. For $2 \leqslant k \leqslant n$,

$$
g_{k-1} \in T_{k-1}, a \in A, \bar{a} \in \bar{A}, t \in T, x \in \Omega_{n}\left(\sum A\right)
$$

we let

$$
\varphi_{k}\left(g_{k-1}, a\right)(x)=\left(\left(1+g_{k-1}\right) a\right)(x)=g_{k-1}(y)
$$

where $x=y \cdot a$ with the convention that $g_{k-1}(1)=1$ and $g_{k-1}(y)=0$ when y is not defined. Further,

$$
\begin{aligned}
\varphi_{k}\left(g_{k-1}, t\right)(x)= & 0 \\
\varphi_{k}\left(g_{k-1}, \bar{a}\right)(x)= & \left((1 + g _ { k - 1 }) \left(-a+a^{2}-a^{3}+\cdots\right.\right. \\
& \left.\left.+(-1)^{k-1} a^{k-1}+(-1)^{k} a^{k}\right)\right)(x) \\
= & -g_{k-1}\left(y_{1}\right)+g_{k-1}\left(y_{2}\right)-g_{k-1}\left(y_{3}\right)+\cdots \\
& +(-1)^{k-1} g_{k-1}\left(y_{k-1}\right)+(-1)^{k} \delta\left(x, a^{k}\right),
\end{aligned}
$$

where $y_{j} a^{j}=x$ for $1 \leqslant j \leqslant k-1$ with $g_{k-1}\left(y^{j}\right)=0$ when y_{j} is not defined and $\delta\left(x, a^{k}\right)=1$ if $x=a^{k}$ and zero otherwise. Finally for $a, b \in A, t \in T$

$$
\begin{aligned}
\varphi_{\mathbf{1}}(t)(b) & =0 \\
\varphi_{\mathbf{1}}(a)(b) & =\delta(a, b), \\
\varphi_{\mathbf{1}}(\bar{a})(b) & =-\delta(a, b)
\end{aligned}
$$

Thus we have defined α_{n}. Now it can be verified by induction that

$$
\mathscr{M}_{n}=M\left(\alpha_{n}\right)
$$

when 1 is struck from the domain of $M\left(\alpha_{n}\right)(r)$. Now let $\beta_{n}\left(f_{n}\right)=1$ if $f_{n}(x)=0$ all x, and $\beta_{n}\left(f_{n}\right)=0$ otherwise. Then by Lemma 3.1(b)

$$
\mathscr{A}\left(\beta_{n} M\left(\alpha_{n}\right)\right)=\mathscr{A}\left(\beta_{n}(\mathscr{M})_{n}\right)={ }^{T} K_{G_{n+1}}^{A}
$$

This proves (e) and hence Theorem 2.

APPENDIX

The Collecting Process (see Hall [4, Chapter 11])

Let $G=(A), A=\left\{a_{1}, \ldots, a_{n}\right\}$. We define commutators c_{i} and weight $w\left(c_{i}\right)$ as follows:
(1) The $a_{i}{ }^{s}$ are commutators of weight 1.
(2) If c_{i} and c_{j} are commutators, then $\left(c_{i}, c_{j}\right)$ is a commutator of weight $w\left(c_{i}\right)+w\left(c_{j}\right)$.

The commutators are ordered by weight and commutators of the same weight are ordered in an arbitrary but fixed manner. The subclass of basic commutators is defined as follows:
(1) The $a_{i}{ }^{s}$ are basic commutators of weight 1.
(2) Having defined basic commutators of weight $<n$, we define the basic commutators of length n as $\left(c_{i}, c_{j}\right)$ where c_{i} and c_{j} are basic, $w\left(c_{i}\right)+w\left(c_{j}\right)=n$ and
(a) $c_{i}>c_{j}$,
(b) if $c_{i}=\left(c_{k}, c_{l}\right)$, then $c_{j} \geqslant c_{l}$.

The collecting process consists of successive replacements of a subword of the form $c_{i} c_{j}$ by $c_{j} c_{i}\left(c_{i}, c_{j}\right)$. Note that this does not change the group element represented by the word.

Every element of G has a unique ordered expansion of the form

$$
g=c_{1}^{k_{1}} \cdots c_{m}^{k_{m}} \bmod G_{n}
$$

where the $c_{i}{ }^{s}$ are basic commutators of weight $<n$ [4, Theorem 11.2.4].
We define the bracketing operation $[\cdot, \cdot]$ in $R_{\omega}(A)$, the ring of power series, by $[u, v]=u v-u v$. Using it we can define ring commutators in $R_{\omega}(A)$ by letting the $a_{i} \in A$ be commutators of weight 1 and continue as in the group case. For $f \in H_{n}(A)$, we define the leading term of f as the formal sum of all monomials of smallest positive degree. By Corollary 11.2.1 of Hall [4], the basic commutators of degree m are linearly independent.

Let $\tau: G \rightarrow R_{\omega}(A)$ be the Magnus transform.

Lemma [4, pp. 173-174]. (a) For $f, g \in H_{n}(A), f, g \neq 1$, with leading terms f_{k}, g_{l} of degrees k, l, respectively; the leading term of f^{-1} is $-f_{k}$ and the leading term of

$$
f_{k} \cdot g_{l}=\left\{\begin{array}{l}
f_{k} \text { if } k<l \\
g_{l} \text { if } l<k \\
f_{k}+g_{l} \text { if } l=k \text { and } f_{k}+g_{l} \neq 0
\end{array}\right.
$$

If $\left[f_{k}, g_{l}\right] \neq 0$, it is the leading term of (f, g).
(b) The leading term of $\tau\left(c_{i}\right)$ is c_{i}^{\prime} where c_{i} is a basic (group) commutator and c_{i}^{\prime} is the ring commutator obtained by replacing round by square brackets in the expression for c_{i}.

Proof: The assertions about f^{-1} and $f \cdot g$ follow by straightforward computations. Now if $f=1+f^{\prime}, g=1+g^{\prime}, f^{-1}=1+f^{\prime \prime}, g^{-1}=1+g^{\prime \prime}$, then
$(f, g)=1+f^{\prime} g^{\prime}-g^{\prime} f^{\prime}+f^{\prime} f^{\prime \prime} g^{\prime}-g^{\prime} g^{\prime \prime} f^{\prime}+g^{\prime \prime} f^{\prime} g^{\prime}+f^{\prime \prime} g^{\prime \prime} f^{\prime}+f^{\prime \prime} g^{\prime \prime} f^{\prime} g^{\prime}$.
Thus

$$
(f, g)=1+\left[f_{k}, g_{l}\right]+\text { higher terms }
$$

We prove (b) by inductions on the weight of c_{i}, the assertion being immediate for weight 1 . Thus let $c_{k}=\left(c_{i}, c_{j}\right) ; f_{i}=\tau\left(c_{i}\right)$ has leading term c_{i}^{\prime} and $f_{j}=\tau\left(c_{j}\right)$ has leading term c_{j}^{\prime}. By part (a), $\left(f_{i}, f_{j}\right)$ has leading term $\left[c_{i}^{\prime}, c_{j}^{\prime}\right]=c_{k}^{\prime}$ provided the latter expression is not zero; but being a basic commutator it cannot be zero by the theorem quoted above, and $\left(f_{i}, f_{j}\right)=\left(\tau\left(c_{i}\right), \tau\left(c_{j}\right)\right)=\tau\left(c_{i}, c_{j}\right)=\tau\left(c_{k}\right)$. Hence the lemma is proved.

References

1. Y. Bar-Hillel, M. Perles, and E. Shamir, On Formal Properties of simple PhraseStructure Grammars, Z. für Phonetik Sprachwiss. Kommunikat. 14, 2 (1961), 143-172, (reproduced as Chapter 9 in Bar-Hillel, Language and Information, Addison-Wesley, Reading, Mass., 1964).
2. N. Chomsky and G. A. Miller, Chapters 11, 12, 13 in D. Luce. ed., Handbook of Mathematical Psychology, Vol. 2, Wiley, New York, 1964 (in particular Chapter 12, "Formal Properties of Grammars," and its reference list).
3. N. Сhomsky and M. P. Schützenberger, "Algebraic Theory of Context-Free Languages" in F. Braffort et al., eds., Computer Programming and Formal Systems, North-Holland, Amsterdam, 1963.
4. M. Hall, The Theory of Groups, Macmillan, New York, 1959.
5. A. G. Kurosh, Theory of Groups, Vol. II, Chelsea, New York, 1960.
6. M. P. SchÜtzenberger, On the Definition of a Family of Automata, Information and Control 4 (1961), 245-270.
7. R. H. Fox, Free Differential Calculus. I, Ann. Math. 57, (1953), 547-560.
8. K. Krohn and J. Rhodes, Algebraic Theory of Machines, I. Prime Decomposition Theorem for Finite Semigroups and Machines, Trans. Amer. Math. Soc. 116 (1965), 450-464.

[^0]: * This research was sponsored in part by the Office of Naval Research, Information Systems Branch, Contract Nonr-4138(00), and the United States Air Force Office of Scientific Research, Contracts AF-AFOSR-848-65 and AF-49(638)-1550.
 ${ }^{+}$This research was sponsored in part by the Office of Naval Research, Contract Nonr-222(60).

