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ABSTRACT 

Let ff be a context free (phrase) structure grammar generating the context free 
language L. The set P = P(ff) of all "generation histories" of words in L can be coded 
as words in some augmented alphabet. It is proved here that P = R t~ G where R is 
a regular (finite automaton definable) set and G is a "free group kernel" or Dyck set, 
a result first proved by Chomsky and Schiitzenberger [3]. 

We can construct the lower central series of the free group kernel 

GtDG2D "-- D G,~ D ..., 

so tn G, = G. Let P ,  = R c~ G , ,  so c~ P ,  = p. p ,  is the n-th order approximation of 
P. P ,  need not be a context free language but it can be computed by n cascade or 
sequential banks of counters (integers). We give two equivalent characterizations of 
P , ,  one "grammatical" and one "statistical," which follow from the theorems of 
Magnus, Witt, M. Hall, etc. for free groups. The main new theoretical toot used here 
for the study of grammars is the Magnus transform on the free group, a ~ 1 + a, 
a -x --~ 1 -- a + a 2 -- a 3 + a 4 .... which acts like a non-commutative Fourier transform. 

1. INTRODUCTION 

Le t  V be  a f ini te  set.  ~ V i s  t h e  f ree  n o n - c o m m u t a t i v e  s e m i g r o u p  w i t h o u t  

i den t i t y  g e n e r a t e d  by  V. A c o n t e x t  f ree  ( p h r a s e )  s t r uc tu r e  g r a m m a r  fr 

o v e r  V is g iven  b y  a f ini te  set  o f  r ewr i t i ng  ru les  

~i --+ a i ,  ~i ~ V, ai ~ E V, 1 <~ i <~ n. (1,1) 

F o r  x ,  y ~ ~ V, x ~ y signifies t h a t  

x = u ~ v ,  y = u a i v  a n d  ~i--*as f o r  s o m e  1 ~ < i ~ < n .  (1.2) 
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Scientific Research, Contracts AF-AFOSR-848-65 and AF-49(638)-1550. 
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We write 

x :~ :~ z if x = yo =~ y l  =~ .. .  =~ yr = z,  r ) O (1.3) 

for suitable Yl ..... Yr in ~V.  By taking r = 0, we see that x =~ x is always 
true. The set V1 = { ~ i : l  ~ i ~ n} is the set of  auxil iaries  and 
V2 = V -  V~ is the set of terminals.  

The set of words 

Li(fg) = lx e ~ V~: ~i -- =~ x l 
l 

(1.4) 

is called the language generated by fr with ~ as initial symbol; and, 
abstractly, L is called a context free ( C F )  language iff it can be obtained 
as L~(fr for some fr An algorithm (a decision procedure) for the relation 
x ~ Li( fr  exists, but the actual computation is quite tedious (in particular 
it involves finding all the generation histories of x). In fact the very 
definition (1.4) makes it hopeless to give a direct characterization of the 
language L,(fr in an "easily computable" form. 

One can pose the same general questions, not for L~(~), but for the 
set of all "generation histories" of  words in L~(fr These generations 
can be coded as linear words in some augmented alphabet--and these 
codes will be called phrase-markers .  We can indeed characterize the 
collection of all phrase-markers, P(~),  as the intersection of a regular 
(finite automaton definable) set and a "free group kernel" (or Dyck set). 
This result (which under some slight restriction on the form of fr was 
first proved by Chomsky and Schiitzenberger) is proved in Section 2. 
Our straightforward proof  is obtained by separating the canonical role 
of  bracketing engendered in all phrase structures (the free group kernel) 
from the particular form of the rewriting rule given by the specified 
grammar (the regular set). 

Next we use the representation of  the set P = P(fr of phrase-markers 
above to construct approximations P,~ of P which are easier to compute. 
Let P = R n G where R is a regular set and G is a free group kernel 
(or Dyck set). Using some classical group theoretic results (which for the 
convenience of the reader are reviewed in Section 3 and the appendix of  
this paper) we can construct the lower  central series of the free group 
kernel 

G 1 D G 2 D  " " D G n D  "'" 

so that n {Gk : k = l, 2, 3,..} = G. And thus 

P 1 D P 2 D . . . D P , ~ D  .. . ,  c s { P k : k = l , 2 , 3 , . . . } = P  

where Pn = R c~ Gn. P~ is the nth order approximation of  P. 
Pn need not be a context free (phrase structure) language, but this is of  



224 RHODES AND SHAMIR 

little importance. However, P,~ can be computed by n cascade or sequential 
banks of counters (the integers). Hence, it is "easy to compute P , . "  

Further, we can give the following t w o  equivalent characterizations of 
P,~: (a) We call the elements in the free group kernel  (i.e., those elements 
which represent the identity) "grammatical." The standard collection 
process of  free group elements [4, Chapter 11] can be likened to a human 
or a machine reading a string and trying to compute its grammatical 
status. Then Pn consists of those strings in R whose grammatical con- 
struction is correct up to depth n; that is, when they are unraveled up 
nth commutators, they agree with some string in P (or equivalently in G). 
By the same token, the  set R (which is regular and determined by local 
conditions only) can be considered as the set of strings whose "spelling" 
is correct. Thus x ~ P ,  if and only if the spelling is correct and the 
grammatical constructions are correct up to depth n. (b) P ,  consists of  
those strings in R which agree with a string in P (or equivalently in G) 
up to "nth order statistical information." For  two positive strings 
(meaning no inverses occur) t and r, we say that t and r agree up to 
"nth order statistical information" iff the number of times s occurs as a 
subsequence of t and r is the same for all sequences s of length ~<n. 
This concept is generalized to arbitrary strings via the Magnus transform. 

The main new theoretical tool used here for the study of  grammars is 
the Magnus transform, a -+ 1 q- a, a -1 --+ 1 -- a + a 2 --  a 3 -k a 4 . . . .  , 
which is essentially a non-commutative Fourier transform. In changing 
the strings of 5~A into statistical coordinates via this transform, we find 
sequential computations with counters easy and natural to perform. 
Further, by (a) and (b) above, we see that these coordinates have a natural 
grammatical interpretation since (by well-known theorems) these 
coordinates are simply related to nth order commutators and "nth order 
statistical information." 

It seems remarkable that, from only the context free phrase structure 
grammar assumption, we can show that humans and machines which 
employ structural approximations to those grammars actually use language 
on a statistical basis. 

The results contained herein were formulated by the authors during 
a seminar entitled "Mathematical Theory of Languages" given at the 
University of California, Spring 1964, by Professor E. Spanier and the 
authors. We thank Professor Spanier and Mr. B. F. Wells for stimulating 
conversations and lectures. The first named authors also thanks 
Dr. S. Ginsburg, whose publications and lectures aroused his interest 
in languages. 

We thank Mr. Y. Zalcstein and Mr. W. Leffler for their generous help 
in preparing this manuscript. 
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2. RECOGNITION OF PHRASE-MARKERS 

Let fr be a context free grammar  with vocabulary V and rewriting rules 

~ a ~ =  a ~ l " " a ~ ) ,  1 ~<p ~<m, ~ E V ,  
(2.1) 

a~ e ~ V, a~j e V. 

The set { ~  : 1 ~< p ~< m} is the set of  auxiliary symbols of  re. 
Consider a set V # which we take to be disjoint from V with 

V # = { a ~ : l  <~p<~m,  O<~q<~r(p)} .  

Define q0 : V # --+ V by cp(A~q) = a~q for q > 0 and ~o(A~o) = ~ .  Thus we 
have made the A~q formally different even they denote the same element 
of  V (under q~). We extend cp to a length preserving homomorphism 
q~ : ]~ V# --+ Z V by q~(x~ ..... x~) = (~(x0 ..... ~o(x,0). We define an equiv- 
alence relation ~ on V # by x, y ~ V #, x ~ y iff cp(x) = q~(y). 

We also consider a new grammar  ~*  with vocabulary 

V* = V # w {L~q , R ~  : l <~ p <~ m and Aj0~A~q} 

and rewriting rules 

Ajo ~ ~" L ~ q A j l  "'" A~,~(j)R~q for (p, q, j )  (2.2a) 

satisfying A~o ~ A~q, 

A~  -+ A~'o if A ~  ~ Ajo. (2.2b) 

We say that ( L ~ ,  R~,~) is a matching pair of  L - -  R symbols when 
(p, q , j )  satisfies A~o -~ A,a.  

I f  A~a ,-~ A~o, then the triple 

D : (x , j ,  y) : (uAv~v,j, U A j l  "'" A~,(~)v) 

with x, y ~ Z V~ is called a direct generation of ~ with left component  x 
and right component  y. A sequence Da ..... D,~ of direct generations is 
connected iff 

Di = ( x i , j i ,  Yi), 1 ~< i ~< n, ~(y~) = ~(xi+0 for 1 ~< i ~< n --  1. 

A generation of fr is a connected sequence D1 ..... Dn of direct 
generations. A ./-derivation of y ~ ~ V # in fr is a generation D1 ..... D ,  
of  fr such that the left component  of D~ is A jl "'" Aj~j) and the right 
component  of  D, is y. 
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Clearly, i f  there exists a j -der ivat ions of  y in ~ ,  then cp(A;o ) ~ ~ cp(y). 
Conversely,  if  s ~ ~ w in fr s ~ w, s = q~(A~0), then for  some y ~ Y. V #, 
w = cp(y) and there exists a j -der iva t ion  of  y in ~'. 

A direct generat ion in f#* is a triple 

E (x , j ,  y)  (u*A~qv*,j,  * J J * = = u L~qA~I "" A~( j )R~v  ), 

where A~q -~ Aso. The definitions of  generat ion and j -der ivat ion in ~ *  
are exactly the same as those for  fr except tha t  fr is replaced by ~ *  and 
V # by V*. 

We define a h o m o m o r p h i s m  h : ~  V * - - + ( ~  V#) 1 (where for  an 
arbi t rary semigroup S, S a is obta ined f rom S by  adjoining a new symbol  1 
and letting it operate  as the identi ty if  S has none,  and letting S ~ = S 
otherwise) 

h(A,~) = a ~ , ,  h (L~)  = h (R~)  = 1. 

For  x = (Xl ,..., x , ) e Z  X, let Ix I=  n (the length o f  x). Also let 
I l l  =0 .  

LEMMA 2.1. Let  D1 ..... D,~ be a j-generation o f  fr Then there exists 
a unique generation E l ,  .... En o f f r  such that for  1 <~ i <~ n we have: 

if D~ = (x, , J i , Y ) ,  then E i = ( x * , j i , y * ) ,  (2.3a) 

where xi = h(xi*) and yi = h(y~*). (Note also that xi+l = Yi and x'i+1 = y* 
for 1 <~i < ~ n - -  1.) Further, i f  rr(p) >~2 f o r  1 <~p <~n, i.e., all the 
rewriting rules o f  (2.1) are strictly length increasing, then 

I x * l  ~<21x~[ ,  l y * [  ~ 2 l y ~ [ .  (2.3b) 

PROOF: We construct  E 1 ..... En inductively. Given Aj~ -" Aj,(j) = uA~qv 
and D 1 = (A~I "'" Aj,(~) , k ,  uA~ 1 " .  A~,(k)v) let 

Et  = (Ajl "'" Aj~0") , k,  uL~A~x "'" A~,r(k)R~qv). 

Assume that  Ea ..... E~ have been defined and satisfy (2.3a), and let 

Di = (..., .... uAstv), Di+a = (uAs~v, l, uA~I "'" A~,,(Ov ) 
and 

E~ = ( . . . . . . . .  u*A,~v*), 

where by induct ion u = h(u*), v : h(v*). Let  

F~,+~ = ( u ' A s , v * ,  l, u * L ~ , A ~ I  . . .  A~(oR~,v*). 

Then clearly Ei+l satisfies (2.3a). This proves (2.3a). 



COMPLEXITY OF G R A M M A R S  BY G R O U P  THEORETIC METHODS 227 

Now (2.3b) is immediate for i = 1 and by the above construction the 
right component of D~+ t has length 

(lul + l v l  + 1 ) +  ( r r ( l ) -  1) 

while the right component of E~+I has length 

( lu* l  + I v * l  + l ) + ( ~ ( t ) + l ) .  

Now by induction hypothesis, 

lu*l + l v * l  + 1 ~< 2(I ul + I v l  +1). 
Hence 

(I u* I + I v* I + l) + (o(1) + l) ~< 2[(I u I + I v I + ]) + ~(t) - 11, 

and so (2.3b) is proved. 
The sequence E 1 .... , En is thus a code for the generation D 1 ..... Dn. 

However, the right component of En contains essentially all the information 
about the generation, except for its order. More precisely, an interchange 
of two consecutive generations D~, Di+l will not change the right com- 
ponent of  En when D~ and Di+l only rewrite two distinct symbols of the 
right component of D~_ 1 . 

We call the right component of En the phrase-marker of O 1 . . . . .  O n 

and define two generations to be equivalent iff they give rise to the same 
phrase-marker. (If one represents the generation in "tree form," then two 
generations are equivalent iff they have the same tree.) We also include 
A~I "'" A~,(~) among the phrase-markers of the j-derivations of fr 

We now define subsets K1, K2 of 

as follows: K1 is the smallest set containing 

(A~q : l ~ p ~ m, O < q ~ ~-(p)} 

J J such that if x, y ~ K1, then xy ~ K1 and L~qxR~q ~ K1. K1 is called the 
free half-group kernel. 

K2 is the smallest set containing ~ {A,q : 1 ~ p <~ m, 0 <~ q <~ zr(p)} such 
that if x, y ~ K2 then xy ~ K~ ~ J ~ J 1(2. K2 is , L~qXR~q ~ K~, and R~qXL~q 
called the free group kernel. 

THEOREM 1. There is a regular set F~ such that the set of  all phrase- 
markers of  j-derivations of  f~ is given by K1 n Fj.  Moreover, 

K ~ n f ~  = K ~ n f j .  
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PROOF: We construct a finite automaton ~ which will defined (or 
accept) all the sets Fj by suitable choice of initial and final states. 

The alphabet of ~ is 

X : {A~q, L~q, R~q : 1 ~ p ~ m, 0 ~ q ~ rr(p), A~0 ~'~ AD~}. 

The set of  states is 

Q = { % q :  1 ~ p ~ m ,  

The next state 
transition rules 

M ( ~ , ,  L~)  

m(/~ ~ ' R~) 

M ( ~ ,  A~) 

M(s, x) 

0 ~ q ~ 7r(p)} u (flJ : 1 ~ j ~ m} w {7'}. 

function M : Q  • Y - +  Q is  defined by the following 

----- ~kl (an L-transition) (2.4a) 

t~,q+~ if q :/: 7r(p) (an R transition) (2.4b-b') 
= ~fl~ if q = ~ r ( p )  

t~.q+l if q :/: rr(p) (an A transition) (2.4c-c') 
= q ~  i f  q - -  ~ ( p )  

----- 7' in all other cases (an absorbing transition) (2.4d) 

As usual we extend M to Q • (ZX) 1 by 

M(s, 1) = s and M(s, xy)  = M(M(s ,  x), y). 

The proof  of Theorem 1 proceeds via Lemmas 2.2-2.4. 

LEMMA 2.2. Let  z be a phrase-marker o f  a .]-derivation o f  ft. Then 
z ~ K1 and M ( ~ I ,  z) = flJ. 

LEMMA 2.3. Let  z E K1,  and let M(~ j l ,  z) = flJ. Then z is a phrase- 
marker  o f  a j-derivation o f  (r 

PROOF OF LEMMA 2.2: By (2.3a) there is an associated j-derivation of 
fr El ..... En such that z is the right component of En.  Let 

E,  (uA~qv, ~ : k, uL~qA~l "'" Ak~)R~qv : z). 

We proceed by induction on n. Since the (inductive) proof  that z e K1 is 
trivial, and since M(c~l, A~ ".  Aj,~tj))= flJ is immediately verified, it 
suffices to show that 

M(e~jl, uA~qv) = f f  implies M(~jl,  z) = fls. (2.5) 

Now M(~jl  , uA~q) = M(M(~j l  , u), A~q) :/: 7 so by (2.4) we see that this 
state was obtained by an A,transition. 
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M ( ~ I ,  u) ~ c%q and M ( % l  , uA~q) = a~.q+ 1 

(or fl~ if  q ~ Tr(p)) ; (2.6) 

continuing a long the initial substrings of  z we have 

M(~n  ~ ~ �9 "'" = , L~qAkx "" Ak,~(k)R~q) , uL~qAkl A~:,(~)R~q) M ( % q  

_ _  i ( f i ~ ,  k - -  R ~ q )  

= %.q+~ (or  fi~ if  q = ~r(p)) (2.7) 

N o w  f rom (2.6) and (2.7) and the hypothesis  o f  (2,5): 

M(%'1, z) = M(%.q+l , v) = M(O~jl , uAvqv) =- flJ. 

This proves L e m m a  2.2. 

PROOF OF LEMMA 2.3: Since z E/s we have either 

z = x e ~  {A~q: l ~ p  ~ m,  O <~ q <~ Tr(p)} 
o r  

z =  uL~qxR~q v:  for  some u , v ~ K 1  and 

x e ~ {A~q : 1 K p K m, 0 ~ q ~ ~-(p)} (2.8) 

and also uA~qv ~ K1 �9 We claim tha t  in this case 

M(O~jl  , u A , q v )  -~- fi t  __~ M(c91,  z). (2.9) 

Indeed 

M ( % 1 ,  uL~q) = M ( M ( ~ I  , u), L~q) ~ :  ~. (2.10) 

So the left transit ions was an L-transi t ion and  

M(%. 1 , u) : %q,  (2.11) 

M ( a n  , u r ~ )  = o ~  . (2.12) 

Again, since we do not  encounter  any absorbing  transitions, 

M ( a n ,  ~ ~ (or f l~  if q = ~ ( p ) ) ,  (2,13) u L ~ q x R ~ q )  : o%,a+ 1 

M ( a n ,  uL~qx) ----- fi~. (2.14) 

F r o m  (2.11) we obtain 

M ( o ~ ,  uA~q) = o ~ , q +  1 (or fl~ if  q ---- r(p)) .  
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Comparing this with (2.13), we clearly obtain (2.19). Now by comparing 
(2.12) with (2.14), we have 

M(ak~, x) = ilk. (2.15) 

Since x E Z  {A~q}, the only transitions in (2.15) are of  type A, and (2.15) 
is possible only if 

x = Ak l  "'" Ak,,(~) �9 (2.16) 

In particular if x = z (then (2.15) holds with k = j) ,  we find z is the 
phrase-marker of  the trivial j-derivation. Otherwise we proceed by 
induction (on the length of z). By induction hypothesis and (2.9), we have 
uA~qv the phrase-marker of  E1 ..... E , .  Consequently by (2.16), z itself 
will be the phrase-marker of/71 .... , E,+I where 

Er+ 1 (uA~qV, k = k,  uL~qAkl "'" Ak~(~)R~qv). 

This proves Lemma 2.3. 
Lemmas 2.2 and 2.3 clearly establish Theorem 1, except for the last 

assertion, which will follow f rom the next lemma. 

LEMMA 2.4. Le t  x ~ Z {A~q : 1 <~ p <~ m, 0 ~ q <~ ~r(p)} and let 
M(s ,  k k S' S' R~qxL~r = with s, 5& ~. Then q < q'. 

PROOF: Indeed by (2.4) s must be flk and M(s ,  Rkq) = %,q+1, cannot 
be tip since the next transition cannot be of type R; indeed if x =7(= 1 the 
next transition must be of type A and any additional transition increases 
the second index of the state until finally (or immediately if x = 1) we 
end with an L transition with q'  > q. This proves Lemma 2.4. 

Now we can prove that/(1 ~ F~. = / ( 2  c~ Fj .  I f  not, there is a z ~ K2 n Fj 
with z r  Then every substring of z (we say x is a substring o f y  iff 
y = uxv  for some u, v) effects a non-absorbing transition of the automaton 
(starting f rom some state) and there is a substring w of the form 

w = RoqoXlLoqlylRoqlX 2 "'" Xs_lLoqysRoqXsLoq o 

where Loq ~ and Roq ~ (0 ~ j ~ s) match (we have omitted the upper index 
and the first lower index), and where xj e ~ {A~q} (and yj e / (1 ,  but we 
will not use this fact). But then, by Lemma 2.4, qo < q~ < "'" < q~ < q0 
(in case s = 0, we have q0 < qo too) and this is a contradiction. 

This proves Theorem 1. 

COROLLARY 1. I f  L = L(fr  is the language generated by the auxi l iary 
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symbol ~ : 99(A j0), then there is a regular set F and a non-length increasing 
homomorphism ~b : Z V* ~ (~  V) 1 such that 

L = ~b(K 1 f'~ F)  = ~b(K, c~ F). 

PROOF: Let F~ = {z ~ F~ : z contains no A~o and no A~q with A~q ,-~ A j0, 
1 <~ j , p  <~ m}. Then Fj c~ K1 is the set of all terminated .]-derivations of f#. 
Let 

F = u { F ;  : ~(~jo)  = ~). 

Clearly F is regular since F~ is regular. Let ~b(Ao~) = 9(A~q) for q >~ 1 
and let q,(L~0 = $ ( R ~ ) =  $(A~0)= 1. That is, $ = (ph. Corollary 1 
now follows from Theorem 1. 

REMARK 2.1. (a) If  c~ has only strictly length increasing rules (2.1) 
(i.e., ~r(p) >~ 2 in all the rules), then 

K~ n F =  K~ n F n E  = K ~ n F n  E 

where E is the regular set {t : t t [ <~ 21 h(t)]). The proof  is immediate by 
Lemma 2.1. 

(b) We note in passing that neither of the restrictions that we have 
put on the grammar, namely that 1 ~< ~-(p) (i.e., no rule ~ ~ 1) and that 
2 ~< ~r(p) (i.e., that all rules are strictly length increasing) involves a loss 
of generality, as has been shown in [1]. 

(c) The finite semigroup of the reduced automaton defining F of 
Corollary 1 has no subgroups of order greater than one. 

3. APPROXIMATION OF FREE GROUP AND FREE HALF-GRouP KERNELS 

Let A be a set. (~2 A) 1 is the free semigroup with identity generated by A; 
i.e., ( ~ A )  1 = { ( a l  .... , a n ) : n ~ > 0  and a i e A  for i =  1 ..... n} with con- 
catenation serving as the multiplication in ( ~  A)L 

Let A = {~i : a e A} where A n A is empty. 
Let Wn(A) = {t ~ (~  A) 1 : [ t [ ~ n} for n = 1, 2,..., to, and W~ = (~  A) 1. 
Let Z be the ring of integers. 
Let R,(A), n = 1, 2 ..... to be the set of integer valued functions on 

w . ( A ) .  

F o r f E  R,(A), t ~ ( Z  A) 1 we denotef( t)  by ( f ,  t) .  T h e n f c a n  be represented 
as ~ { ( f ,  t )  t : t ff (~-~, A) 1} and we will ident i fyfwi th  its formal expansion. 
Rn can be given a ring structure by defining 

( f + g , t )  = ( f , t )  + ( g , t )  
( f g ,  t )  = E { ( f ,  tl)(g, t2) : tlt~ -~ t} 
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R~(A) is thus the ring of  fo rmal  power  series in non -commut ing  variates 
a ~ A and with coefficients in Z. 

There is a canonical  ring h o m o m o r p h i s m  P,~ : Ro~(A) ~ R,(A) given by 
P~(f )  = f restricted to W~(A). 

Let H~(A) = { f ~ R , ( A ) : ( f ,  1) = 1}n = 1 ,2  ..... co. I t  is easy to 
check tha t  Hn(A)is a group under  multiplication. In  fact, 

(1 + f ) - ~  : 1 _ f + f 2  . . . .  + (__l)nfn 

when ( f ,  1) : 0. We denote Ho,(A) by H(A). 
For  any group G, let 

Ga : G, 6 3 : {((gl ,  g2) : ga ,  ge ~ G}},..., Gn : {{(gz ..... g ,)  : g, e G}} 

where, for  S_C G, {S} denotes the subgroup  generated by S, and the higher 
order  commuta to r s  are defined inductively by 

(gl , g2) = g~lg~lglg2 

(gl ,..., g , )  = ((ga ..... g,-1), gn) 

The  series G1 D G2 D ... is called the lower central series of  G. Let G(A) 
denote the free group with generators  A. The following l emma is well 
known.  

LEMMA 3.1. Let G = G(A) and G1 ~ G2 ~ "'" be its lower central series. 

(a) The map a---~ l + a 

a - 1 - + l - a + a  2 - a  3 +  . . . .  ~ { ( - - 1 ) n a  n : n  =0 ,1 , . . . }  

extends to a 1-1 homomorphism T o f  G(A) into H(A). 

(b) Kernel (P, o "0 = G,+I 

(c) c~{G, :n  = 1,2,...} = { e ) .  
The map -r will be referred to as the Magnus transform. 

(d) Kernel (Pn o r) = {g ~ G(A) : the unique expansion of  g, by the 
collection process, into basic commutators has no terms o f  weight <~n} 
(see the Appendix). Notice, for  (al ..... an) e Z A C G(A), 

T(a I . . . . .  an ) = (1 + as) "... " (i + an) = f ,  

where ( f ,  t )  is the number o f  times t occurs as a subsequence of  (al ..... an). 
Thus we can view the Magnus transform as the unique extension o f  the 
"statistical transform" z on 52 A, defined above, to a homomorphism on 
G(A). 
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PROOF: The reader can find all the proofs in Fox [7]. An alternative 
method is sketched below. The assertion of (c) is the Magnus theorem 
(see Kurosh [5, p. 38]). To prove (a) we need some properties of the 
collecting process (Hall [4, Chapter 11]). For  the convenience of the 
reader these properties are summarized in the appendix. 

Let g c G, then g has a unique ordered expansion in terms of basic 
commutators (the expansion may have infinite length). Now (c) implies 
that, conversely, this expansion determines g uniquely. For, if gl and g2 
have identical expansions, then, for all n, glg-~ 1 ~ Gn; thus 

glg~ 1 ~ n {G~ : n = 1, 2,...) = {e} and gl = g~- 

Let gl :/~ g~ �9 Then by the above, the expansions of g~ and g2 differ. 
Let w be the maximal initial subword common to both expansions. Then 

gl ~ wc~: "'" c~: mod G n §  

g2 ~ wc;~ l ''" c'k* rood an+ 1 i t 

where cq ~ c~1, q ,  c~ basic commutators of  weight w. Now, by lemma 
proved in the appendix, the leading term of r(cq):/:  leading term of 
r(c'h). Hence ~-(g0 3 & ~'(g~) and (a) is proved. Moreover, by the lemma 
quoted above, the leading term of r(cj) is a ring commutator of weight n 
and so P~ o " r (g l )  z/z p~ o ~'(g2)" Now, let g ~ G~+I; then g ~ e mod G~+I. 
Thus g = x mod G~+~ where x :~ e is a product of basic commutators of 
weight n and thus, as above, P ,  o z(g) 3& Pn o ~-(e) = 1, i.e., g ~ Kernel 
(P~ o ~-). On the other hand, if g c Gn+x, g is a product of  basic com- 
mutators of  weight n -k 1 and their inverses. Hence the leading term of 
-r(g) has weight ~> n + 1, implying P,~ �9 ~-(g) -- 1 and g~ Kernel (P,~ o ~-). 
Hence (b) is proved. 

Finally, (d) follows from (b) and Theorem 11.-24 of Hall [4]. See the 
appendix. 

Let T be a finite set. Let 

I" 1 
q0: 

be the semigroup homomorphism given by ~(a) = a, ~(ti) = a - 1 ,  ~ ( t )  = e 
for a c A ,  a ~ A ,  t e  T. 

Let TK~ ------ Ker ~ = {x c ( ~  (T u A u A))-I : ~(x) = e}. rK~ is called 
the free group kernel. Let K~ = rK~ where Tis  empty. 

Let TK~ be the smallest set containing 1 such that c~, fl c rK~, u e T, 
a c A implies aufi, aft, aad E TK~ (so ~adt3 ~ TK~ by 1 ~ TK~). TK~ is 
called the free half-group kernel. Let K~ = TK~ where T is empty. 
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By virtue of Lemma 3.1 it is reasonable to consider the elements of Gn 
as approximate to the identity and thus to try to approximate rK~ by 

= {t (X (T  u A u A))I : 

4. AN APPROXIMATION THEOREM FOR CONTEXT FREE LANGUAGES 

To begin with, we observe that the sets/s and Ks defined in Section 2 
above are rKg and TK~, respectively, where we let T = {A,q}, A = {L~q}, 
A = 

Let ~ be a grammar with strictly length increasing rules (see 
Remark 2.1(b)). Let L = LI(f#) and P = Px(~), the phrase-markers of 
1-derivations of ~. Then by Theorem 1, Corollary 1, and Remark 2.1(a) 
we have 

L = ~b(rK~ n r t ~  E) (4.1) 

P = r K ~ n F n E  

where r is defined in Corollary 1, F is a regular set, and 

Let P ,  ---- ZK~. n F n E, and L ,  = ~b(P,). 

THEOREM 2. (a) L 1 D _ ' " D _ L n ~ _ . . ' D _ n { L i : i =  1,2,3,...} = L  

(b) P1D _ . . .DpnD_ " "D_n{P~: i  = 1,2, 3,...} = P  

(c) P~ has "grammatical depth" <~ k in the sense that t e Pk iff t ~ F, 
t e E and the unique expansion ofq~(t) in G(A) by the collection process into 
basic commutators has no terms with weight <~ k. 

(d) Pk is the k-th order "grammatical statistical approximation" in the 
sense that t e P~ iff  t ~ F, t ~ E and the Magnus transform of  t, ~" o q~(t), 
has no terms of  n-th order for n ~ k; i.e., (.r o q~(t), r )  = O for 1 ~ ] r [ ~ k 

(e) Pk is "easy to compute" in the sense that Pk is accepted by an 
automaton dgk which is the direct sum of  a finite state machine and another 
automaton which is the sequential composition of  a finite number of  (infinite) 
counters (precise definitions given below). 

PROOF: The assertion of (b) follows from Lemma 3.1(c)and 
equation (4.1). 

It is immediate that {Ln} is decreasing and L _C n L , .  Now let y ~ n L , .  
Then for each n there is an x,~ satisfying 

xn~TKg  t~F, ~b(x,~)=y, txn[ ~ < 2 [ y [ .  
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Only finitely m a n y  words  satisfy the last condit ions;  so some x = xi 
occurs in infinitely many,  and hence all, r K ~ .  Thus  x ~ c3 rK'~, = rKA. 
Thus x ~ rK~ c3 F n E and y ~ L. This proves (a). 

The assertions of  (c) and (d) follow f rom L e m m a s  3.1(d) and  (b), 
respectively, and equat ion (4.1). 

We now prove  (e). We introduce the following notation.  Let  S be a 
semigroup .  Then $1 : Z S ~ S with S1(s~ ..... sn) = s l  �9 ... �9 so`. Let 

f :  ~ A --+ B; such a n f i s  called a machine,  and  we define f ~ :~ ,  A - - + Z  B 
b y f ' ( a l  ..... an) = ( f ( a O , f ( a t ,  a~) ..... J (a l  ..... an)). In  part icular  

SIa(S1 .. . . .  So, ) = (S1,3 '1S2 . . . . .  S 1 .. .  So`). 

I f  f : E A - - - ~ { 0 ,  1} then d ( f )  -= { t ~ , A  : f ( t )  = 1}, the set o f  tapes 
accepted by f I f  h : A --~ B then h r : ~ A ~ ~ B with hr(a~ ..... an) = 
(h(aO ..... h(ao`)). Z denotes the additive group o f  integers. Z I is called the 
(infinite) counter.  Let fk : ~2 Ak --~ B~ for  k = 1 ..... n. Then 

f~ X "'" x f ~  : ~ ( A ~  X "" x A O ` ) - + B I  X "" xB,~ 

(the direct sum of  the f~) with 

fa • "'" • f~((all .... , a t , )  ..... (am1 ..... am,)) = 

= (.fl(a11 ..... a m O , . . . , f , ( a l ,  ..... am,)). 

We first notice that  E = ~ r  where f :  Z (A u J w T ) ~  {0, 1} with 
f = h e Z 1 h l  r where h I : A U A W T ~ Z  with h~(a) = h x ( d )  = - - 1  for  
a ~ A, and ht( t )  = 2 for  t ~ T. Further ,  h 2 : Z - - +  {0, 1} with h~(x) = 1 
when x >~ 0 and h2(x) = 0 when x < 0. 

We next show that  rK~,  are accepted by  au toma ta  constructed f rom a 
finite number  of  counters.  In  fact, we can construct  a representat ion of  
rKaa  by infinite t r iangular  matr ices using the Magnus  t ransform,  and 
using L e m m a  3.1(b) one could "abs t rac t "  to r K ~ .  Then one could use 
the methods  o f  Schtitzenberger [6]. However ,  we follow the methods  of  [8], 
using the fact  that  the right regular  representat ion of  Ro~(So) is in the 
wreath produc t  o f  counters with respect to the natura l  coordinates .  
Another  way to view the mat te r  is that  the construct ion of  [8, L e m m a  3.4] 
is effective for  any group G and any subnormal  series of  G (e.g., G(A) 
and its lower central  series). We will now show that,  for  r e Z (A u A u T), 
t --+ ~- �9 ~v(r) can be computed  by a " b a n k "  of  counters  of  depth n. 

We use the following notat ion.  We write 

~ .  = ( A , ~ .  ..... A ,  ~ , A , ~ ) ,  

58~/4/3-3  
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where fk : Y. A~ ~ Bk is a machine for  k = 1 ..... n and ~1 : Bo ~ A1,  
q~ : B~ • Bo-+ A~ ,..., q~,_~ : B,_~ • "'" • Bo-+ A,_~ , 

~ ,  : B~_I • ... • Bo--+ An . 

Then o~, determines a machine M(~,)  : ~ Bo --,- B1 • ..- • B ,  in a natural 
way. We consider qh as mapping  basic inputs in Bo into basic inputs of  
fx ,  and cp~ as mapping the last basic outputs  off~-x ..... A and the original 
last basic input into a basic input o f f ~ .  Precisely 

M(%) ~ equals the identity map on ~ Bo, 

M(O~l) = f i l l / ' ,  
M ( ~ )  - - - - f k ~ u r ( M ( o ~ _ l )  X "'" X M(~0  X M(~o))*. 

Let ~ : ~, (A ~) .4 w T)  --+ R~(A) be defined by dg,(r) ---- (P~ o r o q~(r)) 
(see Section 3 for  the definitions). 

Let g2n(~ X) ---- {r ~ E X :  [ r I = n} and 

A ,  ( ~  X)  -~ l r~  ~ X :  l <~ ] r l <~ n t. 

We now let 

~ .  = ( s  J ,  ~ . . . . . .  s2r ~ ,  Sl  ~, ~1), 

where Sk = F(g2k(E A), Z)  = { f :  ~ k ( Z  A) ~ Z} with pointwise multi- 
plication ( f l  q-f~)(x) = f ~ ( x )  §  • "'" • Z,  the free Abelian 
group of  rank [A [k). N o w  Sk-1 • "'" • $1 can be naturally identified 
with Tk_l = F(Ak_~(Z A),  Z )  by ( fk - ,  .... ,f~)+--~f where f ( r )  = f i ( r )  for 
l ~ < l r l  = j ~ k - - 1 .  

Let So = A u / / w  T. Next  we define q~ : So ~ $1 and for  k = 2,..., n 
q~k : ((Sk_l • "'" • S0  • S o ) ~  Tk_~ • S o ~ S ~ .  For  2 ~< k ~ n, 

gk-1E Tk-1,  a E A,  5 ~.4,  t E T, X S Dn(~  A) 

we let 

~ok(gk_l, a)(x) = ((1 -~- glc_l)a)(x) = gk-l(Y), 

where x = y �9 a with the convention that  gk_a(1) = 1 and  gk-~(Y) = 0 
when y is no t  defined. Further,  

~ok(gk-~ , t ) ( x )  = O, 

qok(gk-1, 5)(x) = ((1 + gk-O(- -a  + a s - -  a 3 + "'" 
+ (-1)~-~a~-1 + (-O~ag)(x) 

= --gk-l(Y~) q- gk-a(Y2) - -  gk-~(Y3) + "'" 
+ (--1)k-lgk_l(yk-0 + (--1)~3(X, a~), 
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where yja J = x for  1 ~< j ~< k --  1 with g k - l ( S )  = 0 when y~ is not  defined 
and 6(x, a k) = 1 if x = a s and zero otherwise. Finally for  a, b ~ A, t ~ T 

q~(t)(b) = O, 

cp~(a)(b) = 6(a, b), 

q~(a)(b) = --6(a, b). 

Thus we have defined ~ .  N o w  it can be verified by induction that  

~r = M ( ~ . )  

when 1 is struck f rom the domain o f  M(~,O(r). N o w  let fi,,(f,) = 1 
i f f , (x )  = 0 all x, and /3 , ( f , )  = 0 otherwise. Then by Lemma 3.1(b) 

d ( 1 3 . M ( a . ) )  = d(/3,(J/d)n) = rK~,+ l a  . 

This proves (e) and hence Theorem 2. 

A P P E N D I X  

THE COLLECTING PROCESS (see Hall [4, Chapter  11 ]) 

Let G = (A), A = {al ..... an}. We define commutators  c~ and weight 
w(cO as follows: 

(1) The ad  are commuta tors  o f  weight 1. 

(2) I f  ci and ej are commutators ,  then (c~, cj) is a commuta to r  o f  weight 

w(c3 + w(c~). 

The commuta tors  are ordered by weight and commuta tors  o f  the same 
weight are ordered in an arbi t rary but  fixed manner.  The subclass o f  basic 
commutators  is defined as follows: 

(1) The ad  are basic commuta tors  o f  weight 1. 

(2) Having defined basic commuta tors  o f  weight < n, we define the 
basic commuta tors  of  length n as (c~, cj) where c~ and ej are basic, 
w(cO + w(c~) = n and 

(a) ci > c j ,  

(b) if ci = (ok,  cz), then c~- >~ c~. 

The collecting process consists o f  successive replacements o f  a subword 
of  the fo rm cicj by c~c~(ci, e~). Note  that this does not  change the group 
element represented by the word.  
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Every element of G has a unique ordered expansion of  the form 

g = e~ 1 "." e~" rood Gn, 

where the c? are basic commutators of weight < n [4, Theorem 11.2.4]. 
We define the bracketing operation [., .] in R~(A), the ring of power 

series, by [u, v] ----- uv --  uv. Using it we can define ring commutators in 
Ro,(A) by letting the a l e  A be commutators of weight 1 and continue as 
in the group case. For f e  Hn(A), we define the leading term o f f  as the 
formal sum of all monomials of smallest positive degree. By Corollary 
11.2.1 of Hall [4], the basic commutators of degree m are linearly 
independent. 

Let "r : G --,- R,o(A) be the Magnus transform. 

LEMMA [4, pp. 173-174]. (a) For f ,  g E Hn(A), f i g  5~: 1, with leading 
terms f ~ ,  g~ o f  degrees k, 1, respectively; the leading term o f f  -1 is --f~ 
and the leading term o f  

l 
fk if k < l  

J ' k ' g ~ =  g~ if l < k  
f~ + g~ if l ~- k and fk  + g~:/=O. 

I f [ f  k ,  g~] ~ O, it is the leading term o f ( f ,  g). 

(b) The leading term o f  r(ci) is c~ where ci is a basic (group) commutator 
and c~ is the ring commutator obtained by replacing round by square brackets 
in the expression for  ci �9 

PROOF: The assertions about f -1  and f . g  follow by straightforward 
computations. Now i f f  = 1 + f ' ,  g = 1 + g , , f - 1  _ 1 + f " ,  g-~ = 1 + g", 
then 

( f ,  g) = 1 + f ' g '  - -  g ' f '  + f ' f " g '  --  g 'g"f '  + g"f 'g '  + f " g " f '  + f " g " f ' g ' .  

Thus 

(f ,  g) = 1 + [fk,  gt] + higher terms. 

We prove (b) by inductions on the weight of ci,  the assertion being 
immediate for weight 1. Thus let ck = (c~, cj); j~ =-r(ci) has leading 
term c~ andf i  ---- r(cj) has leading term c~. By part (a), ( f i  ,ft.) has leading 
term [c~, c~] ---- c~ provided the latter expression is not zero; but being a 
basic commutator it cannot be zero by the theorem quoted above, and 
( f i  ,ft.) = (z(ci), r(c~)) = "r(ci, cj) = ~'(ck). Hence the lemma is proved. 
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