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Abstract

The blow-up rate estimate for the solution to a semilinear parabolic equation u; = Au + V (x)|u|? —1y
in §£2 x (0, T) with 0-Dirichlet boundary condition is obtained. As an application, it is shown that the
asymptotic behavior of blow-up time and blow-up set of the problem with nonnegative initial data u(x, 0) =
Mgo(x) as M goes to infinity, which have been found in [C. Cortazar, M. Elgueta, J.D. Rossi, The blow-
up problem for a semilinear parabolic equation with a potential, preprint, arXiv: math.AP/0607055, July
2006], is improved under some reasonable and weaker conditions compared with [C. Cortazar, M. Elgueta,
J.D. Rossi, The blow-up problem for a semilinear parabolic equation with a potential, preprint, arXiv:
math.AP/0607055, July 2006].
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction
In this paper, we are concerned with the following semilinear parabolic problem

wy=Au+V@)uPlu in2x©0,7),
u(x,t)=0 ond2 x (0,7), (1.1)
u(x,0) =up(x) in £2,
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where 2 c RV (N = 3) is a bounded, convex, smooth domain, 1 < p < %—J_r%, ug € L*(£2), and

the potential V € C 1(£2) satisfies V (x) > ¢ for some positive constant ¢ and all x € £2. It is well
known that for any ug € L°°(§2) problem (1.1) has a unique local in time solution. Specially,
if the L°°-norm of the initial datum is small enough, then (1.1) has global, classical solution,
while the solution to (1.1) ceases to exist after some time 7' > 0 and lim; 47 [|u(-, )| Lo (@) = 00
provided that the initial datum u( is large in some suitable sense. In the latter case we call the
solution u to (1.1) blows up in finite time and 7' the blow-up time. As usual, the blow-up set of
the solution u is defined by

Blu] = {x € 2 | there exist x, — x, t, 1 T, such that |u(x,, t,)| = oo}.

Much effort has been devoted to blow-up problems for semilinear parabolic equations since
the pioneering works in 1960s due in particular to interest in understanding the mechanism of
thermal runaway in combustion theory and as a model for reaction—diffusion. See, for example,
[1-3,6-8,14,16]. The seminal works to problem (1.1) with V(x) =1 were done by Giga and
Kohn [9-11]. In their paper [10], among other things, they have obtained a blow-up rate estimate,
which is crucial to obtain the asymptotic behavior of the blow-up solution near the blow-up time.
More precisely, under the assumptions that the domain £2 is the entire space or convex and the

solution is nonnegative or 1 < p < % (N>=2)orl < p<oo(N=1),they proved that

1

luGe, )| <C(T —1) 7T, ¥(x,1) €2 x(0,7T),

where C > 0 is a constant and 7 > 0 is the blow-up time. More recently, the same estimate has
been obtained by Giga, Matsui and Sasayama [12,13] for any subcritical p (i.e., 1 < p < %—3
when N >3, 1 < p <oowhen N =1,2).

Whether the similar blow-up rate estimate holds for the problem (1.1) for general potential V,
to our best knowledge, is not well-understood up to now. Our first goal in this paper is to give an

affirmative answer to this question. We have the following
Theorem 1.1. Let u be a blow-up solution to (1.1) with a blow-up time T. There exists a positive

constant C depending only on n, p, §2, a bound for Tl/(p’1)||u0||Loc(9), the positive lower
bound ¢ for V and |V || c1(g), such that

U, |, o <CT =)~ VP=D v e(0,T). (1.2)
L®(£2)

As in [10], we convert our problem to a uniform bound for a global in time solution w of the
rescaled equation

1 —_ 1
Wy —Aw+§y-Vw+ﬁw— ViwPlw=0, B= H,

with
w(y,s) = (T —Pua+ yvT —1,1), Viy,s)= V(a+ ye_s/z),

where a € £2 is the center of the rescaling.
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The proof of Theorem 1.1 depends heavily on the methods developed by Giga and Kohn
in [10] and Giga, Matsui and Sasayama in [12,13]. However our result is definitely not a direct
consequence of their works. Due to the appearance of the potential V, some extra works should
be done. It turns out that to get a uniform bound for w, the key point and the main difference is
to establish an upper bound for the global energy of w given by

1 1 _
E[w](S)=§ / (IVw|2+,3w2)pdy—m Viw[Pt pdy,
2(s) £2(s)

Ly| . .
where p(y) =e~ 4 . A lower bound for the energy can be obtained without much effort. When
V =1, these bounds come easily from the Liapunov structure of the equation, i.e., the en-

ergy E[w] is non-increasing in time. In our case this does not hold anymore. There is a “bad”

term
v
/ '§‘|w|p+1pdy

2(s)

involved in the derivative of the energy E[w]. We see that

d F1%
—E[w](s) < — / wgpdy+C/ —|lw|”* pdy.
ds ’ as

2(s) 2(s)

Since % can be written as VV (x) - ye
by e—5/2 fﬂ(s) ly|lw|P*!pdy. The question is how to estimate the integral fg(s) IyllwPH pdy.

To this end, we introduce higher level energies

—5/2 the integral |ﬂ [lw|”*!p dy can be controlled
gral Jo ) 135

1 1 _
Exlw](s) = 5 / (|Vw|2+ﬁw2)|y|2kpdy—m Viw”*y*pdy, keN.
2(s) 2(s)

By complicated but elementary computation, we arrive at

d 1 212k 2 1 2k=2
75 Exnfw] < 3 wiply|™ dy + nEx[wl+ C(u) + C(u) [Vw|“plyl dy,
20s) 20s)

for all u > A, where A is some fixed positive number. Also we have

P+l

2

1d

37s w2|y|2kpdy>—2Ezk[w]—c+c( / w2|y|2"pdy)

2(5) 2()
Based on these crucial differential inequalities we can show that

o0

| E2e[w](s)] < Mie®, / e / IVw[*ply|* dyds < Ny,
0 £2(s)
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for all k e N and s > 0. Here My, Nj are positive constants depending on k. As a byproduct,
we get a coarse estimate on the growth of the global energy E[w], precisely, —L < E[w] <
Ce™s (see Remark 2.1 below). Furthermore, by the mathematical induction, we can improve our
estimates by at most finite steps to get

o0
| Exx[w](s)] < Mie®™, /e*““‘ / IVw[?ply[** dy ds < Ny,
0 £2(s)

for some o € (0, 1/2). Since the integral f 20s) Iyllw|?*'pdy can be controlled in terms of
fg(s) |Vw|2|y|2,0 dy, E>[w] and E[w], we eventually have

d
- log(Elw] +C) < Ce™/? / IVwl? |y pdy + Ce /> + Ce@ ),
N

2(s)

And the upper bound of E[w] follows.
Once these bounds for E[w] are in hands, we can establish an integral estimate

s+1
sup / |w); LPH B | P < €y, forsi >0, g>2,
N

528

by interpolation, interior regularity, maximal regularity properties for linear parabolic equations
and a bootstrap argument as in [12,13]. And the uniform bound for w can be obtained from
this estimate and interpolation in [4]. This boundedness of the global in time solution w in turn
implies the blow-up rate estimate (1.2).

Another aim of this paper is to establish the asymptotic behavior of blow-up time and blow-
up set of the blow-up solution to the problem (1.1) with nonnegative initial data ug = Mg as
M — oo. In this case, the problem we focused on can be rewritten as

uy=Au+Vxu? in2 x (0,7),
ulx,t)=0 ond2 x (0,7T), (1.3)
u(x,0)=Mop(x) in £2,

where ¢ € C(£2) satisfies ¢|yo =0, ¢(x) > 0, Vx € £2, and V satisfies the same conditions as
before. For these issues of blow-up problems to (1.3), we improve the results which have been
obtained by Cortazar, Elgueta and Rossi [5] recently.

In [5], they have made some more technical condition on ¢:

1
MA@+ —minV(x)MPe? > 0. (1.4)
2 xef2

The assumptions on §2, p and V are the same as ours (although their assumption that V is
Lipschitz is replaced by V € C!(£2) in our case, our results still hold when V is Lipschitz).
Under these assumptions, they proved that there exists M > 0 such that if M > M, then blow-up
occurs and the blow-up time 7' (M) and the blow-up set B[u] of the blow-up solution to (1.3)
satisfy
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c A C
S K TMOMPT - <
M= p—1 M3
P~ a)V(a) > b_c for all a € Blu]
a a) =z — — —, a ul,
¢ A My

where A = (maxy e @? ')V (X)L, y = min(pT_l, %) and C1, C; are two positive constants.

For the upper bound estimate on blow-up time, we have the following

Theorem 1.2. Ler 2 c RY (N = 3) be a smooth bounded domain, p > 1, V, ¢ be continuous
functions on 2 with |30 =0, ¢(x) >0, V(x) > ¢, Vx € 2 for some ¢ > 0. Then for any
k > p — 1 there exists a constant C > 0 and My > O such that for every M > My, the solution
to (1.3) blows up in finite time that verifies

A —k
T(M)< —————+CM*, (1.5)
p

where A = (max,eo P~ (x)V(x))~L

Remark 1.1. Our assumptions are weaker than ones in [5]. In [5], they required V and ¢ are
Lipschitz continuous. Furthermore, our result tells that the decay of the upper bound of 7' (M) —
W can be faster than obtained in [5].

Notice that the proof of the upper bound of blow-up time in [5] depends on an argument of
so-called “projection method” (see e.g. [14]) and the essential assumption that V, ¢ are Lipschitz
continuous. Our proof of Theorem 1.2 requires an L>-method (see e.g. [1]). The advantage of
this method compared with one in [5] is that we do not need to control the first eigenvalue of
Laplacian with Dirichlet boundary condition.

For the lower bound estimate for the blow-up time and the asymptotic behavior of blow-up
set, we have

Theorem 1.3. Ler 2 C RY (N > 3) be a convex, bounded, smooth domain, 1 < p < %—i‘% @ be

a continuous function on Q2 with 0lae =0, ¢(x)>0,Vxe2,and V € C! (f)) with V(x) > c,
Vx € 2 for some ¢ > 0. Then there exist two positive constants C1, Cy such that

Ci

TMMP™ —A(p =1 = ——. (1.6)
e
1 C
o N @)V (a) > e —2_. foralla € Blul, (1.7)
P

where A = (max,eo P~ (x)V(x))~L

Applying Theorem 1.1 and the method in [5], we get Theorem 1.3 immediately. The only
difference is that the role of Lemma 2.1 in [5] is replaced by that of our Theorem 1.1 now.

Remark 1.2. In our case, we do not need the assumption (1.4) anymore.
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Remark 1.3. As described in [5], the asymptotics depends on a combination of the shape of
both ¢ and V. To see this, if we drop the Laplacian, we get the ODE u; = V (x)u? with initial
condition u(x, 0) = Me(x). This gives u(x, t) = C(T —1)~/P~D with

M-
T= .
(p—DHV@)pr~!(x)

It turns out that blow-up occurs at point xo such that V (xg)p? ! (xg) = max,co V (x)p? 1 (x).
So the quantity max,eo V (x)@?~!(x) plays a crucial role in the problem.

Remark 1.4. Also as in [5], (1.7) shows that the blow-up set concentrates when M — oo near the
set where ¢”~ !V attains its maximum. Notice that 1/A = ¢?~(a)V (a) for any maximizer a. If
a is a non-degenerate maximizer, we conclude that there exist constants ¢, d > 0 such that

PP M@V @) — P ' (x)V(x) = cla—x|>, forallx € B(a,d).

So (1.7) implies
Va € Blu].

Throughout the paper we will denote by C a constant that does not depend on the solution it-
self. And it may change from line to line. And K1, K2, ..., L1, L2, ..., M1, M>,..., N1, N2, ...,
01, Q2, ... are positive constants depending on p, N, £2, alower bound of V, || V| 1 (@) and the
initial energy E[wp]. Here and hereafter wo(y) = w(y, so)-

2. Blow-up rate estimates

In this section, we will prove Theorem 1.1.
We introduce the rescaled function

w(y, s) = (T —)Pula+ yvT —1,1) 2.1)

with s = —log(T — 1), B = ﬁ. We shall denote w* by w. If u solves (1.1), then w satisfies

1 p—1 —s/2 .
wS—Aw+§y~Vw+,Bw—|w| wV(a—i—ye‘ )=0 in £2(s) x (sg,00), (2.2)

where 2(s) = 24(s) = {y: a + ye™*/* € 2}, 5o = —logT.
We may assume T= 1 asin [12] so that we assume sg = 0. Here and hereafter we may denote
V(a+ye*/?) by V(y,s).
2
By introducing a weight function p(y) = exp(— %), we can rewrite (2.2) as the divergence
form:

pws =V - (pVw) — Bpw + \_/|w|p_1w,o in £2(s) x (0, 00). (2.3)
As stated in [12], we may assume

w, wg, Vw and V2w are bounded and continuous on 2(s) x [0, 5] for all s < o0.
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2.1. Global energy estimates

We introduce the energy of w of the form (we call it the “global energy”)

1 1 _
E[w](s) = 5 / (IVwl* + pw?)pdy — o7l Viwl"*pdy.
£2(s) £2(s)

We shall show that this global energy satisfies the following estimates.
Proposition 2.1. Let w be a global solution of (2.3), then
—Ki < E[w]< Ka. 24

Proposition 2.2. Let w be a global solution of (2.3), then

/|| wy; L2(2()) |* ds < N1, 2.5)
0
Jw: L2(2)] < Vo, (2.6)
s+1
.7 p+l 2(p+D
) X 4V3. .
f Jw: LEF! (2(5)) | ds <N 2.7)

Here the weighted LP space Lﬁ(.Q(s)) ={u e Llloc(.Q(s)): f-Q(S) ul? pdx < 400} for any
fixed s.

We will prove these two properties in the following subsections.

2.1.1. Lower bound for E[w]
Lemma 2.3. E[w] > — K.

We see from (2.3) that

1d _
27s w?pdy = / wwspdy = / w(V~(qu))—ﬂpw+V|w|p_1wp)dy

2(s) £2(s) 2(s)

=— / IVw|*pdy — / pw’pdy + f Viw|Ptpdy

2(s) £2(s) £2(s)
p—1 7 4| P
=-2FE[w]+ —— ViwlP™ pdy. (2.8)
p+1
£2(s)

Calculating the derivative of E[w] and noting that wg|yo ) = — % y - Vw we have
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—E[w](s) = /(Vw-szJrﬂwws)pdy— / ViwP twwspdy

2(s) £2(s)

+1/|V|< yod ! aV| 1"tpd
- w o— —— —|w
4 y-vY)p P+ 3s pay
382(s) £2(s)

=— / V- (pVw)wsdy + / (pVw - y)wsdo + / Bwwspdy
2(s) 082(s) £2(s)

_ 1
- f V|w|"—1wwspdy+4—L / IVwl*(y - y)pdo
£2(s) 382(s)
1 oV

T p+1 ) as
2(s)

lwlP*pdy

=- / V- (pVw)wsdy + / Bwwspdy — / Viw|” wwspdy
£2(s) £2(s) £2(s)

! / |Vw|2<y~y)pdo+; f VvV -ylwPHpdy
4 2(p+ 1)

d82(s) 2(s)
- 2 _ l 2 1 ¥, p+1
= wypdy 1 [Vw| (y~y)pd0+2(p+1) VV.ylwl["™ pdy
Q(s) 382(s) 2(s)
(2.9)
or
2 _d 1 2
wipdy = dsE[w](s) 7 [Vw|“(y - y)pdo
2(s) 982(s)
— | vV ylwPtlpd 2.10
2(p+1)/ yiwl" " pdy. (2.10)

2(s)

Notice that V is bounded. By (2.8), using Young’s inequality, we have

—1 _
—2E[w]+C/|w|P+1pdy< 2Ew]+ 2= . Viw|PH pdy
20) 20)

= / wwspdy

£2(s)

<e / wipdy +e / lwPtpdy + C(e).
20s) 20s)
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Taking ¢ small enough we get

/|w|ﬂ+1pdy<CE[w]+s f w2pdy + C(e). 2.11)
2(s) £2(s)

Since supyeg(x)|V\7||y| = sup,co |IVV]|lx — a| is bounded and §2 is convex, it follows
from (2.9) and (2.11) that

d
LBl < - f wlpdy +C / wlP+ pdy
S

20s) 20s)

<—(1-—¢) / w?pdy + CE[w]+ C(e).
2(s)

Take ¢ small then we have
d
d—E[w](s)<C1E[w]+C2. (2.12)
S

From this inequality, we claim that E[w] > —%. If not, then there exists s; > 0 such that
E[w](sy) < —%. By (2.12), we have %E[w](sl) < 0. This implies that

C
E[w](s) < —C—2 for all s > 5.
1

Hence by (2.8) and Jensen’s inequality, for s > 51, we have

p+l

2
wzpdy>Cf|w|"“pdy>c< / w%dy) .
2(s) £2(s) £2(s)

1d
2ds
This fact shows that |, 20) w?p dy will blow up in finite time, which is impossible.

2.1.2. Upper bound for E[w]
To find an upper bound for E[w], we introduce

1 1 _
Exlwl== [ (IVwl*+Bw?)y*pdy — —— | Viw|"y*pdy, keN.
2 p+1
2(s) £2(s)

For this energy functional, we shall prove the following properties.
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Proposition 2.4.

1d p—1 _
37s / w2p|y|2"dy=—2Ezk[w]+m / Viwl"*ply* dy
£2(s) £2(s)

1
+ / k<n+2k—2—§|y|2>w2|y|2kzpdy. (2.13)
£2(s)

Proposition 2.5.

d _
/w3p|y|2"dy=—£Ezk[w]—2k / p(y - Vw)ws|y|* 2 dy
2(s) £2(s)

1 / Jw

4 ay

082(s)
1 oV
-— ¥|w|P+1p|y|2kdy. (2.14)

p+1
£2(s)

2
O -y)ply* do

Proof of Proposition 2.4. Similar to that of [10, Proposition 4.1]. O

Proof of Proposition 2.5.

d — _
%EZk[w]z f (Vw - Vo, + Bww, — Viw|P  wwy)ply* dy
2(s)
1 1% 1
-3 1 ¥|w|"“p|y|2kdy+z / IVwl*(y - y)plyl* do.
£2(s) 982(s)

Estimating the first term of the right-hand side, we get
/ Vuw - Vuyply|* dy = - / V- (ply P Vw)ws dy + / PIyI*Vw - yws do
§2(s) 2(s) 32(s)

=- f V-(pr)wslyIdey—Zk/wspr-ylyIZk_zdy
2(s) £2(s)

1
-5 f IVwl?(y- p)plyl* do.

32(s)

Hence we have
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d - _
T Ealw] = - / wy (V- (0Vw) + Bwp — Vw? p)ly[* dy — 2k / wspVw - yly[* 2 dy

2(s) 2(s)

1 v 1
¥|w|f’“p|y|z’<dy—— / IVw[*(y - y)ply* do dy

B p+1 4
£2(s) 982(s)
=— / w?plylz"dy—Zk/wspr-ylylz"’zdy
2(s) 2(s)
1 oV 1
| g|zl)|”“p|y|2kazy—;1 / IVwl(y-p)ply*do. O
2(s) 982(s)

For k = 1, similar to Proposition 4.2 of [10] we now state an parabolic type Pohozaev identity.

Proposition 2.6.
3 s Elyl —njwpody—(p+1) | (y-Vwwspdy
2(s) £2(s)
p—1 p+1 dw |?
= f IVw[*p( e+ ——Iy* ) dy - —— / —| (v-y)pdo
4 2 dy
2(s) 982(s)
+ / vV - ylwPpdy. (2.15)
2(s)

We now define

- . 1 1
Exlw] £ Exlw] — - / <5|y|2—n)w2pdy. (2.16)
£2(s)

Lemma 2.7.

d(E E
(Ex+c3 )g—

= s [ (R IVuP) 1+ P)pdy +0Er +eaB) bes, D)

20s)

where . = %Z—T and cs depends on p, di, dr, n, di and dp are constants such that V (x) >
di > 0andsup, . |VV(x)|diam(§2) < 2dp and n is a small constant.

Proof. By (2.14) and (2.15) we obtain that

dE,

1 Jw
—=- f stlzplylzdy—(p+3)/(y-Vw)wspdy—— / 0P|
ds 4 dy

£2(s) £2(s) 82(s)

2
plyl*do




T. Cheng, G.-F. Zheng / J. Differential Equations 244 (2008) 766—-802

2
p—1 p+1 ow
-/ |Vw|2<cz+T|y|2>pdy+T [ ol

£2(s) 252(s)

1 v Vv
_ﬁ ¥|w|p+1p|y|2dy+2 / ¥|w|p+lpd)’-
2(s) 2(s)

pdo

771

(2.18)

Since £2 is convex, the third term on the right is always negative. We control the second term by

applying the Cauchy—Schwarz inequality: for any ¢ > 0,

1
‘ f(y-vmwspdy‘@ / PPV dy + - f plwsdy.

£2(s) 2(s) 2(s)
Choosing ¢ small enough that 2= — (p + 3)e = § > 0, we conclude that
dE,
- f (s Ply 2 + 81V wlly + 2l V) pdy
£2(s)
+————'/ plws|*dy
082(s) £2(s)
1 v Vv
- _ [7+1 2d 2 f - [7+1 d .
P oy (W1 plylPdy + oy (WITTpdy

2(s) £2(s)

Now choose ¢3 > max(2(p + 1), 1 + p+3) and apply (2.10) to get

p+1 /(
5 y
382(s)

— a3 / 8_V|w|p+1pdy.
p+1 as

Q0s)

2
+3 dE
pdo + (1 + p4_> / ,0|ws|2dy+63—

ds
20s)

Let 2¢4 = min(1, §, ¢p) > 0, we derive that

d(Ey + c3E) v
— <2 | (wEIVwlP)(1+1y1P)pdy +2 —gwpr@

ds
2(s) 2(s)
c3 v 1 v
_p—l-l / ¥|w|p+lpdy—m ¥|W|P+IP|}’|2dy

£2(s) £2(s)
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—2¢4 / (w? + [Vw?) (1 +|y1*) pdy
2(s)

2 5 AV

— —w|”t pdy. 2.19

+p+1 (C3+|y|)aslw| pdy (2.19)
£2(s)

Note that V (y, s) > d; > 0. From (2.8) we get

p—1 _
d1 f i pdy < 2 [ Pt pdy = 26101+ / wwspdy.
2(s) 20s) 20s)

In the following we will denote & 1) 7 by c(p, d1). Making use of the inequality

ab<e(a®+b7T)+Ce), p>1, Ve>0, (2.20)

we obtain that
[ wrtoay <2epuangtel+ [ wwe.doody
Q(s) Q(s)

< 2c(p,d)E[w]+n / w’Hpdy +1 / wipdy + C(p,di,n).
2(s) 2(s)

Here and hereafter C(p, di, n) denotes a constant depending on p, di, n and may be different at
each occurrence. Take n < 1 and we hence have

2¢(p,dy)
/wp+1pdy<1p7E[ I+ e / wlpdy +C(p,di,n). (2.21)

2(s) £2(s)

From (2.13) we obtain that

p— p—1 (5

d1 / P plydy < 2 [ Fwlrt ply Py
p+ p+1

2(s) £2(s)

1
=2Es[w] + / wwsplylzdy—/(n—5|y|2>w2pdy

2(s) 2(s)

i 1
<2E>[w] + / Iwwsllylzpdy+2/<§|y|2—n)wzpdy.

20s) 2(s)
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Thanks to (2.20), we hence get

2(p—1)

L
/|w|f’+1p|y| dy < 2¢(p, dv) Ealw] + / W yI7T - e(p, )y P - pdy
2(s) £2(s)

n n
#3 [ wirtoPdy+ 2 [ wdplyPdy+ Clodin)

Q0s) Q0s)

<2e(p,dv) Balw] + 7 / wlP* ply2dy
2(s)

1
+ = / w2plyl*dy + C(p,di, n).

2
2(s)
Therefore we have
pH1 12 2¢(p,dy) U 2 12
[w| plyl dy < ﬁEz[] ﬂ wiply|”dy +C(p,di,n). (2.22)
2(s) £2(s)

Combining (2.19) with (2.21) and (2.22) we obtain that

d(Ex+3E) <

2
— —204/(st|2+|Vw|2)(1+IYI2)de+p+103d2 / wi”* pdy

2(s) £2(s)

> / wl? ply2 dy
20s)

_2e(pd) 2
I1—n

+

p+1

2
chw+
LhE[w] (p—i—

2c(p,dy) 2 ~
1—n p+1

2
+(— L d2—2c4> / wiplylPdy —cs f IVwl*(1+ Iy pdy,

p+12(1—1n)
£2(s) £2(s)

+C(p,di,d2, ) +

where d; is a constant such that sup| a—v < dp. Take nn < % small enough such that % <

% then
3

d(E> + c3E) 5 ) 5 8
— < - \Y 1 d ——c3dh E
- i [ (e +1VuP)(1+15P)pdy + ——pexdaEl)

2(s)

— E C(p,di,da,n).
+(p—1)d1 LhE[wl+C(p,dy,da, )
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_ 8 d
Denote A = =Tdr then we get

d(Ey + c3E) __

- ca f (wf+|Vw|2)(1+|y|2)pdy+/\(Ez+c3E)+cs,

2(s)
where c¢s depends on p,d;,dy,n. O
Lemma 2.8. E> + c3E > —C, where C depends on p, di, d», 1.

Proof. From (2.13), using Jensen’s inequality, we have

3 r=1 [ v
w2p|y|2dy:—2E2[w]—|—m f V|w|P-‘r1p|y|2dy_|_2/(n_T 2,0dy

2(s) 2(s) £2(s)

2ds

> 2w — / wplyPdy +C / [wlP* ply P dy
2(s) £2(s)
> 2B [w] 4 (C —¢) / [w|P ply>dy — C(e)

2(s)

p+l

5 =
2—2Ez[w]—C(s)+C( / wzplylzdy) :
2(s)

This inequality plus c3x (2.8) leads to

wo(yP +a)dy > ~2eaElul +esC [ Jwppdy = 2ot
2(s) £2(s)

2ds

p+l
2 12 2
+C< / woplyl dy> —C(e)
2(s)

ptl

. -
2—2(E2+C3E+C(8))+C( / wzp(C3+|y|2)dy> )
£2(s)

Denote y(s) £ Jow w?p(cs + |y dy, J £ Ey + c3E, € £max{C(e), £}. Then

1d - Pl
EE)’(S) Z=2(J+C)+Cy 2 (s). (2.23)

We claim that
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If not, there exists s1 such that J(s1) < —C, then (2.17) tells us that

cs
< 8(] + —)
S1 €

J(s)<—=C, Vs=s.

d(J +C)

<e(J+C) <0,
ds

51

which shows that

Therefore from (2.23) we get % % y(s) = Cy b5t (s). From this inequality, we easily conclude that
¥(s) will blow up in finite time, which is impossible. Hence our lemma holds. 0O

To obtain rough estimates for the higher level energies, the following two inequalities, i.e.
(2.26) and (2.27), play an important role. By Proposition 2.5 and Young’s inequality, we have

d
4w = [ wplyl dy — 2 / p(y - Vuyws|y[%*2dy

ds
2(s) 2(s)
1 dw | " I v
S i . do — —— -
1 / '8)/ »-y)elyl™do FE 35 |w

982(s) £2(s)

Py dy

<—(-9) / w2oly dy + C(k, &) / IVwl2oly*2 dy
2(s) £2(s)

1 F1%
——— | = jw|Pp|y*dy. 2.24
b 55 [w|"T ply|™ dy (2.24)

2(s)
Similar to (2.22), we have
2¢(p,dr)
|w|P+‘p|y|2"dy<ijzk[w]+2(%m / w2olydy + C(p,di, ). (2.25)
2(s) 2(s)

Taking ¢, n > 0 small enough, we obtain that

4wl < —~ [ w2olyP* dy + pExlwl + C(w)
ds 2klW] & ) wgply YT+ HE LW 2

20s)
oW / Vwlply*2 dy, (2.26)
20s)

forall u > A.
On the other hand, by Proposition 2.4, Holder inequality, Young’s inequality and Jensen’s
inequality we have
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1d 2 2k P_l / > 1 2
—— dy =—2E — | Viw|"*t kd
2 s wiy|"pdy 2k[w]+p+1 [w|" ply|™ dy
£2(s) £2(s)
1
+ / k<n+2k—2—§|y|2)w2|y|2"—2pdy
2(s)

> 2Ey(w]—C / W yPpdy +C / [P [y o dy
2(s) £2(s)

> —2Ey[w] + (C —¢) / lwPTy1*pdy — C(e)

2(s)
ptl
2.2k ’
2—2E2k[w]—C+C< / we|y| ,ody) . (2.27)
2(s)

Now we get the following rough estimates

Lemma 2.9. For any k € N, there exist positive constants Ly, My, Ny and Qy, such that the
following estimates hold:

—Lie?s < Exy[w](s) < Mye™,

o0
/e—m / (VwPply dyds < Ni.
0 20s)

/ w?ply*2dy < Qre?™,
£2(s)

forallk e Nands > 0.

Proof. Let {A;}72, C [A,2A] be a strictly increasing sequence. It suffices to show the following
estimates:

— L™ < Ey[w](s) < Mye™, (2.28)
[o.@]
/ e MS / IVw|?ply|** dyds < Ny, (2.29)
0 £2(s)
f w?ply* 2 dy < Qe (2.30)

£2(s)

We prove these estimates by induction.



T. Cheng, G.-F. Zheng / J. Differential Equations 244 (2008) 766—-802 783

Step 1. These estimates hold for k = 1.
Note that (2.17) gives us ;—S(J + ) < A(J + 2), which implies that J < Ce*S. Therefore

we now have —C < J < Ce** by Lemma 2.8. Using the similar trick of getting (2.17), we can
write (2.12) as a more refinement form:

d( C2> ( C2)
—| E[w]+ — ) <A E[w]+ — ),
ds c1 C1

then E[w] < Ce** and therefore Ez[w] > —C — c3E[w] = —Cé™. It follows that
| Ex[w]| < Ce. (2.31)

From (2.17), we have £.(J + ) < —¢4 S @2+ IVuP) (L4 [yP)pdy +4(J + £). Mul-

tiplying e ~** on both sides and integrating from 0 to 0o, we obtain that

o0
/e—“ / (w? + [Vw*)(1+|y*)pdyds < C. (2.32)
0 2(s)

In particular, (2.29) holds for k = 1.
Denote y(s) = fQ(s) w?p dy. Notice that

d 2(p—1 -
— / wzpdyz—4E[w]+L / Viw|PH pdy
ds p+1
() 2(s)
pil
is 2 :
2—Ce“+C(/wpdy>
£2(s)

If there exists s > 0 such that y(s1) — 2cge™1 > 0, then at s,

d 3 .
—~(v() = 2c8¢™) | =y/(s1) — 2hcge™

ds

51
ptl
P C7()’(Sl) 2 — Cgeksl) — 2hcge™

= cr(y(s1) T = (1 + 24 /cr)e™)

p+1 L‘H)L s
>c7(cg? e T M —cg(1+2x/cq)e™™)

>0,
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since cg can be large enough. It follows that y(s) > 2cge* for all s > s1. So y(s)pT+1 > y(s) >

1
2¢ge™ and then % y(s) = %8 y% (s) for all s > 51, which implies that y will blow up in finite
time. This contradicts the fact that y is globally defined. So we have

y(s) < 2cge™*, Vs >0. (2.33)

In other words, (2.30) holds for k = 1.
By (2.26),

d
d—(e_)‘sEz[w])<Ce_)‘s / [Vw|?pdy + Ce™*.
s

2(s)

It follows from (2.32) that
E>[w] < Ce.

On the other hand, by (2.31) and the definition of Ez, we have

ks o _ 1 1o 2
Ce™ < B> w] = Ex[w] > 2Iyl nlwpdy
2(s)

n
< Bafwl+ 5 / w?pdy
2(s)

< Ex[w] + Ce™s,

where the last inequality follows from (2.30) for k = 1. Therefore (2.28) also holds for k = 1.
Step 2. (2.28)—(2.30) hold for all k € N.
Suppose (2.28)—(2.30) hold for k < n. Since (2.28) holds for k = n, by (2.27) and a similar
argument to derive (2.33) we conclude that (2.30) holds for k =n + 1. By (2.26), we have

d, _ _ -
(T Eapalw]) < Ce™ / IVwPplyl" dy + Ce ™.
2(s)

Since (2.29) holds for k = n, we have
e_)mSE2n+2[w] < Cy.

Now we need to obtain the lower bound for E;;,2[w]. Denote
y(s) = / w?ply*" 2 dy,

2(s)
2(s) = Ezppa[w] + C(Ay).
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Then it follows from (2.26) and (2.27) that

Y (s) = —4z(s) + Cy T (s), (2.34)
(8) < nzs) + € / Vwlply?" dy. 235)
20s)

The last inequality implies that

% (e7*m52(s)) < e M h(s), (2.36)

where h(s) =C fQ(s) |Vw|?p|y|** dy. By induction hypothesis, we have

o0
f ¢S / VwPolyl dy < C. 2.37)
0 2(s)
‘We claim that
2(s) = —NeMs, Vs >0, (2.38)

where N = fooo e Sh(s)ds < oo.
Otherwise, there exists s; > 0 such that e **1z(s1) + N < 0. By (2.36), we have

S
e z(s) — e Mz (s)) < /e*“rh(f)df SN,

51

forall s > s1. So e *5z(s) < N 4+ e *51z(s1) <0, i.e., z(s) < O for all s > s1. Now from (2.34)

we conclude that y'(s) > Cy byt (s) forall s > s, which implies y(s) blows up in finite time. This
is a contradiction. Therefore Eo,42[w] > —C e’ and then |Eopno[w]| < Cé*S. In particular,
(2.28) holds for k =n + 1.

Finally, by (2.26), we have

d

1
5E2n+2[w1<—5/ Zply*" 2 dy +C / IVw|?ply|*" dy + C + hnEapialw].

£2(s) £2(s)

Combining this with the fact that | Eo, 2 [w]] < Ce*s and (2.37) we have

o0
/e_)‘"s / wfp|y|2”+2dyds <C.
0 2(s)
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By (2.25), we obtain

2 -
/|Vw|2p|y|2"+2dy<2Ezn+z[w]+m / Viw|?H ply 2 dy
£2(s) 20s)

<CEyplw]+C+C / w?ply|*" 2 dy.
2(s)

Therefore, by |Ez,42[w]| < Cerns | we get

oo
/ e hts / [Vwl?ply "+ dy
0

£2(s)

o o

< C/(E2n+2[w]+ l)e_’\"“s ds—i—C/e_)‘”S / w§p|y|2n+2dyds
0 0 2(s)

o0

<C ePn=hnt1)S go 4 C

S

<C.
Hence (2.29) holds for k = n + 1. The lemma is proved. O

Remark 2.1. We have seen in the proof of this lemma that

—L<E[w]<Ce

and
o0
—As 2
/e / [Vw|“pdyds < C.
0 £2(s)

Next, we need the following

Lemma 2.10. Suppose ) > % and for some o € (%, 2)], there exist positive constants My and Ny,
such that

| Exx[w](s)| < Mge®™,

o0
/e_‘“ / [Vw|?p|y|* dyds < Ni
0 2(s)

hold for all k € NU {0} and s > 0. Then there exist positive constants M; and Ny, such that
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| Exlwl(s)| < Mje® 3,
o0
/ @b / VwlPolyl* dyds < Ny
0 20s)

hold for all k e NU {0} and s > 0. Here we set Eglw] = E[w].

Proof. Let {§;}72, C [%, %] be a strictly decreasing sequence. It suffices to show the following
estimates:

| Eak[w](s)| < Mye @205, (2.39)

oo

/e—m—‘sk” f [Vw|?p|y|* dyds < Ng. (2.40)
0 2(s)

We prove these estimates by induction.

Step 1. These estimates hold for k = 0.
Recalling (2.10) we have

dE ,
<= / wipdy + / VV - ye w|Pt pdy
2(s) £2(s)
< - f w2pdy 4 Ce™/? / IyllwlP*pdy
20s) 20)

< - f wipdy + Ce™/? f yPlwlPH pdy + Ce™/? / Pt pdy. (2.41)
2(s) 2(s) 2(s)

Also we get

e—“zf|y|2|w|f’+1pdy<0e—”2( / Vwllypdy + f |w|f’+‘pdy+CEz[w]+c>
2(s) £2(s) £2(s)

<Ce—f/2< / Vw|?|y|?pdy + f |w|1’+‘pdy+ce‘“+c>.
20s) 20s)

By (2.21) and the assumptions of this lemma, we get

d 1 s
d—E[w]g—E / wlpdy +Ce™2 f |Vw|2p|y|2dy+Ce(“_%)s+Ce_%s(E[w]+C)
s

2(s) £2(s)

1 ,
<-3 / wlpdy + Ce™ 2 / IVw(?ply>dy + Ce@=2)s. (2.42)
£2(s) £2(s)
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So

N
E[w](s) — E[w](0) gc/e—% / IVw ?ply>dydt + Ce@=2)s.
0 2()
We claim that

s

/e—% / IVw(?ply2dydt < Ce@=2)s.
0 Q)

(2.43)

Indeed, if we denote the left-hand side of (2.43) by f(s), then [y~ e~ (@=3)s f'(s)ds < C by the

assumption. It follows that

S

C> [ b psds> e e,
0

by integration by parts. So (2.43) holds and
E[w](s) < Ce® )",

Notice that we have proved that E[w] > —L. Therefore (2.39) holds for k = 0.
By (2.42), (2.43) and E[w] > —L, we deduce that

s

/ / wf,odydréCe(“_%)s.
0 2(0)

As usual, we have
2 2 (7 p+1
IVw|“pdy <2E[w]l+ —— [ VIw|’" pdy
p+1
2(s) 2(s)

<CElw]+C / u)sz,ody—i-C.
2(s)

Then

e~ / Vwlpdy < C(Elw] + 1)e™ @5 4 Cem@= ) / wipdy

Q0s) Q0s)

<C67%‘Y+C67(“7%)S / wsz,ody.

£2(s)

(2.44)
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Let f(s)= [y ff?(t) w?pdydt. Then for any s > 0,

N

s
fe_(“_%)f f wgpdydr:/f/(t)e_(“_%)fdr
0

0 2(7)

= f(s)ef("‘f%)s + (a — %) / f(t)ef(“f%)r dt
0

g Ca
due to (2.44). So
o0 o0 o0
/e—“’—%)f / \Vwlpdydt SC/e_%TdT+C/e_(“_%)T f w2pdydc
0 (1) 0 0 2(7)
< C’

i.e., (2.40) holds for k = 0.
Step 2. (2.39) and (2.40) hold for all k € N U {0}.
Suppose (2.39) and (2.40) hold for all k =0, 1, ...,n — 1. Taking ¢ = 1/4 in (2.24), we get

dEy,[w] 3] 5 o 1 / oV 1 5
-t | w dy + —— | |=—|jw|?* "d

s y oy dy P a5 [w”" ply|™ dy
2(s) £2(s)

e f VwPoly "2 dy

2(s)
3 _s _
<-3 f wiply|* dy + Ce™2 / lw|Pply[*tdy +C f IVw[*ply[*" 2 dy

2(s) £2(s) £2(s)

3 _
<3 f w2ply*dy 4+ C / IVw|?ply|?" 2 dy
2(s) £2(s)

s

+Ce—z( / Vwl?ply*" 2 dy + / |w|P+1p|y|2"dy+C—CE2n+z[w1)

2(s) 2(s)

1 _
<—3 / w2 oly" dy + C / VwPply 2 dy

22(s) 2(s)

+Ce™2 f |Vw|2p|y|2"+2dy+Ce—%(E2n[w]+C)+ce<“—%>f
2(s)
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1 _
<-3 f w2oly dy + C / IVwl2plyl?" 2 dy
2(s) £2(s)

+Ce2 / IVulPoly "2 dy + Ce@ 2",
£2(s)

vV

Notice that we have used that | 5| < C| yle_% and the assumptions of the lemma. Hence we get

S

E[w](s) — Ezn[w](0) < C f ez / IVwply 22 dy dr + Ce® )8
0 (1)

+C/e—% IVw|?ply|?* 2 dydx.
0 (1)
Since f;° e fﬂ(s) IVw|?ply|¥* 2 dyds < Nyy1, we get

N

/e_% / |Vw|2p|y|2”+2dydt<Ce(°‘_%)s
0 2(1)

as before. Let f(s) = [ fSZ(r) |Vw|?>p|y|**~2dydt. Then by induction hypothesis, we have

o0
/f’(s)e_(“_‘s”‘l)‘Y ds < N,_1.
0

So

N N
/f’(f)e_(“_‘s"‘”’ dv = f(s)e” @™ 4 (@ = §,-1) / f(D)e™ @ -0 g
0 0

> f(s)e @ 0on-0s

i.e., f(S) < Nn_le(afanfl)s.
Therefore

Eop[w] < Nye @ on-1s, (2.45)

Now let y(s) = fg(s) w?p|y|** dy, z(s) = Ez,[w] + C. Then by (2.26) and (2.27), we have

Y(5) = —4z(s) + Cy"T (s),

Z(s)<2xz(s) + C | |[Vw?ply|?* 2 dy £ 2xz(s) + h(s).

£2(s)
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Since o < 24, Z/(s) < (@ — 8,)z(s) + g(s), where g(s) = 2 — « + 8))z(s) + h(s) and
8! € (8n, 8n—1). It follows from (2.45) and induction hypothesis that

o0 o o0
/e—@‘—‘%”g(s)ds gc/ewé—“nfﬂs ds+cfe—<“—5r’z>s f IVw|?ply|?"2dyds
0 0 0

£2(s)
<C.
A similar argument to obtain (2.38) gives us
2(s) > —Ce@ s, (2.46)
From (2.45) and (2.46), we know that (2.39) holds for k = n.
From the fact that
dEo,[w] 1
—dns g—z / wiply*" dy + (e — 8,) Eau[w] + g(s) + C
205)

and above estimates, we have
o
fe_(a—a;z)s / w§p|y|2n dyds g C
0 2(s)

As before, we have
/|Vw|2p|y|2"dy<CE2n[wJ+c f wply dy +C.
2(s) 2(s)

—(a—dn)s

Multiplying e on both sides and integrating over (0, co), we obtain

o
fe_(“_‘s”” / IVwl?oly*" dyds
0 22(s)

o0 o0
<C/e_(o‘_a")se(“_&')sds+C+C/e_(°‘_5;l)s / w3p|y|2”dyds <C,
0 0 2(s)

i.e., (2.40) holds for k = n. So the proof of this lemma is complete. O
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To obtain the upper bound of E[w], we also need the following

Lemma 2.11. Suppose that there exist two positive constants M, N and some a € (0, %) such
that

| E2[w](s)| < Me®,

o0
/e—“s / IVw|?ply?dyds < N.
0 2(s)

Then we have
E[w] < K;.
Proof. Recall from (2.41) that

dE
<

——<- / wipdy + Ce™/? f yPlwlPH pdy + Ce™/? [ lw|P* pdy.

2(s) 2(s) £2(s)

By the lower bound of E; and Young’s inequality, we get

e”2/|y|2|w|f’“pdy<cw/2< f IVwl?ly?pdy + / |w|P+‘pdy+Ce“"+C)
2(s) £2(s) £2(s)

< Ce™? / IVw|*|ypdy + Ce™/? / lwPpdy
() £2(s)

4 CeS? f Celam s, (2.47)
Using (2.11), we have

dE
<

oS- / w2pdy + Ce™*/? / IVwl?ly*pdy

2(s) 2(s)
+Ce*/? / lw|PH ody 4+ Ce /% + Ce@=1»

£2(s)

1
<3 [ wtodr+ce? [ vupiroay
20s) £2(s)

+Ce 2 (E[w] + C) + Ce® 27, (2.48)
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By Lemma 2.3, we may assume E[w]+ C > 1. So

d
—-log(E[w] +C) < Ce™/? / IVwl?ly>pdy + Ce /> + Ce@ ),
N

£2(s)

Noticing that o < % we obtain that E[w] < K, from the assumptions. O

Proof of Proposition 2.1. Combining Lemma 2.11 with Lemmas 2.9, 2.10 and Remark 2.1,
we get the upper bound of E[w] immediately. Notice that the lower bound of E[w] has been
obtained in Lemma 2.3. So the proof is complete. O

2.1.3. Proof of Proposition 2.2

Proof of (2.5). From (2.11) we have

/|w|p+1pdy<8 / wszpdy+C(8).
2(s) 2(s)

Then (2.48) tells us that
dE 1
< <—— — 5e_s/2) / wf,ody + C(e)e % + f(s),

ds S\ 2
Q(s)

where f(s) = Ce™*/? fﬂ(s) IVw|?|y|?p dy, which is an integrable function. Integrating this in-
equality from sg to T, we get

T T
%f / wf,ody</(Ce_s/2+f(s))ds+E(so)—E(T).

S0 £2(s) S0

It follows that

/”ws;L%(.Q(s))szsgNl. O
0

Proof of (2.6). Making use of Jensen’s inequality, from (2.8), we get

p+1

2

d

= wpdy>—2Kz+C(p,dz,9)< / wzpdy)
S

2(s) 2(s)

We assert that

w?pdy < Ny,

£2(s)
2 p+1
2

where N; = (%)PJrl is the zero of —2K, + C(p, da, 2)x =0.
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If not, there exists s1 such that
2

2K»> p+I

/wzpdy> B — .
C(p,da, £2)

£2(s1)

Then

which implies that

/ w2,0dy>2C, Vs > s1.
Q(s)

Then there exists some 7 such that for s > 7,

ptl
Tz C(p,dy, 2 2
—2Kz+c<p,d2,s2>( / wzpdy) 2%( / wzpdy>

2(s) £2(s)
so that y blows up in finite time, which is impossible. O
Proof of (2.7). Recall that V > d; and E[w] < K». Then from (2.8) we see that

1 1
2(p+1) p+1 2 2
f|w|f’+1pdy<edl(p_1)K2+dl(p_l)< / |w|2pdy> (/|ws|2pdy> :

2(s) £2(s) £2(s)

Therefore by (2.5) and (2.6) we have

s+1 2 0
/( / le”“pdy> ds<C+CN2/ / lws*pdy < Ns. O

s Q0 0 2(s)
2.2. Proof of Theorem 1.1

Let ¥ € C?(R") be a bounded function with supp ¢ C Bog(0) N £2. Then Y w satisfies

Pw)s =V - (pVw)) + V- (pwVy) + pVY - Vw + Brpw — Vi lw|? wp =0
in £2(s) x (0, 00). (2.49)

We introduce two types of local energy:
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1 1 _
Eylwls) = 5 / (V) + (92 = Vi R)u)ody - —— [ 7l pay.
£2(s) 2(s)
(2.50)
1 1 _
&yl =3 [ (Vo +put)pdy—— [ VuFuirtpdy. @s1)
2(s) £2(s)

By the similar trick of [12], we could establish a lower and an upper bound for £y [w]. We just
list some important results and ignore the proof.

2.2.1. Upper bound for Ey[w]
Using (2.4) and (2.6) we obtain that

Jwis); Wh2(2) | < Ki(1+ |ws(s); L2(2(s))|) forall s >0, (2.52)
w2 2 _ .72 2 .72 2
where [[w(s); W, =(£2() 17 = Bllw(s); L (217 + [[Vw(s); L (2(s)I7
Proposition 2.12 (Quasi-monotonicity of Ey [w]).
d _
L Eywl(6) < Ly (14 Jus): L3(26) ) + Ce™2 / WAyl pdy  (253)
2(s)
foralls > 0.
Proposition 2.13. There exists a positive constant K», such that

s+1
/ Eylwl(r)dt < Ky foralls >0, (2.54)

where K> depends on n, p, ||V ||eo, upper bound for £y [w] and upper bound for V.

Note that
s+1
/e*’/z / vAyllwPH pdydr < C.
s (1)

Thanks to (2.53), (2.5) and (2.54) we can derive an upper bound for £y [w].
Theorem 2.14.

Eylwl <M foralls>0. (2.55)
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2.2.2. Lower bound for Ey[w]
Notice that

Ey —&y = / Yyw(Vy - Vw)pdy.
2(s)

By estimating |Ey, — &y | and using (2.6) we obtain

Proposition 2.15. There exists a positive constant J| such that

1d p—1 _
ST / |1/fw|2,0d)’>—25w_fl+ﬁ / V2 wP ply2dy.

£2(s) £2(s)

By (2.56), (2.53) and (2.5) we obtain that
Theorem 2.16. There exists a positive constant L, such that

Eylwl(s) > —Ly foralls > 0.

(2.56)

(2.57)

Once we have these bounds for the local energies, the proof of Theorem 1.1 follows from
bootstrap arguments, an interpolation theorem in [4] and the interior regular theorem in [15] as

in [12,13]. We omit the details since there is no anything new.

Remark 2.2. If we only treat nonnegative solution to (1.1), then Theorem 1.1 can be proved
through the bounds we have obtained in Section 2.1. We can combine the methods in [10] and

[17] to get the blow-up rate estimate.
3. Asymptotic behavior of the blow-up time and blow-up set

In this section, we are interested in the following problem

u(x,t)=0 ondf2 x (0,7),

{ ur=Au+Vxu? in2 x 0,7T),
u(x,0)=Mop(x) in £2,

where ¢ € C(£2) satisfies olae =0, o(x) >0, Vx € £2, and V satisfies the conditions described

as in Section 1.
The main goal of this section is to prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. That blow-up occurs for large M is standard fact. Let a € §2 such that

e~ @)V (a) = max, 9?1 (x)V (x).
Since ¢ and V are continuous, it follows that Ve > 0, 3§ > 0, such that

V) > V@) — % 0(x) > @) — % Vx € B(@.9).
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Let w be the solution of

w, = Aw + <V(a) — %)w” in B(@.8) x (0. T,),

w=0 on dB(a,?d) x (0, Ty),
w(x,O):M(fp(d)—s) in B(a, $),

(3.1)

and T, its corresponding blow-up time.
A comparison argument shows that u > w in B(a, §) x (0, T') and hence T < T,.
Our goal is to estimate Ty, for large values of M. Define

1 V@) —%
I(w) =~ / IVw|?dx — V@ -3 / wPH dx,
2 p+1
B(.8) B(@.s)

then

') = f Vw-Vw,dx—<V(a)—§> / wPw, dx

BG.5) B@5)
—_ / ws (Aw + <V(Ez) — %)w”) dx
B(@G,8)
=— w?dx.
B(a.)

Set d (1) = %fB(& 5 w?(x, ) dx, then we obtain that

D'(t) = / ww; dx

B(a,s)
_ &
= / w(Aw+ <V(a) — 5)11)”) dx
B(a,d)
- / |Vw|> + (V(a) - %) / wPt dx
B(a,s) B(a,s)
-1
=21 (w) + % <V(a) — %) / wPt dx

B(a,d)
! '
p— — =p 2
> 2I(w)+——(V(a) —¢)|B| 2 /wdx
(w) p+1( (@) —¢)|B|

B(a,5)
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t
=—2I(w0)+2/ / wldxdr +Co 2 (1),
0 B(a,$)

- U

where C = %(V(a) —
In particular, @' (¢) > 0.
On the other hand,

(3.2)

% ! 1 :
(1) = / ww,dx<< / wzdx) < f wfdx> =(2q>(t))7< / wfdx>,

B(a,s) B(a,) B(a,s) B(a,8)

: 2 (@' (1)
which tells us that fB(a 5) Wi dx > 20 - Therefore from (3.2) we get

&' (1) > —21 (wo) [ @) dt + Co 2 (1)
> =21 (wp) + W + .
0

~  ltp

Set (1) = —21 (wo) + [ <¢¢<(?)> dt and g(1) = 524, C® ).
Note that

2
f0)=—-21(wp) = P (V(Zz) - %) |BIMPT (p(a@) — 8)1’“,

g(0)= _2H(V(a) —&)|BIMPH (p(a) — ).

It follows that f(0) > g(0). Hence

<D(O)>f(0)+C<1> (O)>g(0)+C<D =a 0) = i——i—icqb 0).

Then 3 > 0, such that &/ (1) > P—} B2, 1 €10, 7).

Define A ={0 € [0, Tp]: ®'(t) > p—HC(DT(t), t € [0, 0]}, where Ty is the blow-up time

p—1
of @. Then A is closed. On the other hand, A is open. In fact, V6 € A, since

(@'(1))?
(1)

fl= , (t)—p—CCb T ('),

it follows that f’(¢) > g’(¢) for r € [0, 9].
Recall that f(0) > g(0). We conclude that

f@)>g@), te[0,6]

In particular, f(0) > g(0).
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Thus, there exists E > 0 such that for all 8 € [0, ﬁ], fO+p)>g@+pB)or
2O+ > p—CG) “0+8),
which means 6 + ,3 € A. Therefore A = [0, T ]. In other words,
p+1-

D) > —CcD (t) tel0, Tp].
p—1

Integrating this inequality from O to T, we get

® < — ! — .
(p—D(V(@) —e)MP~(p(a) — e)P~!

Since ¢ > 0 is arbitrarily small, the theorem follows readily from the above estimate. 0O

Proof of Theorem 1.3. The proof is almost the same as in [5]. The only different thing is that
we improve their Lemma 2.2. For the reader’s convenience, we outline the proof here.
Let M be large such that the solution u blows up in finite time 7 = T (M) and let a = a(M)
be a blow-up point. To involve the information of 7', we modify the definition of w to be
1 1
w(y,S)—(T—f) “lu (a+y(T—f)z,t)|,=T(1_efx)-

Then w satisfies

pwy =V - (0Vw) — pow + V(a+yT2e ) wlPlwp  in Q(s) x (0, 00),

where 2(s)={y|a+ yT%e_% € 2}
Consider the frozen energy

1
E(w) = /( [Vuw| +§ 2 p+1V(a)wp+l>,0dy.
£2(s)

Then
dE 2 1 _s P
Eg— wypdy + (V(a+yT2e 2)—V(a))w wspdy
2(s) 2(s)

2 s 2 2
< - wypdy+CT2e 2 wypdy | .
2(s) £2(s)

We have used Theorem 1.1 and Hélder inequality in the last inequality. So ‘fl—f < CTe™*, and
then

E(w) < E(wp) + CT.
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Since w is bounded, by the argument of [10] and [11], we conclude that

1
(p— DV (@)1

A

lim w(y, s) =k(a)
§—> 00

uniformly in any compact set, and
E(w(-,s)) = E(k(a)) ass— oo.
So

E(k(a)) < E(wo) +CT. (33)

1
-1

By Theorem 1.2, we estimate E(wp) to get E(wo) < E(TPTMg(a))+CT 5 . So

E(k(@)) < E(T7T Mg(a)) + CT?.

Observe that E(b) = I'F(b) for any constant b, where I' = fpdy and F(x) = 2]/3 x2 —
p+1 V(a)xerl It follows that F attains a unique maximum at k(a) and there exist «, 8 such
that if |x — k(a)| < « then F"(x) < —1/2 and if |F(x) F(k(a))| < B then |x — k(a)| < a.

From (3.3), we have F(k(a)) < F(T P TMp(a)) + CT2 By the properties of F we have

1

CT? > F(k(a)) — F(T %Mgo(a)) (k(a) -

;
—1

Mo(@)’.

By Theorem 1.2, for any k > O there exists My > O such that if M > M, we have

k(a) —CT% TP TMo(a) < k(a)0(a) + ‘P(a)’
where
1
p@Va)rr xeR
Therefore, we get
k@) (1 - 0(@) < L(f) PR
M M T

if we choose k > pT_l. Then

Oa)>1-—
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This implies

p@V(@TT > p@V @7 -

p—1-

M T

We can deduce from this inequality that ¢(a) > C > 0 for large M. So

1 CTH N
T <SMTr=T.
0@ ((p— HV (@)1 #@
Therefore
1 1 e
—— —CT3 <MT» T,
@ ((p—1V(a)rT
ie.,
1 c N
- 1 < MT r-1.

@ ((p—DV@)rT M

The theorem is proved. O
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