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The author has presented estimates for sums of multiplicative functions, 
satisfying certain conditions, extended over positive integers n such that n is 
less than or equal to x:, the greatest prime factor of n is at most equal to x, 
and n is relatively prime to a natural number k. These estimates are uniform 
in t, x, and k. 

1. INTRODUCTION 

Let p(n> denote the largest prime factor of a positive integer n, let 
x 3 1, t > 1 be real numbers, let g(n> be a multiplicative function, and 
let k be a natural number. We define z,&(xt, x; g) by the following: 

?Mxt, x; g) = c g(n). 
n<st 

n(n)=L- 
(n,k)=l 

(1.1) 

Levin and Fainleib [I] have given a systematic discussion of estimates of 
such sums subject to g satisfying certain conditions and also subject to 
k < (log x)” for some absolute constant D. In this paper, we make the 
observation that the restriction on k can be removed in three of their 
major theorems. In particular, if we define &(xt; g) by 

xw g> = 2 s(n), 
n<x’ 

(n,k)=l 

w 

then, by use of Theorems 1 and 2 below, we shall obtain good asymptotic 
estimates for &(xt, x; g) if we have good asymptotic estimates for S&8; g) 

* This paper contains portions ?f the author’s Ph. D. thesis completed at Syracuse 
University under the supervision of Professor H.-E. Richert. 
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(the restriction on k arises from the term (&/log x) m&8) in Lemma 3.1.1 
of D I)* 

As an application of Theorem 2, we shall prove Theorem 4, which gives 
an asymptotic estimate for z,&+, x), the number of positive integers n 
such that n & xt, p(n) < x, and (n, k) = 1, that is uniform in t, X, and k. 

Throughout the discussion, the O-constants will be absolute unless 
otherwise indicated and c(n) will denote the function given by 

c(n) = 
I 
; 

if n=l, 
if n>l. 

2. STATEMENT OF THE MAIN THEOREMS 

We begin with some basic definitions after the manner of Levin and 
Fainleib [l]. In association with the multiplicative function g(n), define the 
function h,(n) by the relation 

In particular, ifg(n) = 1 for each n, then A,,@) is von Mangoldt’s function. 
The function h,(n) can be characterized explicitly in the following way 

using Lemma 1.1.2 of Levin and Fainleib [l]: 

I 
7 (-1)m-1 

hP’ c m c dPkl) dPkB) ..’ idPkrn> 
Un) = ?I%-1 kl+7c*+"*+km-r 

if n = p’, 
0 if n # p’, (2.1) 

where the kt’s, 1 B i < m, are natural numbers. If g(n) is 0 for all integers 
that are not square-free, then 

UP3 = (- w1 log PC &PI)‘. (2.2) 

Next we define 

and 

(2.3) 

(2.4) 
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We begin with the class of multiplicative functions g(n) satisfying the 
following two conditions: 

L,(x, y) = T log min(x, y) + B + h(min(x, y)), (2.5) 

where T is a fixed complex number, B is an absolute constant, and 
h(x) = O@(X)) with p( x a nonincreasing, nonnegative function; and ) 

I&(x) = O(logA x), 

where A is an absolute constant. 
Let Z(t) be the function satisfying the differential-difference equation 

t Z(t) = --7 2(t - 1) (2.7) 

with initial condition Z(t) = 1 for 0 < t < 1. We assume Z(t) is 
continuous at t = 1. From the results of Section 3 of Chapter 1 of Levin 
and Fainleib [l], the behavior of Z(t) as t -+ co is as follows: 

if --7 3 0 is an integer, 

if --7 < 0 is an integer, 

if T is not an integer, 

where P-,(S) is a polynomial in t of degree -T with leading coefficient 

evr 
Q-T + 1)’ 

where y is Euler’s constant and r(s) is the gamma function, 

a(t) = i log t + 0(t), 

and A,, A,, AS ,..., are absolute constants. The function Z(t) may also 
be expressed as the function satisfying the integral-difference equation 

tz(t)-Stz(u)dv+TSt-‘Z(V)dD=O 
0 0 

w3) 

with initial condition Z(t) = 1 for 0 < t < 1, which is the form needed in 
Lemma 3 of Section 3. 

We now state our first theorem, which is a special case1 of Theorem 3.2.1 
of Levin and Fainleib [l]. 

1 It is free of their restriction on the size of k. The same remark applies to Theorem 2 
below. 
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THEOREM 1. Let g(n) be a multiplicative function satisfying conditions 
(2.5) and (2.6). Let k be a natural number and let x > 1, t > 1 be real 
numbers. Then 

$lcW, x; g) - &W; g) + lot W - 4 &4x”; g) dv 

+ O(f”p(x; Wag #9, (2.9) 

uniformly in t, x, and k, where AI and A2 are absolute constants, Z(t) satis- 
Jies (2.7), and 

Ax; k) = Mk> -!- 1) ,4x>, (2.10) 

where v(k) is the number of distinct prime factors of k. 

Given a multiplicative function g(n), we also define two functions similar 
to (2.3) and (2.4): 

Ls*(x, y) = c +?) (2.11) 
r’,ix 
DGY 

and 

n,*(x) = n (1 + f Y). 
p<x Cd 

(2.12) 

Now we introduce another class of multiplicative functions g(n), namely 
those satisfying the following conditions: 

Lp*(x, y) = 7 log min(x, Y) + B + h(min(x, Y)), (2.13) 

where 7 is a tied complex number, B is an absolute constant, and 
h(x) = O@(x)) with p( x a nonincreasing, nonnegative function; and ) 

L!,*(x) = O(logA x), (2.14) 

where A is an absolute constant. 
Using Abel summation and Theorem 1, we prove the following theorem 

which is a special case of Theorem 3.2.2 of Levin and Fainleib [l]. 

THEOREM 2. Let g(n) be a multiplicative function satisfying (2.13) and 
(2.14). Let k be a natural number and let x 3 1, t > 1 be real numbers. Then 

t,&(xt, x; g) = &(xt; g) + Iot xt-“-Z’(t - v) S,(x”; g) dv 

+ O(x”tAsp(x; k)(log x)~“) (2.15) 
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uniformly in t, x, and k, where A3 and A4 are absolute constants, Z(t) satisfies 
(2.7), and p(x; k) is defined by (2.10). 

In applications, Theorems 1 and 2 give genuine asymptotic estimates 
only for values of t bounded with respect to x; for example, in Theorem 4, 
1 < t G (log x)~/~--~ for some 6 > 0. The next theorem gives an upper 
bound for certain sums extended over positive integers with small prime 
factors that is valid for t < x/(e log x); it extends Theorem 3.3.1 of Levin 
and Fainleib [ 11. 

THEOREM 3. Let g(n) be a nonnegative multiplicative function satisfying 
the following conditions: 

J&(X, Y> = 7 log mink Y> + B + h(min(x, Y>> + p(min(x, Y)), (2.16) 

where 

h(v) = 0 (&-) and 1: ’ P(~~~;y))’ dv < + co (2.17) 

for every 6 > 0; and for every prime p and s > - 1, 

(2.18) 

Then for every t such that 7e < t < rx/(e log x) and for every natural 
number k, 

x exp{- t log t - t log log t + $t, x)}, (2.19) 

q(t,xl = t{1 flogr- y$ +0(&l 

+ O(log log x) + 0 ( (;Yo;Y 1. (2.20) 

As an application of Theorem 2 with g(n) = 1 for every n, we shall 
prove the following asymptotic estimate for the function t,&(xt, x), defined 
in the Introduction. 
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THEOREM 4. If k is a natural number and 1 < t < (log x)~J~-~ where 
6 > 0 is an arbitrary real number, then 

+ 0iv.r (x1 ]t”‘p(x; k)(log ~)“a + 2’%P(l + z(t)) 

t ZN)(t) 
+ ‘fdk, N) (log X)N+l (2.21) 

for every even natural number N, where Z(t) satisfies (2.7) with T = 1; 

&,(k, m> = $I 144 Ila (s - [$I) y du (2.22) 

forO,<m<Nandr=O,l where 

for r = 0, 
for r z 1, (2.23) 

with cl(d) representing the Mobius function and [v] denoting the greatest 
integer < v; 

p(x; k) = (u(k) + 1) exp(-+(log x)~/+“), (2.24) 

where v(k) denotes the number of distinct prime factors of k; v(k) is Euler’s 
totient function; and A, and A, are absolute constants. The estimate is 
uniform in t, x, and k outside the intervals (y, y + E), where y = 1,2, 3 ,..., 
jV + 1 are the discontinuities of 2 (*+l)(t) and l is an arbitrary positive real 
number. In particular, if t > N + 1, then E may be chosen such that 

l<<E<t-N. 

To give a clearer impression of Theorem 4, we point out the foIlowing 
corollary. 

COROLLARY. Ifk is a natural number and 1 < t < (log x)S/6-Sfor 6 > 0, 
then 

a,&(~~, x) = k-$(k) Z(t) xt 

+ O,(xt{tA’p(x; k)(log x)“” + 2*)x71 + Z(t)) 

+ &(k 0) I Z’O - 4 (log WI) (2.25) 
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uniformly in t, x, and k outside the interval (1, 1 + c), where E > 0 is 
arbitrary. 

In particular, if 2 < t < (log x)3/5-B, then 

&&xt, x) = k-$(k) Z(t) xt 

+ 0, (x” ~t”‘p(x; k)(log x)‘+ + 2”“‘x4(l + Z(t)) 

(2.26) 

uniformly in t, x, and k with 1 < E < t - 1. 
The proof of the corollary follows directly from Theorem 4 with N = 1 

(if N is an odd natural number, there is no change in (2.21) with the 
exception of the last term of the O-term; see (7.13)). 

We defme 

(2.27) 

for n = 0, l,..., with 

(2.28) 

(co = Euler’s constant), and 

(2.29) 

for any complex number s and t = 0, 1. Then Lemma 1 gives some 
information about &(k, m). 

LEMMA 1. If k is a natural number, M is a nonnegative integer and 
r = 0, 1, then 

&(k, M) = & 1 9 (log d)“+’ 
dlk 

9 (log d)“-n 

= O,(fb( l)(log log 3k)“l). (2.30) 
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Levin and Fainleib, combining their Theorem 3.4.1 and their argument 
on page 199 of [l], gave essentially the same asymptotic estimate for 
&(xt, x) as (2.21), but with the restriction k < (log x)” for some absolute 
constant D. 

Norton in Theorem 5.21 of [2] removed the restriction on k. For com- 
parison, we state Norton’s result in the form of Theorem 5.48 of [2] with 
2 < t < (log x)P 

&(xt, x) = k-lrp(k) Z(t) 2 

+ * txt 1% (log xl-’ + 2v(k)x-1 + 5;(k) 
z(t - 2) 

log x )), 

where 
(2.31) 

&(k) = *((log log 3k)2). 

If we assume that 1 < E < t - 1 with t tixed and & to be any of the 
infinitely many integers for which v(k) > a(log k/log log k), then setting 

x = 2”‘“‘(log ,log k)llE, 

it is easy to see that the error term of (2.26) is 

Xt 

*’ ( (log log k)M 1 

for every positive number M, while the leading term is 

k-W3 z(t) Xt > C%(t) log;;g k . 

Thus, (2.26) is a genuine asymptotic estimate for &(xt, x). On the other 
hand, the error in Norton’s estimate (2.31) is at least 

X t 
2Yfk)Xt-1 = ~oglogk)l/' ' 

which is larger than the leading term. 
Theorem 4 gives a genuine asymptotic estimate for &(xt, x) only for 

1 < t < (log x) s 6 8. / - However,’ using Theorem 3 with g(n) = n-l for 
every n, we can write 

&(xt, x) < k-ldk) xt exp{-t log t - t log log t + T(t, x)] (2.32) 

for k < x and e < 1 -=c x/(e log x), where y(t, x) is defined by (2.20) with 
7= 1. 
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Now (2.32) compares favorably with the following upper estimate of 
Norton [2, (3.29)]: 

&dx, Xl’9 < c,k+p(k) Z(t)x 

< c,k-%p(k)x exp 
I 

1 
--t (log I + log log t - 1 - - 

log t )i 

(2.33) 

for k < x, x > ee, and e < t < log log x/log log log x, with c1 and cz as 
absolute constants. 

The proofs of Theorems 1 and 2, Lemma 1, and Theorem 4 are given 
in Sections 4-7, respectively. The next section, Section 3, contains some 
preliminary groundwork. 

3. PRELIMINARY RESULTS 

Let g(n) be a multiplicative function and let k be a natural number. We 
define a multiplicative function f(n) by 

f(n) = lo”‘“’ if (n,k) = 1, 
if (n,k) > 1. (3.1) 

Then we have the following form of (2.5). 

LEMMA 2. Let g(n) be a multiplicative function satisfying (2.5) with 
p(x) = exp(--A(logx)O), A > 0, and a > 0. Let k be a natural number and 
define f(n) by (3.1). Then 

L,(x, y) = 1 X&I’) = T log min(x, .v) + B(k) + Mmin(x, Y>; k), 
n’<x 
PGY 
pfk 

(3.2) 
where 

WI = B - C f &(p’), 
vlk r=l 

(3.3) 

h(min(x, Y); W = h(min(x, Y>> + 1 UpT) + C UP? - C G3, 
Plk z’ik nlk 

P’>X BZ11 P’>X 
D>Y 
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with 

htmintx, Y>; 4 = W(k) + 1) exp{--WWg min(x, Y>H) (3.4) 

uniformly in x, y and k. 

Lemma 2 is Lemma 4.1.3 of Leviq and .Fainleib [l]. 
We also extend (2.13) 

LEMMA 3. Let g(n) be a multiplicative function satisfying (2.13) with 
p(x) = exp(-A(log x)“), A > 0, and a > 0. Let k be a natural number and 
de$ne f(n) by (3.1). Then 

&*(x, y) = c y = 7 log min(x, y) + B(k) + h(min(x, y); k), 
P’GX 
PGY 
Pfk 

where 
(3.5) 

B(k)=B- c fy, 
PI& r-1 

h(min(x, u); k) = h(min(x, y)) + 

with 

P’>X P’>X 
P>Y 

h(min(x, Y); k) = W(k) + 1) exp{-(AP)(log min(x, y)Y}) (3.6) 

uniformly in x, y, and k. 

The proof of Lemma 3 is essentially the same as the proof of Lemma 2. 
Now we prove the following lemma which is a special case of Theorem 

3.1.2 of Levin and Fainleib [I]. 

LEMMA 4. Let g(n) be a multiplicative function satisfying (2.5) and (2.6). 
Let k be a natural number and x > 1, t > 1. Then 

n& g(n) = z(t) + Wt%(x; Wag x>“*>, 
(n(,Pc& 

n, 

(3.7) 

where P(x) = n,,~%p and Z(t) satisjies Eq. (2.8) with T replaced by --7. 

Proof. In the notation of Chapter 3 of Levin and Fainleib [l], let 
o=fio<j31=1</32=+ co. Let n E M, , v = 1, 2, denote that either 
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n = 1 or that all the prime factors of n belong to the interval (~6%1, xEv]. 
Then any positive integer n can be uniquely expressed in the form 
n = n1n3 , where n, E M, , v = 1,2. Further, let f&r) and f&n) be multi- 
plicative functions. Let f(n) = fi(nI)fa(nz) and 

In particular, iff&r) = c(n) and&(n) is defined by (3.1), 

(3.9) 

Now L,Jx, y) = 0 and, by Lemma 2, 

L,&x, y) = 7 log min(x, y) + B(k) + h(min(x, Y); k). (3.10) 

It is easy to see that the conditions of Lemma 3.1.1. of Levin and 
Fainleib [l] are satisfied so that 

t m,(xt) - lot m,(x”) du 

I 
t-1 

=+I- mf(x”) dv 
0 

-J-- 
+ 1% x #&+’ 

C f(n) ]I8 ($ ; k) - h (min ($, x); k)/, 

since 71 = 0, B1 = 0, TV = T and Be = B(k). 
Therefore, since Cncrr 1 f(n)\ = O(tA log” x) from (2.6), we have 

t m,(x”) - St 
s 

t-1 

mf(x”) dv - T m,(x”) do = 0(+(x; k)(log x)~-‘). 
0 0 (3.11) 

Letting 
rnf(X”) = Z(t) + RJ.(f, x) p(x; k)(log x)A--l 

and substituting into (3.1 l), with (2.8), with T replaced by -7, and 
Lemma 1.2.1 of Levin and Fainleib [I], we obtain (3.7), which completes 
the proof of Lemma 4. 

Although we do not need it in this paper, we can derive a lemma similar 
to Lemma 4, but for g(n) satisfying (2.13) and (2.14), by using Abel 
summation on (3.7). 
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In order to prove Theorem 3, we need Lemma 3.3.1 of Levin and 
Fainleib [l]. The statement of their lemma is incorrect and should read as 
follows. 

LEMMA 5. Let g(n) be a nonnegative multiplicative function satisfying 
conditions (2.16)-(2.18). Define 

W,Y) = n (3.12) 
e& 

for y 3 2 and s a complex variable. If 0 < 6 \= 6( y) < 1 - l/log y, then 

+ 0 (/zm$-$dv). 

16 

(3.13) 

The proof of Lemma 5 is the same as the proof of Lemma 3.3.1 of Levin 
and Fakeib [I]. 

4. PROOF OF THEOREM 1 

Let fi(n) be defined by (3.1) and let fi(n) = e(n). Then 

m&4 = IClk(xt, x; g) 
and 

We now define multiplicative functions r”y(n) bv the relations, 

c-fny(4.L (a) =./X4, v = 1, L. 

dl* 

Then f”,(n) = e(n) and &n) = f&z). 
Thus 

mr(x*) = C g(n) = Z(t) +‘O(tA1p(x; k)(log x)~~), 
net 

Cn(,P$)l=;;1 
n, 

where i?(t) satisfies the equation 

t P(f) = 7 qt - 1) 

with initial condition z(t) = 1 for 0 < t < 1, by Lemma 4. 

(4.1) 

(4.2) 

(4.3) 
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Now 

Thus, using (4.3), we get 

%I(4 = c .flh~.h(~3 2 (t - *, 
n<xt 

= mf(xt) + 1 fi(n,)f2(n2) j-ot-loen’logz 2?(v) du 
n<xt 

Hence, 

+ 0(+(x; k)(log X)A4). 

mf,(x”) = mf(xt) + )-” i?‘(t - u) mr(x”) dv + O(t-$(x; k)(log x)““). 
0 (4.4) 

Now (4.4) is an integral equation with respect to m&x”). To solve it, we 
proceed as in Levin and Fainleib [l]. Let Z(t) satisfy (2.7). Then using the 
Levin and Fainleib argument from (3.2.9)-(3.2.11) of their Chapter 3, we 
have 

(” Z’(t - u) z’(u) dv + Z’(t) + e’(t) = 0. 
JO 

From (4.4), we get 

St Z’(t - II) m,,(x”) dv = St Z’(t - u) mf(xw) du 
0 0 

+ J-o* m,(xU> J”-” Z’(t - u - u) i?‘(v) du du 
0 

+ &““p(x; k)(log $+I), 
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which, using (4.5) and (4.4) again, is the same as 

I’ Z’(t - u) m,(xe) du = -1’ .?(t - v) m,(x”) dv + O(t”8&; k)(log i+) 
0 0 

= m,(x3 - m,,(xt) + O(tA4p(x; k)(log Xp). 

Hence, using (4.1) and (4.2), we get (2.9) to prove Theorem 1. 

5. PROOF OF THEOREM 3 

Let 0 < 8 < 1 - I/log x; then 

ne” n(n)+ 
(n,k)=l 

< xta I-I (1 + f g(pq)-lP(G - 1, x). 
9$2 TX1 
plk 

Thus, using Lemma 5 and also the argument used by Levin and 
Fainleib [l] to prove their Theorem 3.3.1, we have the proof of Theorem 3. 

6. PROOF OF LEMMA 1 

To prove Lemma 1, we need three steps. The argument generalizes work 
by Norton [3]. 

LEMMA 6. Let iV and k be natural numbers; then 

c lo&TN P - = ON((log log 3k)N). 
D(k p 

(6.1) 
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ProojI We have 

P>( log3k)N 

nG(log3k)N 

F) + 0 ((log 3k)-N 2 logN p) 

= O((N log log 3k)N), 

which proves the lemma. 

LEMMA 7. Define the function 

t4P) 
gh) = c (--log P) Cp” + ~ Cp)) 

Plk 7 
(6.2) 

for any complex number s and r = 0, 1 with I,. defined by (2.23). Then, 
for any natural number N, there exist integers a(N, j), 1 < j f N + 1, with 
a(N, 1) = 1, such that 

(6.3) 

Proof: The result follows by a straightforward argument using induc- 
tion on N. 

LEMMA 8. If k and N are natural numbers, then 

c 9 1ogN d = z (N ; ‘)( C 9 log” d) (( - l)N-n g;N-“-I)( 1)) 
d]k dlk 

= ON (f,(l)(lW log WN) 

for r = 0, 1; fr(s) is defined by (2.29) and g,(s) is defined by (6.2). 

Proof. Taking the logarithmic derivative of (2.29), we get 

L’(s) = f,(s) &(S) 
with 

(6.4) 

(6.5) 

f,‘(s) = C Ad) d-Y--log d). 
dlk 

Differentiating N - 1 times with Leibnitz’s rule, we get the first equality 
of (6.4). 
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The second equality of (6.4) follows from the first using induction on N 
with the fact that 

glr”‘(l) = ON (c i?$Q) 
Nk 

= OpJ((log log 3k)“+3 

by Lemma 6. 
To prove Lemma 1, we write 

&(/t, N) = c 9 Srn CD ---rul) (log v + log 6)” dv 
W l/d 

=c 
dlk 

9 5 ( ;) (log d)- S,Td (’ ---rvn (log u)” du. 
?l=O 

(6.6) 

Breaking the integral on the right-hand side of (6.6) into two parts, we 
get 

(’ ---[111) (log u)” du, 

so that 

and 

with A, defined by (2.27) (see Norton [2, Lemma 3.141). Putting (6.7) and 
(6.8) in (6.6), we get the first equality of (2.30). Using Lemma 8, we get the 
second to complete the proof of Lemma 1. 

Let g(n) = 1 for every positive integer n. 
Then 

L,*(x, y) = log tin@, v) + B + h(min(x, v>) 

with h(x) = O(exp(-(log x)~/~-~), 6 > 0, 

17,*(x) = O(log x), 

(7.1) 

(7.2) 
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where &*(x, JJ) and 17,,*(x) are (2.11) and (2.12), respectively. Then by 
Theorem 2 

qbk(Xt, x) = &(x$) + Iot xez’(t - v) S,(x”) dv 

+ O(xY’p(x; k)(log x)““) (7.3) 

uniformly in t, x, and k, where A, and A, are absolute constants Z(t) 
satisfies (2.7) with T = 1, p(x; k) is defined by (2.24), and 

Now 

where 

Sk(xt) = c 1. 
net 

(n,k)=l 

Sk(xt) = k-IT(k) xt + xtR(xt, k), 

(7.4) 

(7.5) 

RW, k) = -x--~ E /a@) ($- - [2$]). (7.6) 

Putting (7.5) in (7.3), we get 

&&t, x) = xt \k-$(k) (1 + j-Ot Z’(t - II) d”) + R(xt, k) 

+ lot Z’tt - u) R(x”, k) dv + O(bp(x, k)(log x)~~) 1. 

First, we note that 
(7.7) 

Z(t) = 1 + j” Z’(t - v) dv. 
0 

(7.8) 

Now we let E > 0 be so small that the interval (f - E, t) does not contain 
any discontinuities of Z(Nfl)(~). The discontinuities of Z(N+l)(~) are the 
points where Zfm+l) (u), 0 < m < N - 1, might not be differentiable, so 
that Z’(u) is N times differentiable on (t - E, t). Also, since Z(N+l)(~) has 
only right discontinuities, E must be small enough that t - E is not a 
discontinuity of ZN+l)(~). Thus ZfN+l)(~) is continuous on [t - E, t]. 
Hence, for 0 -=c v < E, we can apply Taylor’s theorem to get 

N-1 (-lyn 
Z’(t - v) = c --g- Z(m+l)(t) vm + O(UN 1 Z(N+yt - Q) 

m=o * 

for some cl such that 0 < e1 < E. 
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Thus, 

I ’ Z’(t - u) R(x”, k) du = 
N-1 (-l>na 

0 
c m! Ztm+l)(t) j-’ PR(P, k) dv 

Wb=0 0 

++ (N+l)(t - ~31 s,’ 9 I R(P, k)I do). 

(7.9) 
The sum on the right-hand side of (7.9) is equal to 

y (-1)" ZbIz+ly~) 

m !  (log ~)~+l 
5‘,(k 4 

?W-0 

and the second sum of (7.10) is 

since 
1 R(u, k)] = O(2”%r1). 

For the O-term of (7.9), we see that 

(7.12) 

By the same argument as used by Levin and Fainleib on page 187 of [l], 

Z(N+yt - El) = O(t 1 Z(N)(f)/). (7.13) 

Further, 

j-’ Z’(t - u) R(x”, k) du = 0 (2”“‘r jet I Z’(t - u)l do) 
6 

= 0(2”‘“k’(l + Z(t))). (7.14) 

Putting (7.13) in (7.12) and (7.11) in (7.10), then (7.12) and (7.10) in 
(7.9), and finally (7.9), (7.14), and (7.8) in (7.7), we get (2.21) to complete 
the proof of Theorem 4. 
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