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1. INTRODUCTION

1.1. Let A be a symmetrizable generalized Cartan matrix, or A = (I, (,))
a Cartan datum in the sense of Luzstig, g the symmetrizable Kac—Moody
algebra. We have the Drinfeld-Jimbo quantized enveloping algebra U, (g)
attached to the Cartan datum A. Its generators are E;, F;,, and K, with
a € Z[I]. One of the great contributions of Lusztig to quantum groups
was his introduction of the symmetries acting on integrable U,(g)-modules
and then T}, : Uq(g) - Uq(g) (see also [LS). In fact, Lusztig gives us four
families of symmetries as automorphisms of U,(g), but since they all can
be defined and investigated in a similar way, we only write down one of
them as

T'\(E;) = —FK[, T/ (F) = —K;°E;
TW(E)= ¥ (=)o EPEED forj+#iinl,

rts=-—a;

TWF)= L (~DVOECREY orj#iinl

rt+s= —a;j

Ti,,ll(KB) =K p)

where E” =E!/[r]!, and (g), is the minimal symmetrization. The
fundamental results about T/, include (1) T/, acts isomorphically on
U,(g) and on integrable U (q) modules. (2) T,, i € I satisfy the braid
group relations. (3) The symmetrles preserve the bilinear form (Killing
form) on U,/(g). However, the proof of them requires long and some
unpleasant calculations (see [L1, part VI, Jan, Chaps. 8 and 8A]).

1.2. If we consider the Ringel-Hall algebra §(A) of a finite dimensional
hereditary algebra A, according to the Ringel-Green Theorem (see [G,
R1, R2)]), the composition subalgebra ¢(A) of §H(A) provides a realization
of the positive part U* of U,(g). Because the comultiplication of ((A4) is
given by Green [G], it is natural to provide a Hopf algebra structure of
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H(A) by adding the torus algebra, and then, to consider the Drinfeld
double of the Ringel-Hall algebra. This was done in [X, Ka]. Therefore,
the Drinfeld-double of the composition algebra provides a realization of
the whole U,(g). This realization builds up a bridge between the quantum
groups and the representation theory of hereditary algebras (especially of
quivers). Connecting to Lusztig’s symmetries, it is natural to consider the
reflection functors on representations of quivers given by Bernstein et al.
[BGP]. It is easily seen that the BGP-reflection functor o; induces an
automorphism of §(A){i). In fact, it has been pointed out, by Lusztig [L2]
and Ringel [R3], that the actions of Lusztig’s symmetries and the operators
induced by BGP-reflection functors coincide in U*{i) for the case of
finite type, where U (i) = {x € U"| r{(x) = 0} and the derivations r/ are
defined as in [Jan, 6.15]. Recently Sevenhant and Van den Bergh [SV]
applied the BGP-reflection functor to the double of the Ringel-Hall
algebra of a quiver and obtained an alternative construction of Lusztig’s
symmetries.

1.3. In this article, we apply the BGP-reflection functors to the Drinfeld
doubles of Ringel-Hall algebras of all finite dimensional hereditary alge-
bras. It gives a precise construction of Lusztig’s symmetries in the quantum
groups and on the integrable modules in a global way. Our process is
logically independent of the method used in quantum groups. Almost of all
properties of T}';, in particular, three fundamental ones we mentioned
above, can be obtained in a more conceptual way. Also this approach
avoids a lot of difficult calculations.

1.4. In Section 2, we first review some notations and basic facts of
representations of finite dimensional hereditary algebras in the language
of Dlab and Ringel [DR]. In particular, the BGP-reflection functors at sink
or source vertices are introduced in detail. Then, the Ringel-Hall algebra
and its composition algebra of a finite dimensional hereditary algebra are
defined. According to [X], we restate in Section 3 the Drinfeld-double
structure of Ringel-Hall algebras, namely the formulae for the comultipli-
cation, etc., are presented here in useful forms. By using the derivations
and some routine technique of Hopf algebras, we give the simpler formu-
lae for the defining relations of the double structure. The aim of Section 4
is to define the BGP-reflection operators on the whole Drinfeld double.
We verify that the operators induce the algebraic isomorphisms not only
for the double of the composition algebras, but also for the double of the
whole Ringel-Hall algebras (a slight extension of the result in [SV]).
Because the BGP-reflection operators and the bilinear form are defined
globally on the Drinfeld double, it is very clear to see in Section 5 that the
actions of the BGP-reflection operators preserve the Ringel paring. Note
that the proof of this fact in quantum groups is very difficult (see [LI1,
Chap. 38; Jan, Chap. 8A)). In Section 6, we show that our BGP-reflection
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operators coincide with Lusztig’s symmetries. In fact, it is equivalent to
express the root vectors corresponding to indecomposable projective or
injective representations of the generalized Kronecker algebras (rank 2
cases) into the combinations of monomials of the generators (see [R3,
CX). To prove the braid group relations for the BGP-reflection operators,
we need to extend the actions of the operators on integrable modules. It
can be defined on the integrable highest weight modules in a global sense.
Section 7 is used to show that the actions of BGP-reflection operators and
Lusztig’s symmetries on integrable modules coincide too; our method to
deal with this question stems from [Jan, 8.10]. The last section is devoted
to proving that BGP-reflection operators satisfy the braid group relations.
Our steps are also according to Lusztig [L1, Part VI]: first we prove the
braid group relations on the algebras in all rank 2 cases, then on integrable
modules in general, and finally back to the algebras in general. However,
the Ringel-Hall algebra approach enables us to avoid almost all unpleas-
ant calculations, for example, the so-called quantum Verma identities on
highest weight vectors [L1, 39, 3.7] are a direct consequence of the actions.

2. PRELIMINARIES

2.1. Given a Cartan datum A in the sense of Lusztig [L1], there is a
valued graph (T, d) corresponding to it. A valued graph (T, d) is a finite
set T' (of vertices) together with non-negative integers d, jforalli, jel
such that d;; = 0 and there exist positive integers {&;};  satisfying

dje=ds  foralli,jeT.

An orientation Q of a valued graph (I', d) is given by prescribing for
each edge {i, j} of (I, d) an order (indicated by an arrow i — j). We call
(T, d, Q), or simply Q, a valued quiver. For i € T, we can define a new
orientation ¢;Q of (I',d) by reversing the direction of arrows along all
edges containing i.

2.2. Let k be a finite field and (T, d, Q) a valued quiver. We assume
that (T, d, Q) is connected and without oriented cycles in an obvious sense.
Let &= (F,,,M )i jer be a reduced k-species of type (1, that is, for all i,
J €T, ;M; is an F-F-bimodule, where F; and F; are finite extensions of k
in an algebralc closure of k and dlm(M )p, =d;; and dim, F; = &. A
k-representation (V;,; ;) of % is given by vector space (V). and F, Jlinear
mapping ;¢;: V; ® M; =V, for any i — j. Such a representatlon 1s called
finite dimensional if Zdim Vi < . We denote by rep-¥ the category of
finite dimensional representations of .# over k. Note that the category
rep-% is equivalent to the module category of finite dimensional modules
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over a finite dimensional hereditary k-algebra A. This hereditary k-alge-
bra A is given by the tensor algebra of .%. Furthermore, any finite
dimensional hereditary k-algebra can be obtained in this way.

2.3. Let &= (F,,;M)), jcr be a k-species, & =dim,F, and d,; =
dim,; M; . For a representation V' = (V,,¢,) € rep—y we define the dimen-
sion Vector of V' to be dimV = (dimV));c . If V,W € rep-, assume
that

a=dimV = (a,...,a,) and B=dimW = (b,,...,b,),

>¥n > "n

and we define

(a,B) =) sab, — Zdusjalb}

ier inj
One sees that (cf. [R4, Lemma 2.2])
(a, B) = dimHom (V,W) — dimExt,(V,W).
Set
(a,B) =<a,B) +{B,a).

It is well known that both ( —, —) and (—, —) are well defined on
G,(A): the Grothendieck group of rep-%. The bilinear forms { —, —)
and (—, —) are called the Euler form and symmetric Euler form, respec-
tively. In fact, the Grothendieck group with the symmetric Euler form is a
Cartan datum and any Cartan datum can be realized in this way (see [R2]).
Let e(a) = {a, a). We see that (i) = &,.

2.4. Denote by Q" the vector space of all x = (x,), . over the rational
numbers. In particular, for each i €T, e,, or i € Q" denotes the vector
with x; = 1 and x; = 0 for j # i. Also, for each i € I, we define the linear
transformatlon S; @r — Q" by s,x =y where y; = x; for j # i and

yi=—x+ Z djixj'
jer

The symbol W = W. will denote the Weyl group, i.e., the group of all linear
transformations of Q" generated by the fundamental reflections s,, i € T.

2.5. Let (T, d, Q) be a valued quiver (connected and without oriented
cycles) and ¥ = (F,,;M,); ;cr a k-species of type . Let p be a sink or
source of (T, Q). We deﬁne 0,7 to be the k-species obtained from . by
replacing , M by its k-dual for r = p or s = p; then ¢, is a reduced
k-species of type a,().

2.6. Now, we review the concepts of the Bernstein—Gelfand—Ponomarev
reflection functors o,* :rep-# — rep-g,”, which is most important for

our discussion (see [BGP, DR]).
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First, let p be a sink of Q, V' = (V,]gol) € rep-¥. Define o, V=W-=
(W) as

W, =V, foralli #p

L
and let W, be the kernel of
@ v M Gep; v
. i ®iM)p p’
i=p
that is, we have the exact sequence of vector spaces

I [7)1

Ge);
0 W, == @ VoM, =V,
j=p
and ;¢ ]<p, for i # p and ;¢, =k, : W, ® ,M; > W, where ;k, corre-

sponds to ;«, under the natural 1somorphism

P

Hom (W, ©,M,, W) = Hom, (W, W, &,M,).

Also if f=(f):V > V" is a morphism in rep-, then of =g = (g,) is
defined by g, =f; for i#p and g,:W, - W, as the restriction of

®,, (f; ® 1), that is, we have the commutatlve dlagram

G, G,e);
0o—w,—— & VeM, =V

. p
J=D

l lg,, leajﬂ,(/;m) lp

, Gy , (p )
0 —w L@ e, iy

j=p

Similarly, if p is a source of Q and V' = (V,;¢,) € rep-, define o, V =
(I/Vnﬂp) as

W, =V, foralli #p

L 1

and let W, be the cokernel in the exact sequence

GPp)i
—

g OV, &M, ——> W, 0,

where ; @, corresponds to ; ¢, under the natural isomorphism,

Hom, (V,,V; ®;M,) = Homy(V, ® ,M,,V;),
and ;if; =;¢; for all j # p and

pUi=,m VoM, > W,
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So o,V €rep-0,.7. If f=(f):V > V' is a morphism in rep-, then
o,f=g=(g) where g, =f, for i # p and g, is the map induced by
@, f; ® 1, so we have the diagram

(®,);

pll

v, — @DV, eM, W, — 0
f, ea,(f,m)l g,,l

( pl)l
vy =, D Vv eMmM, — W, —o.

2.7. If i is a vertex of T, let rep-Xi) be the subcategory of rep- of all
representations which do not have V; as a direct summand, where V; is the
simple representation with dimV, =e;,. If i is a sink or source, then
rep-Xiy is closed under direct summands and extensions. Among the
many important properties of o;* we point out that if i is a sink, then
o rep-KXi) — rep-0,.5%Xi) is an equivalence and it is exact and induces
isomorphisms on both Hom and Ext. The assertion for o :rep-Xi) —
rep-0..9Xi is the same if i is a source.

2.8. Let A be a finite dimensional hereditary k-algebra over a finite
field k, & the set of isomorphism classes of finite dimensional 4-modules,
and I C# the set of isomorphism classes of simple A-modules. We
choose a representative V, € o for any a € 2. By abuse of notation, we

write
(a, ) =(dimV,,dimV}) and

(a,B) = (dimV,,dimV}) for o, B €2.

So the Euler form { — , —) and its symmetrization (—, —) are defined on
Z[1].

Obviously, the fundamental reflection s, : @" — Q" preserves the Euler
form and s,(dimV,) = dim V., for V, € rep-5Xi). The following is eas-
ily seen

2.8.1. LEMMA. Let i be a sink and let V,, € rep-5Xi). Then
(a,e;) = =o' a,e;) and  (a,e;) = —(0/a,e;).

2.8.2. Remark. From Lemma 2.8.1, if i is a sink and V; the simple
module with dim V; = e;, then V] is simple projective in rep-% and simple

1

injective in rep-o,.%. Let V, € rep-5Xi). Then

dim, Ext, ,(V,.,,V;) =0 and  Hom,(V,,V;) = 0.

a’’i
Hence we have
) l

dim, Hom,, ,(V,+,,V;) = dim, Ext (V. V).
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For «, B, A € £, let gé‘B be the number of submodules B of V] such
that B =V} and V,/B = V. More generally, given a,,..., a,, A €2, let

gé‘l 77777 «, be the number of filtrations

Vi=My2M,2 -~ 2M,=0

such that M;_,/M; is isomorphic to V, for all 1 </ <t We use a, to

denote the order of the automorphism group of V, for a € 2.

2.8.3. LEMMA. Let i € I be a sink of ) and V,, and Vj be in rep-Xi).
Then we have

a, .
8pi = _gi(:;;ﬁa‘
ag

Moreover, azgg,; = %grﬁrfw
Proof. See [R5,5.2]. 1

29. Let g =1kl, v = \/q— (hence g =v?), and Q(v) be the rational
function field of v. The Hall algebra §(A) is by definition the free
Q(v)-module with the basis {u, | « €%} and the multiplication given by

ugug =P Y glou,
rEP
for all a, B €.

Let A be the tensor algebra of a k-species .. We can identify
mod-A = rep-¥; therefore, §H(A) can be viewed as being defined for
rep-%. Also, we denote by 0,4 the tensor algebra of ¢,%. We define
H(A)i) to be the Q(v)-subspace of (A) generated by u, with V, € rep-
Aiy. If i is a sink or source, since rep-5Xi) is closed under extensions,
H(A)i) is a subalgebra of §H(A). Because o :rep-SXi) — rep-0,5Xi) is
an exact equivalent and induces isomorphisms on both Hom and Ext, it is
not difficult to see the following result of Ringel [R3, Theorem 5].

PROPOSITION.  Let i be a sink. The functor o; yields an Q(v)-algebra
isomorphism a; :H(AXi) = §(o;A)i) with ou,) =u,:, forany V, €
rep-Xi).

Of course, we have a dual statement for i being a source.
2.10. In the quantum group and the Hall algebra, the following nota-
tions and relations are often used:

[n] = -
n_u—zf1

[)t= TT0.

n_pon
=Un—1+Un—3+”_+U—n+l,

[n]!
[r1'[n—r]"°

n
r
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and also

-1
In] = L _— (¢" '+ - +q+1)=0v"""[n],

n

In]l=TT1¢] =03 [n],

t=1

R re e

The following equations are basic ones.

LEMMA. Forn > 0, we have

i (_l)fut(t—l)
t=0

’tl} =0 and E(—l)tut(”‘l)[’” = 0.

t=0

If f(v) is a rational function of v, then f(v), means f(v ).

2.11. We denote by ¢(A) the Q(v)-subalgebra of §H(A) which is gener-
ated by u;, i € I, where {V; | i € I} is a complete set of paradise non-iso-
morphic simple A-modules, and c(A4) is called the composition algebra.
The following well-known result of Green and Ringel (see [G, R1]) laid
down a base for our investigation.

THEOREM. There exists an isomorphism n:U"— ¢(A) of Q(v)-algebras
such that 7(E;) = u; fori € I, where U" is the positive part of the quantum
group Uq(g).

3. DOUBLE RINGEL-HALL ALGEBRAS AND
SOME DERIVATIONS

3.1. For the basic concepts of Hopf algebras, the readers can be re-
ferred to [A]. Given Q(v)-Hopf algebras 7" and /Z~, a skew-Hopf pairing
of #* and # is a Q(v)-bilinear function ¢ : 7+ X.# — Q(v) satisfying

@ o1, b) = &), ¢la,1) = &(a),
(i) ¢(a,bb") = ¢(Ala),b ® b'),
(iii) ¢(aa’,b) = ¢(a ® a’, A°PP(b)),
@) @(S(a), b) = ¢(a, S~'(b)),

where A, g, and S are the comultiplication, counit, and antipode, respec-
tively. The #*®.#~ has the induced Hopf algebra structure in the



BGP-REFLECTION FUNCTORS 213

following sense, which is the so-called Drinfeld double of (Z*, 7, ¢),
denoted by (7,7 7).
(1) Multiplications,
(4) (@ 1)a ®1)=aa ®1,
(B) 1eb)1®b)=1®bb’
(C) @@ DA ®b)=a®b
(D) A®b)a® ) =Y, ynela,Sb)a, ® b,¢las,b;)
forall a,a’ €#*,b,b’ €%, where
A*(a)=Ya, ®a,®a; and  A*(b) =) b, ® b, ® b;.
(a) b)
The unit is 1 ® 1.
(2) Comultiplications,
Aoz (a®b)= ) (a,®b) ®(a,®b,),
(a),(b)
and the co-unit is £,+® &,-.
(3) Antipode,

Sy on-(a®b) = (18 S(b))(S(a) ® 1).

For a proof of the above, see [Jo], for example.
By a routine technique of Hopf algebras, the hypothesis (D) of (1) can
be replaced by

(D) X by®aye(a;,b) = ) a ®bi¢(ay,b,),
(a), (b) (a),(b)
for all a €7 and b e#Z", where Ala) =X, a, ®a, and A(b) =
Ly by ® b,

3.2. Let A be the tensor algebra of a k-species ., &, =% — {0}. In the
Ringel-Hall algebra §(A4), we write (u,) = v dimYate(@y for each
a €% (noting that {u;) = u, for all i € I). Then it is easy to see the
multiplication of {(4) can be replaced by

(ugXug)y =v= P 3 gduyy  forall a, B €.
AEPR

Furthermore, we can introduce the extended Ringel-Hall algebra Z( A).
Let A A) be the free Q(v)-module with the basis

(K upy laeZ[I], L €2},
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Then we can rewrite Theorem 4.5 of [X] as follows

THEOREM. The Hopf algebra structure of Z(A) is given by the following
operations.

(a) (Ringel) Multiplication,

(ugXugy =v= P 3 greluy)  forall a, B €P
reP

K (ug) = U“”‘”(uB)Ka forall « € 7[1], B €2,
K,Kz; =K,z forall a, B € Z[ 1],
with unit 1 = u, = K.
(b) (Green) Comultiplication,
Aup) = X v'"Plga,
a, BEF
A(K,) =K,®K,  forall a €Z[I]
with co-unit e({u,)) =0 for A # 0 in % and e(K,) = 1 forall a € Z[I].
(¢) Antipode,

S(up) =8+ X (-1n" )y UE[</<A"Aj>g,<\1A2 A,

m=1 Aoeros Ay EP, ax

a,ag
. KB<ua> ® <”B> forall A € 2,

aM..'%

m

X(K_M<u,\l>)~~(K_)\m<uAm>), forall A € .

S(K,) =K_ forall a € Z[ 1],

[
where 6, is the Kronecker sign.

3.3. For any u € N[7], let #, be the Q(v)-submodule of A A) with the
basis {Ka(u#> |l € Z[1], dimV, = w. So #(A) = EBﬂeNm% is an

N[7]-graded algebra and Theorem 3.2 implies that for any u € N[7]
Az)c D 7,87,

0<n=<up

Accordingly, we can define for any o €%, the following operations on

H(A4)

asa
Z B
ra(<u)\>) = U<.Baa>+(ﬂl,ﬁ)g'é\a a<uﬁ>
BeP a

r(;(<u)\>) = Z U(Q»HH(&,B)gO):B
BeF ay

a,ag

(ug)
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for all A € 2. In particular, r,(1) = r/(1) = 0 and r,(Ku;)) = §; = r/({u;»)
forall i,j €I

PrOPOSITION.  For any i € I and A, A, € P, we have

M rCuy )<uy ) = Cuy druy ) + 0@ uy )X, )
Q@ riCuy )<uy ) = 020wy driu, D) + i uy )X uy ).

Proof. Tt is more or less the same as [CX, Proposition 3.2]. |

For this reason, the operations r; and r/ are called the right and left
derivations on §(A4), respectively, for any i € I (see [L1, 1.2.13)).

3.4. Let Z7(A) just be the Hopf algebra 74 A) but we write {u, ) for
{u,y for all A €. Therefore the Hopf algebra structure of Z*(A4) is
given as in Theorem 3.2 and the operations r, and r, for o« €% are
defined as in 3.3.

Dually, let #~(A) be the free Q(v)-module with the basis {K {u; ) | «
e Z[1], A € ). The Hopf algebra of #~(A) can be given as follows:

(a) Multiplication,

Cug Xugy =v= P ¥ glouyy  forall a, B €P
AEP
K ugy =v™“Pug)K,  forall a € Z[I], B €2,

K,Kg=K,,z forall «,pe Z[I],

with unit 1 = u, = K,,.

(b) Comultiplication,

a,a
Auy)) = Y U<avﬁ>g23 ; P (ug) ® K_p<uy) forall A €2,
a, BeEF A

AK,)=K,®K, forall a € Z[I]

with co-unit e({u, )) = 0 for A €2, and &(K,) = 1 for all « € Z[I].
(¢) Antipode,

- m N a A,
Suy ) =8+ 2 (—1) Y wTeergh A e
m>1 Afsees Ay EP, a,
XCuy ) {u Ky, forall A €2
S(K,) =K_, forall « €[],
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3.5. Of course, we also have the following operations for all « € %,

a,dg

ra(Cuyy) = X ot e Pl ——ug)
BeF a
asga
— B —
r((u)) = X vborrtebes ——=(ug),
BeF a

for any A € 2. In particular
r(1) =r/(1) =0 and r(Cu ) =ri({u;)) = §;

for all j € I. Similarly, we have the following
PROPOSITION.  Fori € I and A, A, €2,
M rCug ) uy ) = vy ruy ) + ruy )X uy ).
@ rCu <y ) = gy riCug ) + 00 2ruy )Xy ).

3.6. In view of Proposition 5.3 in [X], the bilinear form ¢:7"(A4) X
# (A) - Q(v), defined by

O(K (g, Koug)) = (e (Brans(@ 058 g g,

for all a,a’ € Z[I], B, B’ €, is a skew Hopf pairing. Therefore, we
have the Drinfeld double D(Z*(A),# (A)) of ¢, which is a Hopf algebra
structure of Z"(A4) ® # (A) (see 3.1). It is clear that the ideal of
D7z (A),# (A)) generated by K, ® K__, — 1, or equivalently, by K, ®
1-1®K, for all « € Z[I], is a Hopf ideal. The corresponding quotient
inherits a Hopf algebra structure, which is called the reduced Drinfeld
double of A and denoted by Z(A).

As an associative algebra, Z(A) is given by the following defining
relations:

(1) Ky=uy=1,KK, =K,

@ uiXug) =v=PUL,,glsul)

B CugXug) =vPOL, 4 glsuy)

@ K ug) =v"Pug)K,

(® Kfug) =v""Pug)K,

© X, o 0N a, /a8l K- Sugyr(ul)) =
X, gu Pt a, sa)ghs Ky ulyrs(Cuy))

forall A, X, a, B €2, and y,n € Z[I]. The relations (1)—(5) are obtained
from the defining relations of #*(A) and # (A), and the relation (6)
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follows from the relation (D’) in 3.1 which is equivalent to the relation (D)
in 3.1.
It is immediate to see the following

3.7. LEMMA. Forany A, A, € and i € I, we have
D oCuy ), Cup )<uy ) = oKu; ), Cuy Ne(ri(Kuy ), uy ) and
o, Cur Yty ) = oy, (g D plr (g D), ().
Q@ ou X ul ), (uy ) = olu ), Cuy Neuy ), ru, ) and
o Yy, (ur)) = oy, (ur N ey, ri(Cup ).
The following formulae for the commutators seem well known

3.8. PROPOSITION. For any A € and i € I, we have the formulae in
2(A)

D Cu; X uyly = (ufHu )y = oufy, Cui N uf MK, —
K_;riu )

@ Cuy Xufy = Cuf X uy ) = ouf ), (u IXKruy ) —
riCuy DK ).

Proof. 1t is straightforward or see Corollary 5.5.2 of [X]. |

3.9. We consider the composition algebra #*( 4), which is the subalge-
bra of Z*(A) generated by the elements {u; ), i € I, and K, @ € Z[I].
Dually, the composition algebra #~(A) is the subalgebra of 7~ (A)
generated by the elements (u; ), i € I, and K, a € Z[I]. Obviously, they
are Hopf subalgebras of Z*(A) and Z~ (A), respectively. We can restrict
the pairing

07 (A) X7 (A) » Q(v)
to their composition algebras; this restriction
e (A) X & (A) = Q(v)

is easily seen to be a skew-Hopf pairing belonging to the Cartan datum
A= (I(,)) (see Section 2 of [X]). Therefore we have the reduced
Drinfeld double of the skew-Hopf pairing (2*(A4),  (A), ¢), which we
denote by 2.(A). Obviously Z.(A4) is a Hopf subalgebra of 2(A4) gener-
ated by ut, iel, and K,, o € Z[I]. By construction one has the
triangular decomposition

G(A)=c (A)Tc"(A),

where ¢~ (A) is the subalgebra generated by u; , i € I, ¢*(A) the subalge-
bra generated by u;", i € I, and T the torus algebra.



218 XIAO AND YANG

3.10. Let A=(1,(,)) be a Cartan datum, A a finite dimensional
hereditary k-algebra corresponding to A, and U, (g) the quantum group
corresponding to A. The Green—Ringel Theorem in 2.11 can be general-
ized to the Drinfeld double (see [X, Theorem 5.8]).

THEOREM. The map 0 : Z,(A) — U,g) by sending
(ufy = E,,{u;y » —v,F,,K, > K,

for all i € I induces an isomorphism as Hopf Q(v)-algebras, where K =K/
and the notations for elements of U,(g) are as in [L1, Chap. 3].

4. BGP-REFLECTION OPERATORS FOR DOUBLE
RINGEL-HALL ALGEBRAS

4.1. All notations are conserved as noted above. Throughout this section
except in 4.6, we always assume that / is a sink for Q, and o the
Bernstein—Gelfand—Ponomarev reflection functor as defined as in 2.6.
Then o :rep-Xi) — rep-0,9%Xi) is an equivalence. Therefore, by
Proposition 2.9 (of Ringel), the morphism 7, : §{i) — §(o; A){i) by taking
TKuy») = (u, ) for A €2 is a Q(v)-algebra isomorphism.

The aim of this section is to extend the map 7; to the whole reduced
Drinfeld double 2/(A).

4.2. Let K, = v DK, (u, )" = (u,) /(t]), for « €2 and t € N. If
V, =V, @V, in rep-%# and Hom(V},V,) = 0 = Ext(V,,V}), then it is easy
to see that {u,) = U<ﬁ’“><ua>(u5> in §(A), and if Ext(V,,V,) = 0, then
(u,,y = {u, Y, where u,, is the vector of the ¢ copies of V, in §(A) (see
[R3)).

For A €2, assume that V, =V, @ and V, contains no direct
summand isomorphic to V. Then Hom(V, ,V;) = 0 and Ext(V,V,) =0
since i is a sink of .. In this case,

(uf) = U<A0,ti><ui+>(t)<u;rn>
in §7(A). We define a morphism T; : §*(A) - P(0o; A) given by
p ot _
T,(<u;—>) = []! (<u1_>Kl) <M:,.+,\O>

= U<A’zi>Kzi<”i_>(t)<u;+,\U>

for all A €2, where V, =V, @ 1V, and V} contains no direct summand
isomorphic to V. For convenience, we write o; for o;" below. By defini-

tion we have

T(Cu i) = T(Cu YOV (<)),
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In particular
T,((u) = (u K,
In fact, we have the following

42.1. LEMMA. Forany A € and m € N,
T,(u YD) = T(Cu )T ().

Proof.  We write V, =V, @ tV; as above. Then

Ti(<ui+>(m)<u;r>) — U<Au,ti>Ti(<ui+ >(m)<ui+>(l)<u;0>)

= U<A0’t’>|:s$ t] ]"l(<ul+ >(m+t)<u)<fu>)

phosti)

= m(<u;>ii)m+l<u;mo>)

phost)

1 m — 1
L (Cui YK;) ( an (Cui DK;) Cugep,

— ( +>(M))T(<u;r>)

422. LEMMA. Forany BE€P and m € N,
T >y ™) = TG T, )).

Proof. By Lemma 4.2.1, it suffices to prove the lemma for the case
where 1}, does not contain V; as a direct summand. So we assume that V;

1

is not a direct summand of V. It is easy to see that (see [R3, Theorem 1])

Cug Y ufy = v P uf Y ug) + o Y gedul).

a#pBoi
Therefore,

T(Cu X uy) = v OT ()T () + 0P T ggT(w)),

a#Bei
On the other hand,

Ti(Cug )T (Cu D) = Culg¥u VK,



220 XIAO AND YANG

and
T,({u; ))T(Kug )) = ((u,-‘}l?)(u;’iﬁ).
Thus, to prove Ti(<ug><uf>) = T,-((ug NDT.({u; ), it suffices to show that

Cug ) ui YK, — Cuy Wug )K= 0= 3 geduy ),

a#pBei

where we use the fact that
K ukyy =v05Put YK, =0 @P{uf; K,  (by Lemma 2.8.1)

and if gg; # 0 and V, # V; @ V, then V, contains no direct summand
isomorphic to V. Hence we have to show that

Cuggduy ) = Cuy Xugz)y =v= P 3 gsduf VK,

acsrep-SXi)

where K_; = UF(')K . In rep-0,.7, V; is a simple injective and V, ; € rep-

1

0, X1y, 50 gif=0 for all V, € rep-0,.#. By Proposition 3.8 we have
Cuggu; ) — u ) ugg)
= () YK ri(Culy))

p2ed a,a
g

-k, D0 o+ Gonrg By

a; acrep-Hiy Yo
=20 Y gep ug VK-, (by Lemma 2.8.3)

acrep-SXi)
=v P Y gadul VK.
aerep- iy

This shows that Tl-(<ug>(ui+>) = Tl-(<u[;r NT.({u; »). By the induction, it is
easy to see that

T(Cug YY) = To(Cud )T (ui ™).

Combining Proposition 2.9 and Lemmas 4.2.1 and 4.2.2, the following is
a consequence.

PROPOSITION.  For any «, B € P, we have

T,(Cu X)) = T(ui)T(Cugy).
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4.3. Symmetrically we define a morphism 7, : ) ~(A) — 2 (o, A) given by
(Ao 1)
ap

= v AKXy, )

T(ui)) = (K iCu)) Cugy,>

for all A €2, where we write V, =V, @&V, and V} contains no direct
summand isomorphic to V. By definition we have

T(Cu Y uyy) = T(Cu Y O)T(Cuy))
for any A € 2. In particular,
Ti(Ku;)) = v, K_uif).

Similarly, we have

ProOPOSITION.  For any a, B € P, then
Ti(Cug X ug ) = T,(Ku )T (Kug ).

4.4. Of course, we can extend the action of T, to the torus algebra, by

setting
T(K,) =K,
for & € Z[I]. 1t is obvious that
T(K.Cui)) = Ti(K ) Ti(Cui)

for all @ € Z[I] and A €. We also have the following relations in the
Double Ringel-Hall algebras.

PROPOSITION.  For all A € 2, we have

D Tu; ) uy ) = Cu ) }<u; ) = TCu; NDTKu, ) — TKuy ) X
T.(u; )
Q) TCuy X u) — CufHXuy ) = TKuy DTKu ) — T, u ) X
T.(Cuy ).
Proof. 'We only prove (1). First, if A =i, it is easily checked since

260

Cuy YWuty — Cuf Yu; ) = (K, —K_;).

a;
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Second, if ¥, has no direct summand isomorphic to ¥}, then g/, = 0,
hence r/({u, )) = 0 since i is a sink of .. Therefore, by Proposition 3.8
and the definition of r; in 3.3,

. _ a
Cuy Yudy = uf Wuyy = 020 Y pBo+Bn Led (g,
BeP a
one sees that 1 € rep-SXi) automatically. It follows that
T (Suy Y uy >y — Suf Huiy)
, , .a
= 2 ¥ U<B"H(ﬁ”)—ﬁgﬁiTi((Mﬁ)K_i

BeF a

= p2e@ Z U*(SfB,i>*(SIB,i)gi<3iE<u;B>K7i
BER

(by Lemmas 2.8.1 and 2.8.3)

=p~ ¢ Z U_<Si)"i>_(“'i/\ai)gi(gif\3<u:iﬁ>K_l_.
BEP

On the other hand, since i is a source of 0% and V; is a injective module

in 0.7, if V, € rep-9Xi), then Hom(V,,V.) = Ext(V,,V,) = 0 in rep-%;
correspondingly, Hom(V,, V) = Ext(V, ,,V}) = 0 in rep-0,.%. Thus,

i» Vo,

Cuf Y ugyy = v ut Hufy + Y v Demu) ).
BeR

It follows that
T(Cu )T 0) = T(w)Ti(Cuy )
=K _Suf Yuly — ((uf ) K_(u)
= U‘””‘“““”(uf)(u;A>K_i - U‘g(")(u;i)\Xu;r)K_i

=p @ E U_(X[A’i)_<Xi/\’i>gi(:ri,/l\3<u;B>K—i'
BeF

Therefore,
T(Cui )y = ' 2Cui ) = Ti(Cu ) T(Cu0) = Ti(Kuy ) T(Cui ).
By Propositions 3.8 and 4.2, for all A € % we easily see that
T(Cu > (a7 Y uy > — CufHuiy))
= T,(Ku; ) T,(Cuy Y uyl )y — Cuf W uiy).
Then, by the induction the proof is finished. |
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4.5. Now the main result of the section can be stated as follows.

THEOREM. Let i be a sink. For all A €# and o € Z[I], we write
Vi =V, @V, where V, has no direct summand isomorphic to V;. Then
operator T; defined as

T(<u)\+>) = p<h tl>K”<u >(t)<ua)m>
7"’(<u;>) = U<A’ti>K—ti<ul‘+>(t)<u;—l)\0>s
’Ti(Koz) = Ks,»(a)’

induces a Q(v)-algebra isomorphism: 2.(A) - 2(0;A).

Proof. One sees that TAT) c9.(0;A). For any j eI, if j=i, of
course,

T,(Cu)) = v ' Kuy ) €7,(0,4);

if j # i, then T((u*)) {ut G )> Note that V., i) is an exceptional object
in rep-0;.%, so (u(,(])> egt (a A) by a result of Ringel (for example, see
[Z; CX, 5.2] or by Theorem 6.3). Therefore, T(Z*(A)) c2.(g; A); simi-
larly, T(#~(A)) €2.(0; A). In view of Propositions 4.2 and 4.3, to prove T,
is a homomorphism, it suffices to verify that 7; preserves the relations

p2eti)

Cui YW up )y = Cuf Xuy ) = §y (K; —K_))
for all k, j € I.

If j =i or kK = i, we have shown that, by Proposition 4.4, this relation is
preserved by the operator T;. If none of j and k is i, according to the
formulae in Proposition 5.5 and Theorem 5.10 in [X] (noting that i is a
source of 0,.%) we have the relation

WV,

U Ut = ut s = 8, —2I
aptact) ~ oo = Oy
o]

( si(J) o K*Si(j))'

2dim .V,

Since |V, (1)' =0 =) and Ay iy = 4, the above relation is

26())
U J
gyt i) = Sty )t )7 = 8 7 (Koy = Ks)-

J

This exactly means that

Ti(Cuy D) T(Cui)) = T(u )Ty )) = T(<u )y — CwdH<uy ).
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We have shown that 7, is a Q(v)-algebra homomorphism from Z.(A4) to
D (0;A).

4.6. Let i be a source of .#. For all A € and « € Z[I], we write
Vy =V, @ tV; where I} has no direct summand isomorphic to V;. We can

define the operator 7 as

(ti, gy

Ti,(<uj>) = W M;A0>(U*6(i)K7i<u;>)t
= U<ti,A><u;AO><ui—>(t)K_”_’
ti, M) ' .
T;(@;)) = <u;AU>(Us(z)<u;r>Ki)

[£]4
— U<ti,/\><u;i)‘0><ui+>(t)K”_’
Ti,(Koz) = Ks,»(a)‘

By a similar way, we can prove that 7; induces a Q(v)-algebra homomor-
phism from Z.(A) to 2.(a; A).

4.7. Now, we come back to the situation where i is a sink of .%#. Then i
is a source of 0,.%. Therefore we have the induced Q(v)-algebra homo-
morphism T/ : Z.(0;4) = D.(A). It is easily seen that .7/ = 1 and T!T,
= 1. So we have shown that T;:Z.(A) -2.(0,A) is a Q(v)-algebra
isomorphism, whose inverse is T} : 2.(a;4) = 2.(A). The proof of Theo-
rem 4.5 is finished. |

4.8. By a similar method as in [SV], it can be verified that the operator
T. preserves the relation (6) in 3.6. So we have the following result due to
Sevenhant and Van den Bergh.

THEOREM. Let i be a sink. Then the operator T, gives a Q(v)-algebra
isomorphism 2(A) - 2(a; A).

Proof. It remains to show that 7, preserves the relation

a, .
(481) Lol oreoSten kG ()

aa
—8apKpCug 1 (Cuy?),

= Y ple B B8
a

@, B

where V,, V,, € rep-9Xi), respectively. Indeed, the left hand side of (4.8.1)
may be rewritten as

(482) 1= Y U<A’,a>+<a,A>+(a,B)m Nogh K (us Wult
+O- ) 5 a,a, ga'agaB —a\"%a’ B />
o', a,
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where we see that a, a' € rep-$Xi) automatically; however, this is not
the case for the V;. We need the following facts:

(4.8.3)
If i is a sink, V,,, V, € rep-%i), then g} zo, = 2,82 1805

(4.8.4) [Ifiisasource and V,,V, € rep-9Xi), then g)s, 5 = Zg” 5&ay-

Now, assume Vj =1}, & tV;, where Vj € rep-Xiy. Then (u =
v¢F" ”><u+>(’)<u/§> Applying T; to (4.8.2) ylelds

(485) X pOmr(wds@pye i —ianspnn Lo dels

a’a, Bt ayay

Ao - =\ ()

Xga’aga,ﬁKtifs,a<ugia’><u[> <u;’_B’>-
Noting the fact a, = ag,, = aga,Hom(V, V)l = v*"Flaga,, we
write (4.8.5) as

Nyay+{a, A+ (a, B+ 13, iy—(ti, a )+ 2{ti, B'Y+ (B ti) o N A

Z pA ey e, Mt (a, B+ iy = (t, a)+ 2{t, B+ (B ”>ga’ag;,tigyﬁ
v, a',a, Bt
a,a,aga,

X SRR G Y Y.

The terms in the last sum can be non-zero only if y € rep-$Xi). Recall
that

a _ o; B
aBgB,ti - aagtiia',-a7

a = a(ria,a”-|H0m(V

'
o'

tVl)| - U—2(a’,ti>aﬁla”_

o' ®ti
and
— i,s:.a' t t

<u0ia,®ti> = plti s ><u ><u >( ) = p~ (@ ><u ><u >()
since i is a source for o;(). Therefore, we may rewrite the terms where
v, B € Ai) as

Z U()\',a>+(a,A>+(a,/3)+t2<i,i>7(ti,a’)+2<ti,B’}+<ﬁ’,ti>+(ti,a')
a’,a, Bt

Aoy oy gy

o gor  yoa doaGoalep i - .
X g(r,»’a'(ria g(ri’ya'iﬁ'gti;ri'y Kti—sia<u(r[a'$li><u(riﬁ'>
Ay n@on
i i

— Z U(A’,a>+(a,/\>+(a,B)+t2<i,i>—(ti,a')+2<ti,ﬁ’>+(B',ti>+(ti,a'>+2<a’,ti>
a’,a, Bt
aala'ﬂatiao’,-yaaiB’

o\ oA - +
xgo'lla'EB ti, a',»'yga',lyn',ﬁ' Ktifs,ﬂ<ua"a'@ti><ua'i,8'>’
ao’,/\'aa',)\
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Noting that

s,y +ti=s;a, s;B=s;B' + 1, A=a+ B, M=o + «,
in Z[I], we see that

U()\’,a)+<a,)\)+(a,B)+t2<i,i)7(l‘i,a')+2<ti,B’>+(B’,ti)+(li,a')+2<a’,ti)

= pSSiNLsiy)+ (87, 5+ (87,5 BY)
1% .

Hence we obtain

a,a,
Tl(l) = Z U<“\ wy+ s+ (p,y) K Y X a.4a, gaM g#AK_M<M;><M:>.

H, Y, @ ao’)\ a(r)\

Applying T; to the right side of (4.8.1), we get the entirely similar form

(sid,yy+< Ay +( ’)a“a'yaa A A +

SiA,y V.S v,a)_ XY ¥ od,0 -
Z v ' gay gy a Ky<ua ><ua'>'
a, pu,a’ a(r,»/\' oA

Thus T; preserves the relations (6) in 3.6 for V},V,’ € rep-5Xi). The proof
is completed. |

5. SOME PROPERTIES OF BGP-REFLECTION OPERATORS

5.1. Again we assume that i is a sink for .. Let

H (A = HT(A) | rep-Ai),
i.e., the Q(v)-subspace of §*(A) generated by {u)) with V, € rep-5%i).
It is easy to see that §H*(A)i) is a Q(v)-subalgebra of §*(A), hence of
Z*(A). Similarly, let
§7(0;4)<i) = 7 (0;4) | rep- g, 5Xi)

the Q(v)-subalgebra of §*(o; A) generated by {u; ) with V, € rep-0,4i).
Obviously, we have

(5.11) 0 (AN = (x € §7(A) | Ty(x) €77 (0,4))
07 (0,4)(0) = {x € 07 (,4) | T/ (x) €77 (A)).
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Let T be the torus algebra of Z[I], Z(A)Xi) = TH"(A)Xi), and
Z (0. AXi)y = TH* (o, A)i). We have

H7(A) = X uHPh"(A)y, and

t>0

7 (A) = L wH (A6
t>0

H7 (g A) = X 07 (A uH®, and
t>0

(0, A) = Y2 (0,4) G u YO,

t>0

Dually, the subalgebras §~(A)Xi), § (o,4)i), # (AXi), and
# (0, A)i) can be defined and the same relations as above can be
obtained.

By the definition of the derivations, it is easy to check

(5.12) Hr(A)@)y ={xeh*(A4) Iri(x) =0},
57 (0 4) i) = {x € 57 (0.4) | r(x) = 0).
Indeed, if r/(uy)) =0, then g/, =0 for all B €2 There is no
extension of the form
0—- VB - V/\ - Vl - 0.
This implies that V; is not a direct summand of V. It follows that
(uyy € H7(A)i). Conversely, if V, € rep-5Xi) then g/, =0 for all

B € & since i is a sink of .%. Therefore, r/({u; )) = 0. The first relation in
(5.1.2) is verified. It is similar for the second. |

Since T; : h *(A)i) — §*(0;4)i) are isomorphisms, therefore
(5.1.3) T, (A)0) = §° (o, 4) <)
T~ (A)<D) = b (a:4)<i).

5.2. The following property is our main concern in this section.

PROPOSITION. Let i be a sink and ¢ : 7" (A) X% (A) - Q(v) the
skew Hopf pairing defined as in 3.6. Then

e(Ti(x), T(y)) = e(x,y)

forall x e 7 (A)i) andy € 7 (AXi).
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Proof. Let Vj and V. belong to rep-Xi), a, ' € Z[I]. Then
o(T(Kolug)), T(K, Cui)))

QD(Ksi(a)<u;'—,-B >’ Kfi(a')<u0_'iﬁy>)

= p~Gi@), saN=(5,(B), siaN+ (si(a), si( BN+ (s:(B), si(BN g —1
oi(B)“o(B)o(B")

— p—(a,a)=(B,a)+(a,B)+(B,B),—1
v ag SBB’
= @(Ka<ug>,Ka,<ug, )

The result follows. |

5.3. It is easy to see that

(531) ¢(<ui+ >t, <”f >t) — Uit(l+1)/2[t]!i(vi _ Uiil)_t

forall i € I and t € N, where v, = v*©, [¢]!, = [¢]!,.;)- Therefore we have
the following

PROPOSITION.  Let x € §7(AXi), y € §7(AXi). Then

) (T, ut Y, T u ) = (e, Mo D2[ (v, — o7 D7
Q) eCu T (), uy YTy = ¢Cx, oD 211 (v; — v7 )"

Proof. 1t suffices to show the equations for {u,) and Cu,) with V,,
V; € rep-Xi). To prove Eq. (1), we only need to show

(532) (Cud Y ut Y ug g Xui ) ) = o(Culy, Cugy)o(Cuf Y, (up '

since @(T,(Cul M, T uz)) = (uf ), (g g = ouly, (up)). It is not
difficult to obtain that

(5.3.3) r(Cuf') = ol [e]iu Y

We prove Eq. (5.3.2) by using induction. For ¢ = 1, note that r,({u, ,») = 0
since V, , € rep-0,.9%i) and i is a source of 0,.%. According to Lemma
3.7,

o(Cug )y, (g duy )

o(Cu ), Cur ) o(r(Cur ), (g )
o (<>, Cu ) o (Cud r(Cuf ), Cug g )
o(Cul Y. Cug)) e(€u ). ).
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Now, we assume that Eq. (5.3.2) is true for ¢. Because
(€Y ) = o(Cu Y Yol + ey, (i),
we have that
o€t St g g )
(€, ) o Cud YT, g YY)
= o(Cu ) Yo Cul (€Y, g g YY)
o(Cuty, Cup D)vile + 1 Cug DuY', g ) w7 )
e(Cu ), Cu ol + 1]ie(Cut ), Cugpd) o(Cuf Y, (up )
o(Cug ), Cuggd)o(Cu Y u ™).
So Eq. (1) is verified. The proof of (2) is similar. ||

6. COMPARING BGP-REFLECTION OPERATORS WITH
LUSZTIG’S SYMMETRIES

6.1. We have obtained in Theorem 4.5 that if i is a sink (source) of ,
then 7, (7}) is a Q(v)-algebra isomorphism: Z,.(A) - Z.(o;A). In this
section, we focus on comparing 7; with 7}",. First, we state one observation
as follows (also see [R3]).

PROPOSITION 6.1. Leti#j €1, andn = — 2((1_"’1_")).

(1) Ifiis a sink, then in Z(A) we have
<u,\> = Z (_1)tUiil<ui>(t)<uj><ui>(n_t)a
=0

where A € P is the unique class of indecomposable modules with the dimen-
sion vector e; + ne;.

(2) Ifiis a source, then in #(A) we have

n

Cupy = X (= 1) o7 ™ uy ) u)®,

t=0

where A € P is the unique class of indecomposable modules with the dimen-
sion vector e; + ne,.



230 XIAO AND YANG

Proof. 'We only prove the case (1); the case (2) is its dual. Assume i is a
sink; then {e;, ;> = 0 and Ext ,(V,,V)) = Ext ,(V,,V;) = 0. First, it is easy

i ©j 7] v
to see that
_ _(n
(+) Cu Y Cupyu "™ =07 @7 3 e, (1)<uy),
AEPR
where

e(t) = 8% ijiioi-

t n—t
Now, fix A €. In order that c¢,(t) # 0, I, must have a composition
series with n factors of the form V; and one factor isomorphic to V. Let N
be a direct summand of V| of minimal length which has the composition
factor V. Then V, = N @ sV, for some s > 0. By the proof of [R2, Part III.
2, Proposition], we see that

(6.1.1)  ¢,(1) = ( ‘sit]| ]! n —t]!)(,iftss, and

c,(t) =0,if t > s.

If s > 01in (6.1.1), then

n t pit=1) s Cool s
6.1.2 —1) ———=———c\(1) = — 1)yt ] = 0.
(612) T (D' g 0 = T2
If s = 0 in (6.1.1), then V} is uniquely determined by V; and V}; in fact, V}
is indecomposable projective in the category of modules which have
composition factors isomorphic to V; and V}; in this case

1

(1) =0,ift>1, and ¢, (0) =|n]l,,if £ = 0.

Thus,
Z (- 1)tvi_[<ui>(t)<uj><ui>(n_t)
t=0

—t

P AR ITETIIID)

n
Uit(t—l)+(2)—tn

<ui>t<uj><ui>n—t
- E:O(_l) ln =]l e]

X ui’(;)“” Y () luy (by Lemma 2.10 and ( *))
AEFR
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n Lf(t 1

S L ROV et
Ut(t 1)
G p R K
+ %]LCA(O)WQ (the case s = 0)

(uyy (by (6.1.2)).

6.2. Recall that we have the Green—Ringel isomorphism Z,(A4) - U,(g)
in (3.10). So we have the canonical isomorphism Z.(A4) —»2.(d;4) by
mapping {uF) — {(u/) and K; - K; for a sink i € I. Therefore we can
identify 2.(g; A) with 9,.(A) under this canonical isomorphism. Then 7; is
an automorphism 2,.(A4) - 2,(A).

6.3. THEOREM. (a) Let i be a sink. Then the isomorphism T.: D.(A)
= 2.(A) coincides with T}',. Namely, T, = T;", if we identify (u;) with E,,
(u;) with —v,F;, and K; with K; forj € I.

(b) Let i be a source. Then the isomorphism T.: 2.(A) - 2.(A)
coincides with T; _, (see the definition of T;", and T _, in [L1, Chap. 37)).

Proof. (a) Assume i is a sink in €. Then it is a source in o¢;(}, and
V. 18 a unique indecomposable module in rep-0;.7Xi) with dimension

vector

dim VG, ;) = €; + ne;,
where n = — 2((;’1_")). Thus, we have by Proposition 6.1,
(g = 2 (=) 07 ) uyu)™.
r+s=n
Hence

T(wE)) = L (=1 o7 ut Yy ut ).

r+s=n

To prove T; coincides with 7', it suffices to show that 7, and T; have the
same effect on generating sets. It can be easily seen by identification of

{<uj+>} Wlth{ }IEI’ {<u >}j€] Wlth{ l j}/EI’ and

{Kj}jel with {K]}jel

The proof of (b) is similar. [
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7. ACTIONS ON INTEGRABLE MODULES

7.1. Let (T',d) be a valued graph, ) an orientation of it. Let ¥ be a
reduced k-species of (I',d,Q), and A the tensor algebra of #. An
orientation Q of (T',d) is said to be admissible if there is an ordering
ki, k,,...,k, of T such that each vertex k, is a sink with respect to the
orientation s, =+ s, s, () forall 1 <¢ < n. Such an ordering is called an
admissible ordering for (). Now, let k,, k,, ..., k, be an admissible order-
ing of I' with respect to (). Then, according to Section 4, T} is defined on
2.A), T, is defined on Z(o; A), and, in general, T; is defined on
9(0’k oy o A for 1 <t <n.

As' a Q(v)- algebra .(A) is the subalgebra of Z(A) generated by
Ku D, Kui Ny, and {K . It follows that from Green—Ringel
Theorem in 3.10 that we have the canonical Q(v)-algebra isomorphism

(7.1.1) G(A) > D0y, o, A)

by setting u;” = u;, u7 —» u; and K; = K, for all i € I. Therefore, we
identify Z,(A) with (o -+ 0y A) for 1 <t < n along these canonical
isomorphisms.

According to Theorem 4.5, we have the isomorphisms T;: Z,.(A) —
9(0;A) and T : 9.(0;4) > 2.(A) if i is a sink. So by the canonical
isomorphism (7.1.1), we can view T; and 7 as automorphisms of Z.(A).

7.2. Lusztig first defined operators 7;", on any integrable U,(g)-module
V(e = +1); then, he deduced the corresponding automorphisms 7;", of

U/(g) and showed that the 7, satisfy braid group relations. In this

section, we first define an action 7; on all integrable simple modules L(A)
and “L(A) in a global way. Then we give the formula T.(n) for n € L(}),
which is the same as the one defined by Lusztig.

7.3. A weight A € A is said to be dominant if (A,i) > 0 for all i € I.

Given a dominant weight A, let

(7.3.1) h= Lo (A + T2, (A) !
iel iel
+ Y 2.(A) (K, — vD),
iel
where n; = 2(“ ')) and the quotient module
(7.3.2) L(A) = 2:(4) :
J)\

According to the theory of quantum groups, L()) is a simple integrable
module of Z,(A4) and is uniquely determined by A. We denote by =, the
coset of 1, which is a highest vector of weight A.
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We now define an action 7; and 7}, i € I, on integrable simple modules
L()) of 9.(A) with A dominant. Fix any i € I; we define a map T; : L(A)
— L(A) by

(7.33) T(x-m) = T,(x) - uy Y,

for any x € 2,.(A). This is well defined. Indeed, L(A) can be made into a
new Z,(A)-module defined as

(7.3.4) xxn=T/(x) n

for all x €2,(A) and n € L(A). We denote this module by L(A)*; note
that as a space L(A)* = L()A). On the other hand, let n}* = (u; )"y,
Then clearly nf # 0 in L(A)*. If j # i, by Theorem 6.3 we have

L) = T (1) 0w "

r+s= —aij

According to the formulae
Cu Y = YK uH?”

and

(A 9)

(735)  wHuHn = X (=" TS TG
t>0 ¢

< <u; >(sft)<ui+>(rft)n/\

(cf. [L1, 3.4.2]), we see that
Cufy s = T,(Cuf ) )mi

(=) ) Y Y w0,

r+s=—a

ij

If j =i, then
Cufy s =07 Ou YK (uy )"y = 0,
since (ul-_>(”"+1)m = (. Also

— — (8 p, s A — A,
K, mf = T,(K,)nf = p0iroigl = ph wigi
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for any u € Z[1] since n € L(A),,). This means that n{ € L(A) is a
highest vector of weight A. Therefore, there is a unique homomorphism
T, : L(A) = L(M* as 2,(A)-modules such that

Ti(m) =
Because both L(A) and L(A)* are simple,
T,: L(A) = L(A)*

is an isomorphism as desired. One sees that T,(xn) = T.(x)T.(n) for all
x €7.(A) and n € L(A).
In a similar way, we may define another action 7} on L(A). Explicitly,

T/ (x-my) = (= 1) 07T (x)<u; Y,

One can prove that T/ is just the inverse of T.. Indeed,

T/ T(m) = T} (Cu; Y"my )

= T;(<u ") T} ()
= Uiinianii<ui+ >(ni)( _1)nivi7n"<“i7 >(ni)”b\
= (= 1)"v (= 1)K, m, (by (7.3.5))
=,

Similarly, 7,7/(n,) = n,.

7.4. Remark. It is easy to see that
w:ufy »u;y, Cu;yy »uty, and K, - K_;

induce a unique automorphism of Z,.(A4). Let L(A) be an integrable
simple Z,(A)-module with A a dominant weight; we define a new module
“L(A) as follows: the “L(A) have the same underlying Q(v)-space as L(A).
By definition (“L(A), = L(A)_, for any weight. For any u € Z,(A), the
operator u on “L(A) coincides with the operator w(u) on L(A). It is easy
to see that

2.(A)

MY = S Gy + 5, oA 1 5, G A) (K, — o)

b

as 9.(A)-modules. One sees that when 7, is considered as an element of
“L(A), then m €“L(A)_,. Since T is well defined on L(A), T; can be

1 1
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defined on “L(A) in the natural way. Of course, T;(xn) = T,(x)T(n) for all
n €“L(A) and x €2,(A).

7.5. We have constructed the Q(v)-linear map 7, : L(A) — L(A) for any
dominant weight A such that

T(m) = w7 )", and  T(xm) = T,(x) - T(n),

for all x €2.(A) and n € L(A), where A is a dominant weight and 7, is a

20 Now, we have the following theo-

highest weight vector, and r, = =5

rem.

THEOREM. For any integrable simple 2.(A)-module L()\) with A domi-
nant we have

() =T e ) u) ),

a,b,c>0,a—b+c=m

for all n € L(\), and m = zgl’;)

7.5.1. Remark. By a similar discussion, one sees that

Ty(n) = Z Ui—ac<ui+ >(a)<u;>(b)<ui+>(6)n

a,b,c>0; —a+b—c=m

for all n € (“L(M)_, (note that n € L(A),) with m = — 28,’;) In fact,
this is just the another form of () in L(A).

7.5.2. Remark. Given an integrable Z.(A)-module V, it is also an
integrable U, (g)-module defined by xn = 6~ ' (x)n for x € U,(g) and
n € V, where 0 is the isomorphism in (3.10). Now, let n € L()). Then we
have

T(n) = )y vy Y Nt Y u )
a,b,c>0;a—b+c=m
m.om b b—acr(a c
G O R (SO e

a,b,c>0;a—b+c=m
=T/y(n).
This means that the operator 7, on L(A) coincides with the operator 17,
on L(A).

To prove Theorem 7.5, we first introduce some basic lemmas.



236 XIAO AND YANG

7.6. Let
b(m) = ¥ (=1 of" 0y uy ) Y
k=0
for all m > 0. One sees that for all m > r, b(m) = 0 by the quantum

Serre’s relation, where r = — zfii’i")). By Theorem 6.3, b(r) = Ti(<uj‘ ), it is
easy to see that

i)ty y) = vty
since there is no non-trivial extension of V; by V, . It follows that
(7.6.1) b(r)<u )" = v 5 U Y Ob(r).
LEmMMA. We have for all integers m, k > 0,

. +t
(7.62)  b(m)u; YO =Y (—1)’[’" . ]

t=0 i

% Uik(r72m)ft(k71)<u;>(k*f)b(m + t)

k
(7.6.3)  b(m)ui YO =Y [’ —m t]p,—"’(ufﬁ(k_t)b(m — 1)K

t=0 !
Proof.  Let
m
(m) = ¥ (=1) o ORI FD
p=0

for all m > 0. By Theorem 3.10, Egs. (7.6.2) and (7.6.3) are equivalent to
the following, which are given in [Jan, 8.9], respectively,

(7.64)  b'(m)F® = Z( 1 [m+p} K= 2m)=ph=1)
X F& Db (m + p)
L r—m+
(:63)  BmED = T (-1 TP e
x E{Pb'(m — p)K

and we have the result. ||
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7.7. LEMMA. If

Ti(m) = X o7 Y X uH P u

a,b,c>0,a—b+c=s

form e L(’\)w where s = z(f’i"), then

(i,i)
T,(Cu;jdm) = )y o7 Y N YO (Cuyym),
a,b,c>0,a—b+c=s’
where s’ = 2(1‘;?;]') =5 +r.

Proof. By definition we have K?{u; )“n = 0/C=29¢u )y for all
p,c = 0and

T(<u; o) = T,(Cu))Ti(m) = b(r)T(m).
On the other hand, by the formulae (7.6.1), (7.6.2), and (7.6.3), we have
b(r)Ti(n)
_ ¥ 5 b(r) (YO YO Y

a,b,c>0,a—b+c=s

Z Ul_—a(c+r)<ul;>(a)b(r)<ui+>(h)<ul_— >(C)77

a,b,c>0,a—b+c=s

min(b, r)
Z Z Ui—a(c+r)<ui—>(a)uipb<ulﬂ—>(b*P)
a,b,c>0,a—b+c=s p=0
Xb(r — p)KF<u; Yn

min(b,r) ¢

— Z E Z Ui—a(c+r)+p(b+s—20)

a,b,c>0,a—b+c=s p=0 ¢g=0

x<ui>(“)<ui+>(bp)(_1)q[r _Z—i_ CI] Uic(fr+2p)fq(cfl)

L

Xu ) TPb(r —p +q)m

- Z E E(_1)qvi—a(c+r)+]7(b+s)—cr_q(c_1)[7' -p+ q}

a,b,c>0,a—b+c=s p ¢q 9
X (ui_>(a)<ul~+>(b_p)<ui_>(c_q)b(r —p+ q),q’

for all summands a — (b — p) + (¢ — q) =s + h, where h = p — gq. Note
that b(r —p + q) = 0 for g > p. Replace b by b + p and ¢ by ¢ + q.
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Then b(r)T(n) is a linear combinations of terms u; Y “Cu; Y (u; Y b
(r — h)n with a,b,c,h >0 and a — b + ¢ =s + h. The coefficient of
7 Y u Y P%uy Y Ob(r — h)n is equal to

r—h
Z (_1)qU_—a(c+q+r)+p(b+p+s)—(c+q)r—q(c+q—1)|:r -pt q}
i
i

q=0 q

r—nh
= preern=erthbrsh Y (_1)‘1Ul_—q(r—h—1)[r ; h}
i

qg=0

since p=h +qg and a — b + ¢ = s + h. However,

r—h —h
Z (_1)‘1Ul_—q(r—h—1)|:r p } _ 6,_h,0
q=0 @

_ —a(ctr)—crth(b+s+h) _ ,,—
and for h = r, v *") ( ) =y;

b(r)Ti(m) = X o7 Cuy Y Xug Y Y b (0)m,

a,b,c>0;a—b+c=s+r

“. So we get

where b(0) = (u;) and (u;)n IS L(/\)ﬂ,j with s’ = Z(ﬁi_i;’i) =s5+r.
Hence ’

T,(Ku;dn) = > o7 Y O uf Y YO (Cuy ).

a,b,c>0;a—b+c=s'

7.8. LEMMA. Let n € L(AN), with m = % If <u; )m =0, then

_ _ b _ _
Z v; ac<ui >(a)<ui+>( )<ui >(C)(<ui >(p)n)
a,b,c>0,a—b+c=m'

= (= 1) 0P D),

o (i,lL - l’i)
m )

Proof. Note that (u[)“’)n IS L()\)M_pi. Assume that a — b +¢c =m —
2p. We have

<ui— >(a)<ui+ >(b)<ui— >(C)<ui_ >(p),q

_|lctp —\(@y +\(b)y, —\(c+p)
[ 07| s e

where =m—2pand h =m — pwithp,h > 0.

x (—1)1Ui[[c i”Hb T h}i<u;>“’)<u;>‘°*P*”<u?>“’”n-

t>0
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Now, (u;'Y*"n = 0if b # ¢, thus,
<ul_—>(a)<ui+>(b)<ui—>(6)(<ul_—>(p)n)

— (-1 b[C +pL ﬂ;)rp

4

L

<u; >(h)71-
1

However,

+p
b

I &

a,b,c>0;a-b+c=h—p

[ - v

for any p, h > 0 (see [L1, Proposition 5.2.2)); it follows that
Z Ui—ac<ui—>(a)<ui+>(b)<u;>(6)(<u;>(p)n)
a,b,c=0;a—b+c=m’'

= (=)0 D,

7.9. LEMMA. Given n € L(A) if <u)n =0, then T(n) = <ui’>(”)n,

where n = 21
Gy

Proof. We use the induction. By definition, we have
T(m) = Cu; )",
Assume T(n) = (ul—_}(m)n provided {u;/)n =0 with u < X and n €
L(/\) where m = 2(1, _“). It follows that <{u; >(’"H) = (0 since
T.({uj)n) = blu; )“"H)n for some b # 0.

First, by assumption and Lemma 7.8 we have

Ti(n) = ) o7 (Y X uf Y uy Y .

a,b,c>0,a—b+c=m

Now, consider ' = (u; )n with {u;)n’ = 0; clearly, j #i. If n' =0,
there is nothing to verify. If n’ # 0, then we have by Lemma 7.7
Ti(n’) _ Z Ul;ac<ui—>(a)<ui+>(b)<u;>(c) '
a—b+tc=m'

200, —j + n)

G —mtr On the other hand, again by Lemma 7.8

where m’ =
we have

— ! — — b —
@)™ = X o) ) )
a—b+c=m’

Hence T)(n") = {u; Y™ 'q'. The proof is completed. |l
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7.10. Now, we turn to prove Theorem 7.5. Let 2,(i) be the subalgebra
of Z.(A) generated by {u; ), {u; ), and K;*.

L()) can be viewed as an integrable 2.(i)-module by the natural way,
thus L(A) is a direct sum of some simple Z,(i)-modules L(m) with
integers m > 0. Such direct summands L(m) of L(A) can be identified
with

2.(i)
Z(i)<u") + 2 (1) <ui V" + (1) (K, — of")

as Z,(i)-modules for various integers m € N.

Let 0 # n € L(m),,; then {u;)n =0 and T,(xn) = T,(x){u; )"n for
all x €2.(i). It is easy to see that n, {u; )n, (ui‘)(”')n form a basis of
L(m). On one hand,

T,(CurYPn) = T,(uP)Ti(n)  (by (7:33))

(u/ >)(p)<ul-‘ Yy (by Lemma 7.9)

i

2
v/ K_,
= (_l)pUt'p.+pK—pi<u; >(m*17),n
= (=1) P tpr2pm=p)mpm (g =Ny
- (_1)”Ulmp—172+p<ui— >(m—p)n

- ( _ 1).fvlp(h+ D(u[ >(h)”r),

where h = m — p, h, p = 0. On the other hand, combining Lemma 7.8 one
sees that

T,(Cu; Y P'n)
N )y Ufac<uf>(a)<u,-+>(b)<u;>(")(<u;>(p)n).

a,b,c>0;a—b+c=m-2p

This means that for all ' € L(m), with n < m, then

D Y R TR e

a,b,c>0;a—b+c=n

Thus, we have

T,(”)) — Z Ui—ac<ui—>(a)<ul_+ >(b)<ul_— >(C)n’

a,b,c>0;a—b+c=m

where n € L()), and m = ZE:I‘;) The result follows. ||
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7.11. As a special case, if A is finite-type, then 2.(A4) = 2(A) and any
integrable Z(A)-module is a direct sum of some integrable simple mod-
ules L(A) with dominant weights A. Thus, the definition of 7, in 7.3 can be
naturally defined on V. In general cases, the formula in 7.5 provides us
with a definition of the symmetries 7., i €I, in a local way (due to
Lusztig). However, it has an advantage over the global definition of T; in

7.3. Namely it can be used to define 7, acting on every integrable
9.(A)-module.

COROLLARY. Let V be any integrable 9.( A)-module. For any u € Z.(A)
and n € V, we have T(un) = T.(w)T,(n) fori I

Proof.  Apply the slight modification of Lemma 7.7 and the action of
(cf. 74 and 7.5.1). 1

8. BRAID GROUP RELATIONS

8.1. Set a;; = 2((;”l_j)) for i,j € I, where

(i,j) = (dimV;,dimV}).

Then C = (a;)); ;< is a symmetrizable generalized Cartan matrix. There-
fore, a classical result in the Kac—Moody algebra is that (see [K]), if
d(i, j) = a;;a; < 3, then the order m(i, j) of s;s; is finite. Namely

if d(i,j) =0, then m(i,j) =2

if d(i,j) = 1, then m(i,j) =3

if d(i,j) =2,then m(i,j) =4

if d(i,j) = 3,then m(i,j) =6

if d(i,j) > 4, then m(i,j) = .

8.2. Let A be the Cartan datum corresponding to A. Then the braid

group of type A is defined by the generators {o:}, . ; and relations

(8.2.1) g0, = 0y

for i #j € I with m(i, j) < +o factors on both sides, where m(i, j) is the
order of s;s; in W. Namely

(8.2.2) if m(i,j) =2, then 0,0, = o.0;

J J

it m(i,j) = 3, then o0;0;0; = 0;0;0;

it m(i,j) = 4, then o,0;0;0;, = 0,0,0;0;

it m(i,j) = 6, then o;0;0,0,0,0;, = 0,0,0,0,0;0;.
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Note that the second relation yields the classic braid group B(n) for A of
A ,-type. Our main result in this section is the following.

8.3. THEOREM. For any i # j in I such that m = m(i, j) < 4+, then T,
and T, satisfy braid group relations (8.2.2) as operators acting on Z.(A).

Proof.  We will show that T; and T} satisfy the following braid group
relations,

(8.3.1) TT - =TT -,

where we have m = m(i, j) factors on both sides.
It is easy to see that both sides of (8.3.1) coincide on the torus algebra T.
Because (s;5,)""” =1 and s/ = s} = 1 in the Weyl group, therefore
TtT; (Ka) = Ks,vsj'«(a) = Ks]-s,-'"(a) = ];Tt (Ka)
for all @ € Z[I].
Let us first consider the case of rank 2. This means that Eq. (8.3.1) holds
on {u/) and <u;—r>.

The case m(i, j) = 2. Now d(i, j) = 0, hence a;; = a; = 0. This means
that the vertices i and j are not neighbours, so s,(j) =j and s5,(i) = i.
Since TT((ui ) = Tt ) = (u; K, TTut>) = Ty YK,) =
{u; YK;, we have T,T.(Cu;")) = T,T,(Cu;")). In a similar way we get 7,7, =
T;T; as acting on {ui) and (u;—'>.

The case m(i, j) = 3. Now d(i, j) = 1, hence a;; = a; = —1. It fol-

lows that s;5,(i) = j and s;5,(j) =i and &(i) = &£(j). We have

7 7,
Wy = ) = b = i,

thus, T.7.((u;)) = Cu/) and T,T(u;)) =u; ). Also T,T,(Ku;)) =
{u; ), and J}Ti(<uj’>) = {u; ). Since
TIT((u)) = TT((uK,) = () o~ 0K, = (iR,
T () = 1)) = R,
therefore we have T,T,T, = T,T,T; on {ui) and (uji>.
The case m(i, j) = 4. Now d(i, j) = 2, hence a;;a;; = 2, and without

loss of generality, we assume that a;; = —2 and a; = —1. It follows that

s;s;5,(i) =i and s;5;5,(j) = j. We have

+ g + T + L + +
<l/ti—> - <u07/.(,‘)> - <ug_’.0—/(i)> i <ug_jgigj([)> = <u,‘_>



BGP-REFLECTION FUNCTORS 243

and

T; j T;
ity = Cugyg) - CWUgon) = CUaga? = Ui
Thus,
TTTT(Cu)) = T,(Cu; DK;) = u)HK,
TITT () = TIT () K,) = i o Ok, = (K,

Similar calculations show that T,T.T,T, = T,T,T,T; on (u;") and {u/").

The case m(i, j) = 6. Now d(i, j) = 3, hence a;;a; = 3 and we may
assume that a;; = —3 and a; = —1. It follows that s;s;s;s;5,({) =i and
s;8js;5;5,(j) = j. We have

+ L + T + g +
i) = Cugi) = Sugen? = WUsooi)

i

T:
+ ’ + —(yt
- <u0',-a'j0',-o'j(i)> - <uaja'ia'ja'itrj(i)> - <ui+>

and

i I !
Uiy = Cugpn) = Sugoin? = Sgoa)

7 7,
= Ago00)? > Usomein? = (Ui

777

Thus we have T,T;T;T;T;T; = T,T,T;T;T;T; on {u;*) and (u;). So we have
shown Theorem 8.3 in the case of rank 2. To prove the theorem in general,
we should consider the action of T}, i € I, on the integrable modules over
Z.(A).

8.4. Keep the notations as in Section 7. Assume s; s; - s; is a reduced
expression. For an integrable simple module L(A), by the definition in

(7.3.3) and induction, it is easy to see that
Tl_1 ]:‘N(T’)\) — <ui—1>(a1)<ui—2>(az) <ui—N>(aN)m
= YT, - T (),

where a; = 2(s; -+ 5,0, V/Gy, 0y, ay = 2(s; - 5,(05), A/
(iy,i5),...,ay = 2(iy, V) /(iy,iy). Note that a;,a,,...,ay € N.
The following lemma is crucial for the proof of Theorem 8.3.

LEMMA. Let m, € L(A) be the highest vector with dominant . If m(i, j)
< +o, then T.TT; ---(n) = T,T;T, -+~ (x,) where both sides have m(i, j)
factors.
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Proof. We set a =2(- 5;5(i), \)/(i,i). The right hand side has
(m(i, j) — 1) factors s. Note that a € N since -+ s;s; (has m(i, j) factors)
is reduced. One sees that

(m) = <”i_>(a)]} (M)

Recall that 7/((u; )“) = 07K, (u Y for all i € I. We consider the
following cases:

The case m(i, j) = 2. It is trivial since (u[)(u;) = <u]?><ui’>.

The case m(i, j) = 3. Then (i,1) = (j, j). One sees that a = n; since
a = 20s;5;(), V) /G, 1) = 2(j, M /(j, j) = n; (see 8.3). Thus,

(LT (T T(n) = (1) (< YOT T ()
LT (Cul YO )T T T )(TT(my))
( (<) (T7(n)

K <u+>(a)( 1) j fn/<u >(n )77/\
(= 1) 07 (= 1) 0K, by (73.5)

= M-

It follows that T;7;T,(n,) = T,T,T/(n,).

The case m(i, j) = 4 and m(i j) = 6. Then a = n;. This follows from
a =20 s5;55(i), )/, i) and - s;5;5,(i) —l(Se€83) where -+ s.5,5.(i)

] Joivg
has m(i, ]) ~1 factors s.
Thus,

(- TTT)) (T, - (n,))
N
m(i, j) m(i,j)
= (- Tj’Ti’Tj’)(<ui‘>(“)T,—Ti (m))

= ... Tj/Ti/Tj;(<u;>(ﬂ))( T/T T/)( 7—; (”fh))
(77 ()T ()
07K i YO (= 1)o7y Y,

(=1)"0 " (= 1) 0K,
= M-
Hence -+ T,T;T(m) = -+ T,T;T/(n,). The lemma is proved. [
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8.5. PROPOSITION. Let V be any integrable 2.( A)-module. For any i # j
in I such that m(i, j) < + o, the actions of T, and T; on V' (defined in 7.11)
satisfy the braid group relations (8.2.2).

Proof. Let A(i, j) be the full subspecies of (T, d, )) generated by the
vertices i and j, A(i, j) the tensor algebra of (i, j). It is a subalgebra of
A. Therefore Z,(A(i, j)) is a subalgebra of Z,.(A). For any integrable
.(A)-module V, we restrict V to an Z.(A(, j))-module in an obvious
way. Without loss of generality, we assume that A(i, j) is of finite type,
that is, d(i, j) < 3. Then V is a direct sum of integrable hightest simple
(A, j))-modules. So, according to 7.3.3, we can define the linear
operators, denoted by ¢, i €I, on V (as 2.(A(, j))-modules). We first
prove that the linear operators ¢;, i € I satisfy the braid relations (8.2.2).
Indeed, V is generated by a family of hightest vectors as Z.( A(, j))-mod-
ules. Take any u € Z,(A(, j)) and 1, € V to be any highest vector (over
(A, j))). We have by Definition 7.3,

titgty o (umy) = gt e (u) it o (),

Lt e (umy) = gt (w) gt - ().
But we have proved tt;t; ---(u) = t;t;t; ---(u) and t,t;t; -+ (n) = t;t;t;
---(m,) (both products have m(i,j) factors) in 8.3 and 8.4. Therefore,
t;t;t; -+ = t;t;t; --- as linear operators on V. According to Theorem 7.5,
T, =t, on V for any i € I. So we have

]11];7: [— ]}7‘17'/' e
on V, where both products have m(i, j) factors. |
8.6. Now, we turn to prove Theorem 8.3 in general. Let IV be any

integrable 2.(A)-module. For any u € Z,(A) and n € V, by definition
and Corollary 7.11,

TTT, - (0)TTT; -+ (n) = TTT; - (un)
TTT, - (W) TTT, - (n) = TTT; - (un).

Since T,T.T; - :V — V' is an isomorphism, it follows from Proposition 8.5
that T.7.T; --- (w) — T,T;T; --- (u) acts as zero on V. It is well known that if
a €7,(A) annihilates all integrable Z,(A4)-modules, then a = 0. There-
fore, T,T;T; -+ (w) = T,T;T; -+ (u) for any u € Z,(A4), where both products
have m(i, j) factors. Theorem 8.3 is proved finally. |
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