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Abstract

Topological Euclidean gravity is built in eight dimensions for manifolds \&iim(7) ¢ SO(8) holonomy. In a previous work,
we considered the construction of an eight-dimensional topological theory describing the graviton and one graviphoton. Here
we solve the question of determining a topological model for the combined system of a metric and a Kalb—Ramond two-form
gauge field. We then recover the complate= 1, D = 8 supergravity theory in a twisted form. We observe that the generalized
self-duality conditions of our model correspond to the octonionic string equations.
0 2003 Published by Elsevier B.V. Open access under CC BY license.

1. Introduction

All types of superstring theories can be formally obtained by suitable anomaly free untwisting of a topological
sigma-model [1]. This suggests the possibility that supergravities, which arise as low energy limits of superstrings,
can be understood as topological gravities. In particulae= 11 supergravity, which determines all known
supergravities in lower dimensions, could be viewed as a topological theory.

In a previous work we have shown that, both in four [2] and in eight dimensions [3], the Einstein action plus
the Rarita—Schwinger term (in a twisted form) can be obtained by constructing a topological quantum field theory
(TQFT), which implements in a BRST invariant way the gravitational instanton equafitiese constructions
only holds for manifolds with special holonomy, i.8)(2) ¢ SO(4) in four dimensions an&in(7) C SO(8) in
eight dimensions.

In [3], we left open the delicate point of introducing a sector of the eight-dimensional TQFT involving a two-
form gauge field. This case escapes the procedure displayed in [5]. In this Letter, the equations for the two-form
gauge field appear mixed with the one for other fields. The basic idea is the construction of a TQFT for a general
two-tensor field, which is the natural object stemming from the zero slope limit of topological sigma-models.
The symmetric part of this tensor describes the metric, while its antisymmetric part gives the two-form field. We
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1 |n four dimensions, the twist of the complete action including the interaction terms has been discussed in [4].
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use the formalism where the metric is described as a vielbein modulo the Lorentz symmetry. This means adding
and subtracting spurious degrees of freedom, a task which is by now familiar in the context of TQFT's. As in
our previous model [3], we find that the topological theory is defined on manifoldsSpiti{(7) holonomy. In

fact, theSpin(7)-invariant four-form plays a central role in the determination of the topological gauge functions.
Moreover, the presence on these manifolds of a covariantly constant spinor allows for the definition of a twist [3]
which maps some of the fermionic ghosts and antighosts of the topological model on the spiNcesslofb = 8
supergravity. Finally, some ghosts of ghost and ghosts of antighosts can be untwisted into the commuting ghosts of
local supersymmetry, explaining the emergence of local supersymmetry in our model.

2. Including the two-form in topological gravity

In this section we address the question of building a TQFT multiplet for a general tépsaf rank two. We
consider an eight-dimensional manifold with holonomy gr&pim(7) C SO(8). The tensor ., can be split into its
symmetric and antisymmetric parts. If, as in [3], we only consider the symmetric part, which can be interpreted as
a metric, we can construct a TQFT that contains the Einstein action, by using a gravitational octonionic self-duality
equation. In the spirit of [2] we can also introduce a coupling to the TQFT for an Abelian graviphoton, which has
ghost number two. This topological model determines, in a twisted form, a truncatde-cf, D = 8 supergravity
[3]. However, the dilaton, the Kalb—Ramond two-form, one graviphoton and their fermionic superpartners in the
N =1, D = 8 supergravity multiplet [6] escape this construction.

The difficulty of determining a TQFT for the antisymmetric p#&t, of A,, can be appreciated as follows,
following the ideas contained in [5]. The two-for®,, contains 28 components, which give 21 degrees of
freedom modulo the gauge invarianBg, ~ B,,, + ;. A.). The field strength oB,,, is a three-formGz = d B>
containing 56= (g) components. The analysis in [5] indicates that there is no natural way to chose an holonomy
group for the eight-dimensional manifold which allows to write a self-duality equatio fomwhich, (i) would
count for 21 topological independent equations and, (ii), would solve the relativistic wave equation of a two-form.
Moreover, the 28 components of the topological ghost of a two-form cannot be rearranged in eight-dimensional
spinor representations. Rather, to determine a TQFT involving the two-form in eight dimensions, we will see that
it is necessary to combine the Lorentz invariance and the topological invariance of the two-form, and write self-
duality equations that mix the dilaton, the eight-bein and the two-form. That this is not only possible, but a useful
complement of the construction of [3] appears immediately from the fact that there were 56 components for the
antighost for the vielbein, more than the 28 degrees of freedom it describes.

To start with, we enlarge the question of building a TQFT Agy, into that of building a TQFT for a vielbein
e, alLorentz ghos2¢” and a two-forma,,,,,?

A = Ay © A — (eﬁ, %, Buy).

The Lorentz symmetry can be used to set to zero the antisymmetric part of the eﬁaﬁrT)he number of degrees
of freedom of the system ,, = Ay, @ Ay is indeed equal to that of the?, B, 2¢°) system, when the
components are algebraically counted, since the Lorentz ght¥stounts negatively. Eventually, we will interpret
Auvy @s a metrigg,,,,, assuming that;; is an invertible matrix.

In contrast with our previous work, graviphotons are not separately introduced. Here, these fields naturally
appear as ghosts for the topological ghosts of the two-fBpm An analogous situation holds for the dilaton,

2 Throughout the Letter the Latin indicesb, ... denote flalSO(8) tangent space indices, apdv, ... are eight-dimensional world indices.

3 Strictly speaking, the two indices of the vielbein represent components in different spaces, so that one can only speak of the antisymmetric
part ofefL once a background vielbein has been chosen. This is not the case for other fields with the same indices as the vielbein, since the
vielbein is then available to relate the two spaces.
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which is aSpin(7)-invariant part of a ghost of ghost for the vielbein. Having obtained a truncation of supergravity
in [3] is now understood as having consistently retained a part of the topological BRST multiplet.

Eventually, we will recognize that we have a TQFT with an equivariance with respect to the Larentz
diffeomorphism symmetry, whose gauge fields are the spin conne@ﬁﬁ)rand the vielbeinej;. Moreover,
our topological model displays an equivariance with respect to the vector gauge symmetry of the two-form,
B2 ~ Bz + d A1. Finally, local supersymmetry will show up as a consequence of the symmetry of the topological
ghost of the vielbein, defined modulo reparametrizations. Shortly speaking, the construction of a TQFT for a two-
tensor yields all the fields of supergravity. As we will discuss in the next section, the topological gauge functions
are given by self-duality equations which mix the symmetric and antisymmetric parts of the two-tensor.

Let us now proceed to the detailed construction of the BRST topological multiplets. Geometry determines the
set of ghosts and our first guess for the complete set of fields f&&8) invariant TQFT with a vielbeinzz,

a two-formB,,, and a spin connection/“j’ is:

ea

"
lplil)a a}ifl)a
P@a (D(O)a’ bff))a @ (—a
n(l)a ﬁ(—l)a
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For the sake of clarity, we have made explicit (as an upper index) the ghost number of the fields in the “pyramid”
that describes the BRST topological multiplets. We could introduce a bigrading that separate the ghost number
and antighost number, but this would make heavier the notations. In the above pyramids, the BRST symmetry
acts on the south-west direction. The fields which are not on the left edge of each pyramid are topological pairs
made of antighosts and their Lagrange multipliers. They satisfy trivial BRST equétidatsially, each one of

the fields that are labeled by a letteor », with various indices, is a bosonic or fermionic Lagrange multiplier
field, and is essentially equal to the BRST variation of the antighost that is located at its upper right position, e.g.,
sll/,E;l) = b,(f)u) 4.0, 580D = b%?)_l) + ... As an exception to this notational rule, we find useful to define the

fields lplﬁl) and@ﬁ_l) as the fermionic Lagrange multipliers that stem from the BRST variation of the commuting
ghosts of ghostd Y andA{® respectively, i.esAY = wP + ... andsA;? =@ P ...

4 More precisely, all equations for the antighosts appearing in our field spectrum are of thégtype., SA = Log + S5g with
sX =§X+,C§X+5_QX.
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The fields which carry the essential geometrical information are on the left edge of the pyramids. Their
topological symmetry is defined as:

1 b b b _ §Qab b b
seZ:lI/;E )a_ e, + Lgey, s =II//£ Jab 1 p, Q9 + Lewy,
1 by (Db = (2)ab b
slll/i Ja— _ 4 lI//E b _ Lope), + @2 e, + LWy,
slpﬂiZ)ab — _Qaclp(Z)cb + Dﬂ@(Z)ab _ Ecbwzb + [:g lI,/EZ)ab’
s¢(2)a — £§¢>(2)a _ Qacd)(Z)a’ sa(Z)ab — _Qaca(Z)cb + £§5(2)ab’
By =W\Y + LBy, sW) =LoBuy + 0, AT + LY,
sAP=0,R® +£;A?,  sR®=LRP,
ssu — féLd)(Z)a _i_évavéu, sQab — 5(2)01) _ QaCch + ﬁg.Qab. (2)
In the variation ofé#, the inverse of the vielbeiej, appears and we denote it #$. We have not introduced
ghostsvlil) and ghost of ghost:? for the gauge invariance of the two-form gauge field, with the standard BRST
symmetry OBy, = a1, V., QVAY = 8,m@, 0m® =0, which would yieldsV,"’ = A" andsm® = R®.
We choose instead to write equivariant BRST transformations with respect to this symmetry. This implies that
the square of the BRST transformations on the figld is not zero, but corresponds to a reparametrization with
parameter® and an Abelian transformatioB,,, — By, + 9, Ay}, With A, = Aff). The BRST operator is
thus nilpotent only modulo gauge transformations for the two-form gauge field. Actually, the topological gauge
functions we will use in Section 3 only involve the curvat@e = d B», so there is no need to give the details
of the gauge symmetry of the two-form. We could further &ét= 0, which would yield a BRST symmetry
equivariant with respect to the reparametrization. In this case, the BRST symmetry would be nilpotent also modulo
reparametrizations along the vector ghost of ghes#s@<. As for the Lorentz invariance, we will instead carefully
keep the Lorentz ghost dependence. Eventually, the corresponding gauge functions will be equivariant with respect
to local Lorentz transformations f&@in(7) c SO(8).
There is anU (1) invariance for the fieldyflil) and q_/lfl), Also for this invariance we prefer to work with an

equivariant BRST operator, and we do not write explicitly the related Faddeev—Popov ghests? , s¢ = ¢©
in the BRST transformations

AP =TI LA AR =y + LD,

s =9,00+ L0t s =08,09 1+ L0,

50O =100, s@@ =L 0P,

s = £,50 1 @, s@CD =Y 4 £, 30D,

sn® = £, $iD = L7, 3)

If we only retain aSpin(7) c SO(8) invariance, we can redistribute the degrees of freedom of the antighosts and
Lagrange multipliers of the BRST multiplets. In this way, we shall be able to d&fimg7) c SO(8) invariant
topological gauge functions, which is the key for building the eight-dimensional TQFT. Using the decomposition
of aS0(8) valued two-formM@® = pab™ + M inthe Soin(7)-invariant representations 287 @ 21, we get

et
©
lp;il)a q—/&fl)ab_ )-((,1)0
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¥ D, pDab™ 7(~Da
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We do not reproduce the geometri¢aand 292 which are not modified. Let us now clarify the role of the various
topological fields and their supergravity interpretation. To obtain the relevant set of propagating fields, a certain
number of trivial gauge fixing must be done, which give algebraic terms of thestypR) = (sA)B + A(sB) =

¥4 A+ AWg. Such terms eliminate quartets of the foAmy,, B, ¥ in a BRST invariant way by their algebraic
equations of motions. After some thinking, one understands that the followéxgct terms are needed

s g —2)ab~ ( Dyab— Qab’)] _ ﬁ(—l)ab* (ﬁ(l)ab* . _Qab*) + g(—z)ab*qg'(z)ab*,

5

vt

[lI/( 1)¢(0)ab+eu ] l,[/( 1)~ (l)ab*ep,e +b(0) ¢(O)ab+ Meb
s[

‘I/( 1)A(O) ] — l]/( l)w(l) +b(o) A(O) ,
uv v j7Y
S[SEHAO] =5 Dy D 4 pQ 4O, (5)

The fields® @, -2 ;-1 are also eliminated, together with the quartets4{f . The remaining fields are then:
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We will shortly see that the componeﬂﬁr}i?+ of the topological ghost of the two-form,,, is gauge fixed in an

algebraic way, leaving onlyflg)_ as a propagating field.
Let us analyze the fields that remain after these eliminations. The fields that will a play a role as the classical
fields of supergravity are:

bosons: €%, 0, By, AP, A2,
fermions: (@M, gD D) (x D @ Dabm 5 @), (7)

Indeed, these are nothing but the fields of she- 1, D = 8 supergravity multiplet, up to a twist. The most striking
point of our construction is that thepological ghosts of ghosts of the tvvo-form,ff) andAf[Z) can be interpreted

as the propagating graviphotons 8f= 1, D = 8 supergravity. Thé&pin(7)-scalar ghost of ghost, which has

ghost number zero, can be interpreted as the dilaton. The corresponding topological ghosts can be recognized as
the twisted version of the fermionic part of the spectrum. Modulo some field redefinitions that we will discuss in
detail in the following section, the twisted gravitino can be identified with the gmaél]%", %’l)"bf, Qﬁ’l)), and

the twisted dilatino with(x D¢, w Mab™ 1)y We remark that the BRST variatiom; 2 = ¥~ appears in

the twisted gravitino. This is in agreement with the analysis of [2,3], where we found that at least one graviphoton
with nonzero ghost number is needed both in four and eight dimensions in order to int@ﬁﬂf&eAs we will
describe in the following section, the possibility of havifgin(7) decompositions allows one to do all relevant
maps of tensors upon spinors.

The fields of the topological multiplets not appearing in Eq. (7) will be interpreted as the ordinary Faddeev—
Popov ghosts and antighosts of the supergravity. The infinitesimal symmetry transformations of supergravity will
be deduced from the topological BRST equations. After the eight-dimensional untwisting, one gets from Eq. (6)
the propagating fieldg® @4, ¢ @ab— ¢ ©) (§(=2a GOab— GOy gnd (5¢-Va nDab™ D) These can be
interpreted respectively as the twisted version of the Faddeev—Popov spinorial ghosts and antighosts for local
supersymmetry and the corresponding Lagrange multipliers. The invariance of the untwisted theory therefore
displays a variation of the vector-spinor by a derivative of these ghosts: this is presumably sufficient to ensure
the full supersymmetry of the untwisted action. This is different from the case of topological Yang—Mills theory,
where the complete supersymmetric invariance of the untwisted action is not automatic.

3. Thetopological action and its correspondence with supergravity

After having obtained the relevant field spectrum for the TQFT, the task is of finding the topological gauge
functions.

A natural extension of the topological gauge function used in [3] in the presence of the two-foriA fiels
given by imposing the octonionic self-duality condition

1
~ab abced ~cd
- =0 =0, 8

D) 5 D) (8)
on the extended connection

d)ab = CUab _ G?bec, (9)
with torsion given by

T = De = Zcebec. (10)

The condition (8) has to be considered together with the gauge function

do+2% (2 AG3) =0 (11)
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involving the dilaton field. We thus write the topological action
Lep= s[a(il)m‘i (b(o)dr + " (e) — GZZF ed)vab + X(il)a (bt()O) + dq0 + -Qabchbcd)]v (12)

where we introduced the volume formsg,, ., = ﬁeal_._aseawb...eas. This topological action, after

integration on the Lagrange multiplieb$9<?~ andbéo), gives kinetic terms for the graviton, the two-form and
the dilaton of N = 1, D = 8 supergravity.
First of all, the Einstein Lagrangian, written with the curvat®&# of the extended connectiah, is equal to
the sum of the ordinary Einstein—Hilbert Lagrangian plus the squared norm of the field-sttength
L= %Rabvab = %Rabvab - %
The Bianchi identity on the field strengthg and (10) imply that

GGy, (13)

R%epe, + TT* =0, (14)
By multiplying (14) by the self-dual four-forn we get

L ped RV = 2,0 GO GOy (15)

2 abcd = Smnpg ITmnY pq V-
The relation (15), together with tHgpin(7) decomposition

~ ~ ~ 1 ~ ~ ~

R = Reb" 4 RV >Qabea K = Red” — 3R, (16)
allows for the elimination oR%?" in the Lagrangian (13)

L 1o o~ 1
L= ERabvab =2R v, + Eszabcdcgbcgdv

S e - 1
= —43" & Vap + 20 TVape + 2d (" Vap) + Egabcdcgb(;gdv, (17)

where in the last identity we used thBt*” = D@ — 269¢” &®" and integrated by parts the term B> .
By comparing (17) with (13) and using (10) we can finally write the identity

— b 1 . - _
40" &7 Vap = Len = 3G GV + Labea G G + 4™ Goy Ve + 24 (0" V), (18)
where we defined the Einstein—Hilbert action&s = %R“bvba. Let us consider now the square of the gauge

function (11). By using the identity2,.,24/%" = (6s,/8"1 — 921/%5")) is easy to find that
1 bed 2 2 2 ab ~ab ab ~cd 2 a bed
0,0 + ggabch = (0,0)° + ch G.” — Qabchf Gf + éa (U.Qabch ) (29)
By summing (18) and (19) (multiplied by the suitable volume farinwe finally get
o 1 2
A0%¢ (I)Cb Vab+ <3a(7+ §.Qabchde) Vv

1 _
= LEH+ [(800)2 + EGZ”GZ”]V + 40" G¢, V. 4+ boundary terms (20)
This identity deserves some attention, since it shows that the sum of the 56 independent terms contained in
|Gape(B)|?, plus those contained in the Einstein action can be obtained as a topological gauge-fixing term,
stemming from 64 Lagrange multipliers.
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We are now able to compare the topological terms (20) with the bosonic part of the act\oe-df, D = 8
supergravity. In the spirit of topological field theory, we can restrict our attention on the kinetic terms for the fields,
which simplifies considerably the comparison. In fact, the basic requirement on the gauge-fixing conditions is that
they must give a good definition for the propagators of the fields. Interaction terms can be then always added as
BRST exact terms in order to get agreement with the complete twisted supergravity action. The first three terms
of the topological action (20) correctly reproduce the kinetic terms for the graviton, the two-form and the dilaton
of N =1, D = 8 supergravity. Concerning now the mixed temfff (e)Gape in (20), it can be reduced in the
quadratic approximation to

aueﬁgabchbcw (21)

This can be done by imposing ti8pin(7) invariant Lorentz gauge conditim{f Vbl = 0, whereV?* is an
inverse 8-bein chosen as a reference systdie expression (21) can be absorbed in the gauge-fixing term for
the reparametrization invariane€&*d, g,.»,). We thus conclude that the topological action (20) coincides with the
bosonic part of the supergravity action in a givgain(7)-invariant Lorentz gauge. This is not surprising since the
condition (8) leaves only a residugbin(7) symmetry group. It is remarkable that the kinetic energies of both the
graviton and the two-form stem from the gauge-fixing term (8) that only comes from the topological freedom in
the vielbein.

We now pass to the fermionic sector. The BRST variation of the first line in (12) gives part of the Rarita—
Schwinger action, as in [3]. Notice that the conditidﬁv”]_ﬂ = 0, which must be enforced by the BRST exact
term s(ﬁ[”b]fe}fvbr“), yields the condition2!4?1” = —W,E"ebr“, and ensures th&in(7) invariance of the
fermionic part of the contribution of,, 5 to the Rarita—Schwinger action. There is actually a compensation between
the BRST variations 0&?*” (¢) and G“” (B), which is compulsory to enforce gauge invariance, sint& (e)
transforms as a connection for Lorentz transformations with self-dual paraméter

To determine the complete Rarita—Schwinger action, we must adg ¢ahe following term, as in [3]:

-2 1
Ly, =s [3[MA517)‘1’[(M)”€31]~ (22)

Looking at the fermionic terms, usingd; 2 = &Y, (@ P, @{7Y*" &~y can be identified as the twisted
gravitino, with 8 chiral and 8 antichiral components, as in [3].
To determine the propagation & =2 we add:

1 (—2 2 2 1 -1
S[‘I’;Ev)a[uAu] )] = 3[#‘41(;])8[#‘41(;] = W;Ev)a[ﬂwv(] ). (23)

This identifiesAfLﬂ) as the two graviphotons oN = 1, D = 8 supergravity. Notice that among the two
graviphotonsAf[Z) andA,(f), only the latter one has a “topological” transformation, singé 2 = Ll_/,ﬁ_l) while
sA? =9, RD. This is in agreement with the twisted supergravity transformations.

Part of the difficulty of this work was to understand the role of the ghost ﬂgﬁ]d On the one hand it is
the field that generates by its ghost of ghost symmetry the second graviphoton of the supergravity. On the other
hand, in supergravity, the Kalb—Ramond two-form only sees local supersymmetry through the gravitino and the
dilatino, and it is challenging to uncover this from topological invariance. This leads to the conclusion that not all

the components oﬁﬁ) are independent propagating fields. Omﬁ)_ survives as an independent field stemming
from the topological invariance of the two-form. To enforce the other componenké%bﬁn a BRST invariant

5 In the physicist language, this means that one uses the Lorentz invariance to impose that 7 of the compahesatsisi in aSpin(7)
invariant way. Eventually, the rest of the 21 Lorentz degrees of freedom can be used to enfoa’getm:at symmetrical & 8 matrix, that is

ed = Vb (sab 4 pab), wheren“? is symmetrical inz andb. Then, there is a one-to-one mapping between the metric and this matrix.
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way, we consider the following action, that exhausts the ghost of ghost symmetry in the Lorentz sector:

s[eé/,eza(—Z)cd‘*' (WIE‘J;) _ l,[/(l)aea])] — eé/,e;fi(—l)cd‘*' (l[/(l) _ ‘I’(l)aeﬁ]) + 5ab+(a[aA§3) _ 5{(57) 4. ) (24)

m v v m

This gauge-fixing allows one to identify '}, = (¢ . . If we define

v

@ _ @ Da ja
Y= Xy + ¥ e

[u “v] (25)

thenxfllu), andy® = so are eight fermionic variables that can be identified with a twisted chiral component of the

dilatino. x ~D* determines by twist the other chiral component. Moreover, Eq. (24) accomplishes the elimination
of the ghost of ghost dependence in the Lorentz sector, by yielding an algebraic equation of modéHAor
and® 240" in apin(7) invariant way.

Let us summarize the mapping between the fermionic degrees of freedom of the topological action defined by
(12)—(24) and that oN = 1 supergravity. On a manifold witBin(7) holonomy there exist a covariantly constant
spinor (of norm one},® which can be used to redefine as in [3] the gravitinox) and the dilatina(x, x) of
N =1, D = 8 supergravity &s

A=W, A=Ue+ T ye, (26)
X=xv%,  x=xe+x"" vae. (27)

On the Lh.s. of (26), (271, 1) and (x, x) are spinors of opposite chiralities. The eight-dimensional gamma
matricesy, acts on spinors of definite chirality. Notice that the identification (25) implies the appearance in the
topological action (12) of the mixed kinetic terngs® a, x*” ¢?V,;,, coming from the BRST-variation of the

first line in (12), andx?$2.pc40» ¥4, cOming from the BRST-variation of the second line. In order to recover
these terms from the twisted supergravity theory we have to impose the field redefidifiors ¥;' + X"

and ¥eb” — gab™ 4 sle 317 Moreover, since for the bosonic sector the equivalence of the topological and
supergravity actions is valid only in a fixegin(7)-invariant Lorentz gauge, we expect that also some gauge-
fixing terms of the same kind are involved in the comparison of the fermionic part. From Egs. (26) and (27) we see
that, modulo the above field redefinitions, the gravitino is mapped to the figlélsl, ¥ ) of the topological
model, while the dilatino is mapped to the fieldg®, x, x*").

What we have found is interesting. The topological gauge functions are such that the BRST transformation in
the effective topological action ferandB is:

sef = lp}il)a + Qabeﬁ o, By, = W[(:)”eﬁ] + X;}) 4ol (28)

Only the symmetrical part otfflﬁl)" is involved inse, while the Lorentz ghos2?® allows one to put to zero
the antisymmetrical part of;. This explains how the supersymmetric transformation law of the two-form in
the supergravity framework can be interpreted in a topological way, using a suitable gauge function for the
topological invariance. What actually happens is that, when one twists the gra¥jtirnoto lI/,El)“, and defines

Uflﬁ) = eavllqil)”, thenllf{(ulz} andllf[(ulzl are respectively the topological ghosts of the two-fdtm and of the metric
guv- Here, the mapping between the spinors is not linear, since it involves various contractions by the vielbein. This
a important distinction with the case of the Yang—Mills TQFT, where the mapping is a linear transformation.

Some extra topological functions are needed in order to fix the symmetries of the gauge conditions used
so far. These functions exhaust the remaining fields of the BRST topological multiplets. Let us briefly sketch

6 This spinor can be used to define the self-dual four fornas.q = &? vapeas [7]-
7 Similar results concerning the twist 8f = 1, D = 8 supergravity have been obtained by P. de Medeiros and B. Spence.
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them. To take care of the gauge invarianceﬁ,ﬁfl)”bf, which follows from the gauge functions, we redefine

bff’)”b* — bff’)”bf + alLd?(O)“b*. Then, to gauge fix the local supersymmetry, which pops up as the gauge invariance
of the topological ghosts, we add, as in [2,3]

Lanosts= s[v/g (22D, @V + 0@ p, g™ 4 ¢ @y, g ()], (29)

The role of this redefinition 0b?’” has been analyzed in [2,3]. It ensures the propagation of thedié?™ .
The expression of this action identifieg @4, @ @ab— e ©) (§(-2a G Oab— GO) and (7(-Da yDab™ ;D))
as the twisted version of the Faddeev—Popov spinorial ghost and antighosts for local supersymmetry, and their
fermionic Lagrange multipliers, respectively.
We also use the topological gauge freedom of the spin connesfforo eliminate this field in terms of, by
mean of the term

s[lIN_/(_l)abeb A *Ta], (30)

wherexT is the Hodge dual of the torsidh = de 4+ w A e. This gauge fixing, which can be improved by changing
T4 — T* + chebec, also trivially eliminates the dependence of the action upon the topological Lorentz ghosts

~ =~ (=Dab . . . . . . . . .
Ll/lﬁl)"b andy, ¢ , which disappear by their algebraic equations of motion. One must recognize that introducing

the Lorentz symmetry is extremely useful, although most of its ingredients are eventually eliminated.
As for the fieldsS® and R(—3), they are used to fix the ordinary gauge symmetryA6f2 and A@ by the
action

s[sPa, A2 + RTV5,A42]. (31)
To impose that the vielbein is a symmetrical matrix, and eliminateztends2 dependence, we just add:
s[@P b v = G (@ 4 ) b b v, (32)

keeping in mind that we had already used a te[nﬁ“b_eZV““]. After expansion, and a few field redefinitions,

one gets thaR4” and$2¢” are eliminated by Gaussian integration. As said above, this necessitates the introduction
of an inverse vielbeitV*# as background.

Last of the last, we must addé —1# dvguv] to fix the reparametrization invariance.

The gauge-fixing of the gauge symmetries of topological gauge functions could have been done in a much more
refined way, using the technology of equivariant cohomofb@iis is a technicality that we have chosen not to
present here. It would distract us from our main result, that is, we have finally end up our task of building a TQFT
for the Kalb—Ramond field,, within the context of topological gravity. The result is that the standard TQFT
procedure has lead us to a twisted versioef 1, D = 8 supergravity.

It is worth noticing that the topological gauge functions on the extended connection (8) and on the dilaton (11)
are the same appearing in the octonionic superstring equations [9]. By coupling our model with a non-Abelian
topological Yang—Mills theory, as it is defined in [7,8], one could thus obtain a topological theory which effectively
describes the transverse properties of the octonionic superstring.

We believe that it will be interesting to study the possible dimensional reductions of the 8-dimensional
topological gravity. This idea has already proven to be quite useful in the simpler case of the topological Yang—Mills
theory. The reduction to seven dimensions of the octonionic self-duality conditions on the spin connection is of
relevance for manifolds with (weakj, holonomy [10]. The study of the dimensional reduction of the generalized
self-duality conditions (8) and (11) could give a more general description of manifold€iaigiructure.

8 As remarked in the previous section, the equivariance is with respect to reparametrizgtios) c SO(8) Lorentz invariance and
two-form gauge symmetry.
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Moreover, one may investigate the possibility of getting a generalization of the Seiberg—Witten theory involving
gravity. Generalizing the flat space analysis of [7], this theory could be derived as an adequate dimensional
reduction in four dimensions of the 8-dimensional topological gravity. Further dimensional reductions can give
interesting models in 2 and 0 dimensions.

Acknowledgements

We thank P. de Medeiros and B. Spence for useful discussions. A.T. is supported by a Marie Curie fellowship
under contract No. HPMF-CT-2001-01504.

References

[1] L. Baulieu, M.B. Green, E. Rabinovici, Nucl. Phys. B 498 (1997) 119, hep-th/9611136;
L. Baulieu, M.B. Green, E. Rabinovici, Phys. Lett. B 386 (1996) 91, hep-th/9606080.
[2] L. Baulieu, A. Tanzini, JHEP 0203 (2002) 015, hep-th/0201109.
[3] L. Baulieu, M. Bellon, A. Tanzini, Phys. Lett. B 543 (2002) 291, hep-th/0207020.
[4] P. de Medeiros, B. Spence, hep-th/0209115.
[5] L. Baulieu, C. Laroche, Mod. Phys. Lett. A 13 (1998) 1115, hep-th/9801014.
[6] A. Salam, E. Sezgin, Phys. Lett. B 154 (1985) 37.
[7] L. Baulieu, H. Kanno, I.M. Singer, Commun. Math. Phys. 194 (1998) 149, hep-th/9704167.
[8] B.S. Acharya, M. O’Loughlin, B. Spence, Nucl. Phys. B 503 (1997) 657, hep-th/9705138.
[9] J.A. Harvey, A. Strominger, Phys. Rev. Lett. 66 (1991) 549.
[10] A. Bilal, J.P. Derendinger, K. Sfetsos, Nucl. Phys. B 628 (2002) 112, hep-th/0111274;
A. Bilal, S. Metzger, hep-th/0302021.



	Supergravity and the knitting of the Kalb-Ramond two-form  in eight-dimensional topological gravity
	Introduction
	Including the two-form in topological gravity
	The topological action and its correspondence with supergravity
	Acknowledgements
	References


