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Abstract

Topological Euclidean gravity is built in eight dimensions for manifolds withSpin(7)⊂ SO(8) holonomy. In a previous work
we considered the construction of an eight-dimensional topological theory describing the graviton and one graviphot
we solve the question of determining a topological model for the combined system of a metric and a Kalb–Ramond t
gauge field. We then recover the completeN = 1,D = 8 supergravity theory in a twisted form. We observe that the genera
self-duality conditions of our model correspond to the octonionic string equations.
 2003 Published by Elsevier B.V.

1. Introduction

All types of superstring theories can be formally obtained by suitable anomaly free untwisting of a topo
sigma-model [1]. This suggests the possibility that supergravities, which arise as low energy limits of supe
can be understood as topological gravities. In particular,D = 11 supergravity, which determines all know
supergravities in lower dimensions, could be viewed as a topological theory.

In a previous work we have shown that, both in four [2] and in eight dimensions [3], the Einstein actio
the Rarita–Schwinger term (in a twisted form) can be obtained by constructing a topological quantum field
(TQFT), which implements in a BRST invariant way the gravitational instanton equation.1 These construction
only holds for manifolds with special holonomy, i.e.,SU(2)⊂ SO(4) in four dimensions andSpin(7)⊂ SO(8) in
eight dimensions.

In [3], we left open the delicate point of introducing a sector of the eight-dimensional TQFT involving a
form gauge field. This case escapes the procedure displayed in [5]. In this Letter, the equations for the t
gauge field appear mixed with the one for other fields. The basic idea is the construction of a TQFT for a
two-tensor field, which is the natural object stemming from the zero slope limit of topological sigma-m
The symmetric part of this tensor describes the metric, while its antisymmetric part gives the two-form fie
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1 In four dimensions, the twist of the complete action including the interaction terms has been discussed in [4].
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use the formalism where the metric is described as a vielbein modulo the Lorentz symmetry. This mean
and subtracting spurious degrees of freedom, a task which is by now familiar in the context of TQFT’s
our previous model [3], we find that the topological theory is defined on manifolds withSpin(7) holonomy. In
fact, theSpin(7)-invariant four-form plays a central role in the determination of the topological gauge func
Moreover, the presence on these manifolds of a covariantly constant spinor allows for the definition of a t
which maps some of the fermionic ghosts and antighosts of the topological model on the spinors ofN = 1,D = 8
supergravity. Finally, some ghosts of ghost and ghosts of antighosts can be untwisted into the commuting
local supersymmetry, explaining the emergence of local supersymmetry in our model.

2. Including the two-form in topological gravity

In this section we address the question of building a TQFT multiplet for a general tensorAµν of rank two. We
consider an eight-dimensional manifold with holonomy groupSpin(7)⊂ SO(8). The tensorAµν can be split into its
symmetric and antisymmetric parts. If, as in [3], we only consider the symmetric part, which can be interpr
a metric, we can construct a TQFT that contains the Einstein action, by using a gravitational octonionic self
equation. In the spirit of [2] we can also introduce a coupling to the TQFT for an Abelian graviphoton, whi
ghost number two. This topological model determines, in a twisted form, a truncation ofN = 1,D = 8 supergravity
[3]. However, the dilaton, the Kalb–Ramond two-form, one graviphoton and their fermionic superpartners
N = 1,D = 8 supergravity multiplet [6] escape this construction.

The difficulty of determining a TQFT for the antisymmetric partBµν of Aµν can be appreciated as follow
following the ideas contained in [5]. The two-formBµν contains 28 components, which give 21 degrees
freedom modulo the gauge invarianceBµν ∼ Bµν + ∂[µΛν]. The field strength ofBµν is a three-formG3 = dB2
containing 56= (83) components. The analysis in [5] indicates that there is no natural way to chose an hol
group for the eight-dimensional manifold which allows to write a self-duality equation forG3, which, (i) would
count for 21 topological independent equations and, (ii), would solve the relativistic wave equation of a two
Moreover, the 28 components of the topological ghost of a two-form cannot be rearranged in eight-dime
spinor representations. Rather, to determine a TQFT involving the two-form in eight dimensions, we will s
it is necessary to combine the Lorentz invariance and the topological invariance of the two-form, and wr
duality equations that mix the dilaton, the eight-bein and the two-form. That this is not only possible, but a
complement of the construction of [3] appears immediately from the fact that there were 56 components
antighost for the vielbein, more than the 28 degrees of freedom it describes.

To start with, we enlarge the question of building a TQFT forAµν into that of building a TQFT for a vielbein
eaµ, a Lorentz ghostΩab and a two-formBµν ,2

Aµν =A{µν} ⊕A[µν] → (
eaµ,Ω

ab,Bµν

)
.

The Lorentz symmetry can be used to set to zero the antisymmetric part of the matrixeaµ.3 The number of degree
of freedom of the systemAµν = A[µν] ⊕ A{µν} is indeed equal to that of the(eaµ,Bµν,Ω

ab) system, when the
components are algebraically counted, since the Lorentz ghostΩab counts negatively. Eventually, we will interpr
A{µν} as a metricgµν , assuming thateaµ is an invertible matrix.

In contrast with our previous work, graviphotons are not separately introduced. Here, these fields n
appear as ghosts for the topological ghosts of the two-formBµν . An analogous situation holds for the dilato

2 Throughout the Letter the Latin indicesa,b, . . . denote flatSO(8) tangent space indices, andµ,ν, . . . are eight-dimensional world indices
3 Strictly speaking, the two indices of the vielbein represent components in different spaces, so that one can only speak of the anti

part of eaµ once a background vielbein has been chosen. This is not the case for other fields with the same indices as the vielbein
vielbein is then available to relate the two spaces.
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which is aSpin(7)-invariant part of a ghost of ghost for the vielbein. Having obtained a truncation of superg
in [3] is now understood as having consistently retained a part of the topological BRST multiplet.

Eventually, we will recognize that we have a TQFT with an equivariance with respect to the Lore×
diffeomorphism symmetry, whose gauge fields are the spin connectionωab

µ and the vielbeineaµ. Moreover,
our topological model displays an equivariance with respect to the vector gauge symmetry of the tw
B2 ∼ B2 + dΛ1. Finally, local supersymmetry will show up as a consequence of the symmetry of the topo
ghost of the vielbein, defined modulo reparametrizations. Shortly speaking, the construction of a TQFT fo
tensor yields all the fields of supergravity. As we will discuss in the next section, the topological gauge fu
are given by self-duality equations which mix the symmetric and antisymmetric parts of the two-tensor.

Let us now proceed to the detailed construction of the BRST topological multiplets. Geometry determi
set of ghosts and our first guess for the complete set of fields for anSO(8) invariant TQFT with a vielbeineaµ,
a two-formBµν and a spin connectionωab

µ is:

eaµ

Ψ
(1)a
µ

�Ψ (−1)a
µ

Φ(2)a Φ(0)a, b
(0)a
µ

�Φ(−2)a

η(1)a η̄(−1)a

ωab
µ

Ψ̃
(1)ab
µ

�̃Ψ (−1)ab
µ

Φ̃(2)ab Φ̃(0)ab, b̃
(0)ab
µ

�̃Φ (−2)ab

η̃(1)ab ¯̃η(−1)ab

Bµν

Ψ
(1)
µν

�Ψ (−1)
µν

A
(2)
µ A

(0)
µ , b

(0)
µν A

(−2)
µ

R(3) S(1),Ψ
(1)
µ

�S (−1), �Ψ (−1)
µ

�R(−3)

b2
S(1)

,Φ(2) b
(0)
�S (−1) ,

�Φ(0),Φ(0) b
(−2)
�R(−3),

�Φ(−2)

η(1) η̄(−1)

(1)
ξ(1)µ ξ̄ (−1)µ

b(0)µ
Ω(1)ab �Ω(−1)ab

b(0)ab

For the sake of clarity, we have made explicit (as an upper index) the ghost number of the fields in the “py
that describes the BRST topological multiplets. We could introduce a bigrading that separate the ghost
and antighost number, but this would make heavier the notations. In the above pyramids, the BRST sy
acts on the south-west direction. The fields which are not on the left edge of each pyramid are topologic
made of antighosts and their Lagrange multipliers. They satisfy trivial BRST equations.4 Actually, each one o
the fields that are labeled by a letterb or η, with various indices, is a bosonic or fermionic Lagrange multip
field, and is essentially equal to the BRST variation of the antighost that is located at its upper right positio
sΨ

(−1)
µν = b

(0)
µν + · · · , s�S(−1) = b

(0)
�S(−1) + · · · . As an exception to this notational rule, we find useful to define

fieldsΨ (1)
µ and�Ψ (−1)

µ as the fermionic Lagrange multipliers that stem from the BRST variation of the comm

ghosts of ghostsA(0)
µ andA(−2)

µ respectively, i.e.,sA(0)
µ = Ψ

(1)
µ + · · · andsA(−2)

µ = �Ψ (−1)
µ + · · · .

4 More precisely, all equations for the antighosts appearing in our field spectrum are of the typeŝḡ = λ, ŝλ = LΦḡ + δΦ̃ ḡ with
sX = ŝX +LξX + δΩX.
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The fields which carry the essential geometrical information are on the left edge of the pyramids
topological symmetry is defined as:

seaµ = Ψ (1)a
µ −Ωabebµ +Lξ e

a
µ, sωab

µ = Ψ̃ (1)ab
µ +DµΩ

ab +Lξω
ab
µ ,

sΨ (1)a
µ = −ΩabΨ (1)b

µ −LΦe
a
µ + Φ̃(2)abebµ +LξΨ

a
µ,

sΨ̃ (2)ab
µ = −ΩacΨ̃ (2)cb +DµΦ̃

(2)ab −LΦω
ab
µ +Lξ Ψ̃

(2)ab
µ ,

sΦ(2)a = LξΦ
(2)a −ΩacΦ(2)a, sΦ̃(2)ab = −ΩacΦ̃(2)cb +Lξ Φ̃

(2)ab,

sBµν = Ψ (1)
µν +LξBµν, sΨ (1)

µν = LΦBµν + ∂[µA(2)
ν] +LξΨ

(1)
µν ,

sA(2)
µ = ∂µR

(3) +LξA
(2)
µ , sR(3) = LξR

(3),

(2)sξµ = f µ
a Φ

(2)a + ξν∂νξ
µ, sΩab = Φ̃(2)ab −ΩacΩcb +LξΩ

ab.

In the variation ofξµ, the inverse of the vielbeineaµ appears and we denote it asf µ
a . We have not introduce

ghostsV (1)
µ and ghost of ghostm(2) for the gauge invariance of the two-form gauge field, with the standard B

symmetryQBµν = ∂[µV (1)
ν] , QV

(1)
µ = ∂µm

(2), Qm(2) = 0, which would yieldsV (1)
µ = A

(2)
µ and sm(2) = R(3).

We choose instead to write equivariant BRST transformations with respect to this symmetry. This impl
the square of the BRST transformations on the fieldBµν is not zero, but corresponds to a reparametrization

parameterΦa and an Abelian transformationBµν → Bµν + ∂[µΛν], with Λµ = A
(2)
µ . The BRST operators is

thus nilpotent only modulo gauge transformations for the two-form gauge field. Actually, the topological
functions we will use in Section 3 only involve the curvatureG3 = dB2, so there is no need to give the deta
of the gauge symmetry of the two-form. We could further setξµ = 0, which would yield a BRST symmetr
equivariant with respect to the reparametrization. In this case, the BRST symmetry would be nilpotent also
reparametrizations along the vector ghost of ghostse

µ
a Φ

(2)a . As for the Lorentz invariance, we will instead carefu
keep the Lorentz ghost dependence. Eventually, the corresponding gauge functions will be equivariant with
to local Lorentz transformations forSpin(7)⊂ SO(8).

There is anU(1) invariance for the fieldsΨ (1)
µ and �Ψ (−1)

µ . Also for this invariance we prefer to work with a
equivariant BRST operator, and we do not write explicitly the related Faddeev–Popov ghostssc =Φ(2), sc̄ = �Φ(0)

in the BRST transformations

sA(−2)
µ = �Ψ (−1)

µ +LξA
(−2)
µ , sA(0)

µ = Ψ (1)
µ +LξA

(0)
µ ,

s�Ψ (−1)
µ = ∂µΦ

(0) +Lξ
�Ψ−1
µ , sΨ (1)

µ = ∂µΦ
(2) +LξΨ

(1)
µ ,

sΦ(0) = LξΦ
(0), sΦ(2) = LξΦ

(2),

s�Φ(0) = Lξ
�Φ(0) + η(1), s�Φ(−2) = η̄(−1) +Lξ

�Φ(−2),

(3)sη(1) = Lξ η
(1), sη̄(−1) = Lξ η̄

(−1).

If we only retain aSpin(7) ⊂ SO(8) invariance, we can redistribute the degrees of freedom of the antighos
Lagrange multipliers of the BRST multiplets. In this way, we shall be able to defineSpin(7) ⊂ SO(8) invariant
topological gauge functions, which is the key for building the eight-dimensional TQFT. Using the decomp
of a SO(8) valued two-formMab =Mab− +Mab+

in theSpin(7)-invariant representations 28= 7⊕ 21, we get

eaµ

Ψ
(1)a
µ

�Ψ (−1)ab−
µ , χ̄ (−1)a

Φ(2)a σ,Φ(0)ab−
b
(0)ab−
µ ,b

(0)
µ

�Φ(−2)a

χ(1), η(1)ab
−

η̄(−1)a



L. Baulieu et al. / Physics Letters B 565 (2003) 211–221 215

us
certain

ic

n:
ωab
µ

Ψ̃
(1)ab
µ

�̃Ψ (−1)ab
µ

Φ̃(2)ab±
Φ̃(0)ab±

, b̃
(0)ab
µ

�̃Φ(−2)ab±

η̃(1)ab
± ¯̃η(−1)ab±

(4)

Bµν

Ψ
(1)
µν

�Ψ (−1)
µν±

A
(2)
µ A(0),A

(0)
µν−, b

(0)
µν± A

(−2)
µ

R(3) S(1),Ψ
(1)
µν−,Ψ (1) �S(−1), �Ψ (−1)

µ
�R(−3)

b
(2)
S(1)

,Φ(2) b
(0)
�S(−1),Φ

(0), �Φ(0) b
(−2)
�R(−3) ,

�Φ(−2)

η(1) η(−1)

We do not reproduce the geometricalξ andΩab which are not modified. Let us now clarify the role of the vario
topological fields and their supergravity interpretation. To obtain the relevant set of propagating fields, a
number of trivial gauge fixing must be done, which give algebraic terms of the types(AB) = (sA)B ±A(sB) =
ΨAA±AΨB . Such terms eliminate quartets of the formA,ΨA,B,ΨB in a BRST invariant way by their algebra
equations of motions. After some thinking, one understands that the followings-exact terms are needed

s
[ �̃Φ(−2)ab−(

η̃(1)ab
− −Ωab−)] = ¯̃η(−1)ab−(

η̃(1)ab
− −Ωab−) + �̃Φ(−2)ab−

Φ̃(2)ab−
,

s
[�Ψ (−1)

µν+ Φ̃(0)ab+
eµa e

ν
b

] = �Ψ (−1)
µν+ η̃(1)ab

+
eµa e

ν
b + b

(0)
µν+Φ̃

(0)ab+
eµa e

ν
b,

s
[�Ψ (−1)

µν− A
(0)
µν−

] = �Ψ (−1)
µν− Ψ

(1)
µν− + b̄

(0)
µν−A

(0)
µν−,

(5)s
[�S (−1)A(0)] = �S (−1)Ψ (1) + b

(0)
�S (−1)A

(0).

The fieldsΦ(2), �Φ(−2), η̄(−1) are also eliminated, together with the quartets forA
(0)
µν . The remaining fields are the

eaµ

Ψ
(1)a
µ

�Ψ (−1)ab−
µ , χ̄ (−1)a

Φ(2)a σ,Φ(0)ab−
b
(0)ab−
µ ,b

(0)
µ

�Φ(−2)a

χ(1), η(1)ab
−

η̄(−1)a

ωab
µ

Ψ̃ 1ab
µ

�̃Ψ−1ab
µ

Φ̃2ab+
Φ̃(0)ab−

, b̃0ab
µ

�̃Φ−2ab+

¯̃η−1ab+

(6)

Bµν

Ψ
(1)
µν

A
(2)
µ A

(−2)
µ

R(3) S(1) �Ψ (−1)
µ

�R(−3)

b
(2)
S(1)

Φ(0), �Φ(0) b
(−2)
�R(−3)

η(1)
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We will shortly see that the componentΨ (1)
µν+ of the topological ghost of the two-formBµν is gauge fixed in an

algebraic way, leaving onlyΨ (1)
µν− as a propagating field.

Let us analyze the fields that remain after these eliminations. The fields that will a play a role as the c
fields of supergravity are:

bosons: eaµ,σ,Bµν,A
(2)
µ ,A(−2)

µ ,

(7)fermions:
(
Ψ (1)a
µ , �Ψ (−1)ab−

µ , �Ψ (−1)
µ

)
,
(
χ̄ (−1)a,Ψ (1)ab−

, χ(1)).
Indeed, these are nothing but the fields of theN = 1,D = 8 supergravity multiplet, up to a twist. The most striki
point of our construction is that thetopological ghosts of ghosts of the two-form,A(2)

µ andA(−2)
µ can be interpreted

as the propagating graviphotons ofN = 1, D = 8 supergravity. TheSpin(7)-scalar ghost of ghostσ , which has
ghost number zero, can be interpreted as the dilaton. The corresponding topological ghosts can be reco
the twisted version of the fermionic part of the spectrum. Modulo some field redefinitions that we will disc

detail in the following section, the twisted gravitino can be identified with the ghosts(Ψ
(1)a
µ , �Ψ (−1)ab−

µ , �Ψ (−1)
µ ), and

the twisted dilatino with(χ̄ (−1)a,Ψ (1)ab−
, χ(1)). We remark that the BRST variationsA(−2)

µ = �Ψ (−1)
µ appears in

the twisted gravitino. This is in agreement with the analysis of [2,3], where we found that at least one grav
with nonzero ghost number is needed both in four and eight dimensions in order to introduce�Ψ (−1)

µ . As we will
describe in the following section, the possibility of havingSpin(7) decompositions allows one to do all releva
maps of tensors upon spinors.

The fields of the topological multiplets not appearing in Eq. (7) will be interpreted as the ordinary Fad
Popov ghosts and antighosts of the supergravity. The infinitesimal symmetry transformations of supergra
be deduced from the topological BRST equations. After the eight-dimensional untwisting, one gets from
the propagating fields(Φ(2)a,Φ(0)ab−,Φ(0)), (�Φ(−2)a, Φ̃(0)ab−, �Φ(0)) and (η̄(−1)a, η(1)ab

−
, η(1)). These can be

interpreted respectively as the twisted version of the Faddeev–Popov spinorial ghosts and antighosts
supersymmetry and the corresponding Lagrange multipliers. The invariance of the untwisted theory th
displays a variation of the vector-spinor by a derivative of these ghosts: this is presumably sufficient to
the full supersymmetry of the untwisted action. This is different from the case of topological Yang–Mills t
where the complete supersymmetric invariance of the untwisted action is not automatic.

3. The topological action and its correspondence with supergravity

After having obtained the relevant field spectrum for the TQFT, the task is of finding the topological
functions.

A natural extension of the topological gauge function used in [3] in the presence of the two-form fieldBµν is
given by imposing the octonionic self-duality condition

(8)ω̃ab − 1

2
Ωabcdω̃cd = 0,

on the extended connection

(9)ω̃ab ≡ ωab −Gab
c ec,

with torsion given by

(10)T̃ a = D̃ea =Ga
bce

bec.

The condition (8) has to be considered together with the gauge function

(11)dσ + 2∗ (Ω ∧G3)= 0
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involving the dilaton field. We thus write the topological action

(12)Le,B = s
[�Ψ (−1)ac−(

b(0)cb
− +ωcb−

(e)−Gcb−
d ed

)
Vab + χ̄ (−1)a(b(0)a + ∂aσ +ΩabcdGbcd

)]
,

where we introduced the volume formsVa1...ai ≡ 1
(8−i)!εa1...a8e

a(i+1) . . . ea8. This topological action, afte

integration on the Lagrange multipliersb(0)cb
−

andb(0)a , gives kinetic terms for the graviton, the two-form a
the dilaton ofN = 1,D = 8 supergravity.

First of all, the Einstein Lagrangian, written with the curvatureR̃ab of the extended connectioñω, is equal to
the sum of the ordinary Einstein–Hilbert Lagrangian plus the squared norm of the field-strengthG3

(13)L̃= 1

2
R̃abVab = 1

2
RabVab − 1

2
Gab
c Gab

c V .

The Bianchi identity on the field strengthG3 and (10) imply that

(14)R̃abebea + T̃ a T̃ a = 0.

By multiplying (14) by the self-dual four-formΩ we get

(15)
1

2
ΩabcdR̃

cdVab =ΩmnpqG
a
mnG

a
pqV .

The relation (15), together with theSpin(7) decomposition

(16)R̃ab = R̃ab+ + R̃ab−
,

1

2
ΩabcdR̃

ab = R̃cd+ − 3R̃cd−
,

allows for the elimination of̃Rab+
in the Lagrangian (13)

L̃= 1

2
R̃abVab = 2R̃ab−Vab + 1

2
ΩabcdG

ab
e Gcd

e V

(17)= −4ω̃ac−ω̃cb−Vab + 2ω̃ab−
T̃ cVabc + 2d

(
ω̃ab−Vab

) + 1

2
ΩabcdG

ab
e Gcd

e V,

where in the last identity we used that̃Rab− = D̃ω̃ab− − 2ω̃ac−ω̃cb−
and integrated by parts the term iñDω̃ab−

.
By comparing (17) with (13) and using (10) we can finally write the identity

(18)4ω̃ac−ω̃cb−Vab = LEH − 1

2
Gab
c Gab

c V +ΩabcdG
ab
f Gcd

f + 4ωab−
Gc
abVc + 2d

(
ω̃ab−Vab

)
,

where we defined the Einstein–Hilbert action asLEH ≡ 1
2R

abVba . Let us consider now the square of the gau

function (11). By using the identityΩabcdΩ
afgh = (6δ[fgh]

bcd − 9Ω [fg
bc δ

h]
d ) is easy to find that

(19)

(
∂aσ + 1

3
ΩabcdG

bcd

)2

= (∂aσ )
2 + 2

3
Gab
c Gab

c −ΩabcdG
ab
f Gcd

f + 2

3
∂a

(
σΩabcdG

bcd
)
.

By summing (18) and (19) (multiplied by the suitable volume formV), we finally get

4ω̃ac−ω̃cb−Vab +
(
∂aσ + 1

3
ΩabcdG

bcd

)2

V

(20)= LEH +
[
(∂aσ )

2 + 1

6
Gab
c Gab

c

]
V + 4ωab−

Gc
abVc + boundary terms.

This identity deserves some attention, since it shows that the sum of the 56 independent terms con
|Gabc(B)|2, plus those contained in the Einstein action can be obtained as a topological gauge-fixin
stemming from 64 Lagrange multipliers.
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We are now able to compare the topological terms (20) with the bosonic part of the action ofN = 1, D = 8
supergravity. In the spirit of topological field theory, we can restrict our attention on the kinetic terms for the
which simplifies considerably the comparison. In fact, the basic requirement on the gauge-fixing condition
they must give a good definition for the propagators of the fields. Interaction terms can be then always a
BRST exact terms in order to get agreement with the complete twisted supergravity action. The first thre
of the topological action (20) correctly reproduce the kinetic terms for the graviton, the two-form and the
of N = 1, D = 8 supergravity. Concerning now the mixed termωab−

c (e)Gabc in (20), it can be reduced in th
quadratic approximation to

(21)∂µe
a
µΩabcdGbcd .

This can be done by imposing theSpin(7) invariant Lorentz gauge conditione[a
µ V

b]−µ = 0, whereV bµ is an
inverse 8-bein chosen as a reference system.5 The expression (21) can be absorbed in the gauge-fixing term
the reparametrization invariances(ξ̄µ∂νgµν). We thus conclude that the topological action (20) coincides with
bosonic part of the supergravity action in a givenSpin(7)-invariant Lorentz gauge. This is not surprising since
condition (8) leaves only a residualSpin(7) symmetry group. It is remarkable that the kinetic energies of both
graviton and the two-form stem from the gauge-fixing term (8) that only comes from the topological freed
the vielbein.

We now pass to the fermionic sector. The BRST variation of the first line in (12) gives part of the R
Schwinger action, as in [3]. Notice that the conditione[a

µ V
b]−µ = 0, which must be enforced by the BRST exa

term s(�Ω [ab]−e[a
µ V

b]−µ), yields the conditionΩ [ab]− = −Ψ
[a
µ eb]−µ, and ensures theSpin(7) invariance of the

fermionic part of the contribution ofLe,B to the Rarita–Schwinger action. There is actually a compensation bet
the BRST variations ofωab−

c (e) andGac−
c (B), which is compulsory to enforce gauge invariance, sinceωab−

(e)

transforms as a connection for Lorentz transformations with self-dual parameterΩab−
.

To determine the complete Rarita–Schwinger action, we must add toLe,B the following term, as in [3]:

(22)L�Ψµ
= s

[
∂[µA(−2)

ν]− Ψ
(1)a
[µ eaν]

]
.

Looking at the fermionic terms, usingsA(−2)
µ = �Ψ (−1)

µ , (Ψ (1)a
µ , �Ψ (−1)ab−

µ , �Ψ (−1)
µ ) can be identified as the twiste

gravitino, with 8 chiral and 8 antichiral components, as in [3].
To determine the propagation ofA(±2)

µ , we add:

(23)s
[
Ψ (1)
µν ∂[µA(−2)

ν]
] = ∂[µA(2)

ν] ∂[µA(−2)
ν] +Ψ (1)

µν ∂[µΨ (−1)
ν] .

This identifiesA(±2)
µ as the two graviphotons ofN = 1,D = 8 supergravity. Notice that among the tw

graviphotonsA(−2)
µ andA(2)

µ , only the latter one has a “topological” transformation, sincesA
(−2)
µ = �Ψ (−1)

µ while

sA
(2)
µ = ∂µR

(3). This is in agreement with the twisted supergravity transformations.

Part of the difficulty of this work was to understand the role of the ghost fieldΨ
(1)
µν . On the one hand it is

the field that generates by its ghost of ghost symmetry the second graviphoton of the supergravity. On t
hand, in supergravity, the Kalb–Ramond two-form only sees local supersymmetry through the gravitino
dilatino, and it is challenging to uncover this from topological invariance. This leads to the conclusion that
the components ofΨ (1)

µν are independent propagating fields. OnlyΨ
(1)
µν− survives as an independent field stemm

from the topological invariance of the two-form. To enforce the other components ofΨ
(1)
µν in a BRST invariant

5 In the physicist language, this means that one uses the Lorentz invariance to impose that 7 of the components ofeaµ vanish in aSpin(7)
invariant way. Eventually, the rest of the 21 Lorentz degrees of freedom can be used to enforce thateaµ be a symmetrical 8× 8 matrix, that is

eaµ = V bµ(δab + hab), wherehab is symmetrical ina andb. Then, there is a one-to-one mapping between the metric and this matrix.
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way, we consider the following action, that exhausts the ghost of ghost symmetry in the Lorentz sector:

(24)s
[
eµc e

ν
d
�̃Φ(−2)cd+(

Ψ (1)
µν −Ψ

(1)a
[µ eaν]

)] = eµc e
ν
d
¯̃η(−1)cd+(

Ψ (1)
µν −Ψ

(1)a
[µ eaν]

) + �̃Φab+(
∂[aA(2)

b] − Φ̃
(2)
ab + · · ·).

This gauge-fixing allows one to identifyΨ (1)
µν+ = Ψ

(1)a
[µ ea

ν]+ . If we define

(25)Ψ (1)
µν = χ

(1)
µν− +Ψ

(1)a
[µ eaν]

thenχ(1)
µν− andχ(1) = sσ are eight fermionic variables that can be identified with a twisted chiral component

dilatino. χ̄ (−1)µ determines by twist the other chiral component. Moreover, Eq. (24) accomplishes the elim
of the ghost of ghost dependence in the Lorentz sector, by yielding an algebraic equation of motion forΦ̃(2)ab+

and �̃Φ(−2)ab+
, in aSpin(7) invariant way.

Let us summarize the mapping between the fermionic degrees of freedom of the topological action de
(12)–(24) and that ofN = 1 supergravity. On a manifold withSpin(7) holonomy there exist a covariantly consta
spinor (of norm one)ε,6 which can be used to redefine as in [3] the gravitino(λ, λ̄) and the dilatino(χ, χ̄) of
N = 1,D = 8 supergravity as7

(26)λ= Ψ aγaε, λ̄= �Ψε + �Ψ ab−
γabε,

(27)χ = χ̄aγ aε, χ̄ = χε + χab−
γabε.

On the l.h.s. of (26), (27)(λ, λ̄) and (χ, χ̄) are spinors of opposite chiralities. The eight-dimensional gam
matricesγa acts on spinors of definite chirality. Notice that the identification (25) implies the appearance
topological action (12) of the mixed kinetic terms�Ψ ac−∂dχcb−

edVab, coming from the BRST-variation of th
first line in (12), andχ̄aΩabcd∂bΨcd , coming from the BRST-variation of the second line. In order to reco
these terms from the twisted supergravity theory we have to impose the field redefinitionsΨ a

b → Ψ a
b + χab−

and �Ψ ab−
c → �Ψ ab−

c + δ
[a
c χ̄

b]− . Moreover, since for the bosonic sector the equivalence of the topologica
supergravity actions is valid only in a fixedSpin(7)-invariant Lorentz gauge, we expect that also some ga
fixing terms of the same kind are involved in the comparison of the fermionic part. From Eqs. (26) and (27)
that, modulo the above field redefinitions, the gravitino is mapped to the fields(Ψ a, �Ψ , �Ψ ab−

) of the topological
model, while the dilatino is mapped to the fields(χ̄a,χ,χab−

).
What we have found is interesting. The topological gauge functions are such that the BRST transform

the effective topological action fore andB is:

(28)seaµ = Ψ (1)a
µ +Ωabebµ + · · · , sBµν = Ψ

(1)a
[µ eaν] + χ

(−1)
µν− + · · · .

Only the symmetrical part ofΨ (1)a
µ is involved in seaµ, while the Lorentz ghostΩab allows one to put to zero

the antisymmetrical part ofeaµ. This explains how the supersymmetric transformation law of the two-form
the supergravity framework can be interpreted in a topological way, using a suitable gauge function
topological invariance. What actually happens is that, when one twists the gravitinoΨ α

µ into Ψ
(1)a
µ , and defines

Ψ
(1)
µν = eaνΨ

(1)a
µ , thenΨ (1)

{µν} andΨ (1)
[µν] are respectively the topological ghosts of the two-formBµν and of the metric

gµν . Here, the mapping between the spinors is not linear, since it involves various contractions by the vielbe
a important distinction with the case of the Yang–Mills TQFT, where the mapping is a linear transformation

Some extra topological functions are needed in order to fix the symmetries of the gauge conditio
so far. These functions exhaust the remaining fields of the BRST topological multiplets. Let us briefly

6 This spinor can be used to define the self-dual four form asΩabcd = εT γabcd ε [7].
7 Similar results concerning the twist ofN = 1,D = 8 supergravity have been obtained by P. de Medeiros and B. Spence.
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them. To take care of the gauge invariance of�Ψ (−1)ab−
µ , which follows from the gauge functions, we redefi

b
(0)ab−
µ → b

(0)ab−
µ +∂µΦ̃

(0)ab−
. Then, to gauge fix the local supersymmetry, which pops up as the gauge inva

of the topological ghosts, we add, as in [2,3]

(29)Lghosts= s
[√

g
(�Φ(−2)aDµΨ

(1)a
µ +Φ(0)ab−

Dµ
�Ψ (−1)ab−
µ + �Φ(0)∂µ�Ψ (−1)

µ

)]
.

The role of this redefinition ofbab
−

has been analyzed in [2,3]. It ensures the propagation of the fieldΦ̃(0)ab−
.

The expression of this action identifies(Φ(2)a,Φ(0)ab−,Φ(0)), (�Φ(−2)a, Φ̃(0)ab−, �Φ(0)) and(η̄(−1)a, η(1)ab
−
, η(1))

as the twisted version of the Faddeev–Popov spinorial ghost and antighosts for local supersymmetry, a
fermionic Lagrange multipliers, respectively.

We also use the topological gauge freedom of the spin connectionωab to eliminate this field in terms ofe, by
mean of the term

(30)s
[ �̃Ψ (−1)abeb ∧ ∗T a

]
,

where∗T is the Hodge dual of the torsionT = de+ω∧ e. This gauge fixing, which can be improved by chang
T a → T a + Ga

bce
bec, also trivially eliminates the dependence of the action upon the topological Lorentz g

Ψ̃
(1)ab
µ and�̃Ψ (−1)ab

µ , which disappear by their algebraic equations of motion. One must recognize that intro
the Lorentz symmetry is extremely useful, although most of its ingredients are eventually eliminated.

As for the fieldsS(1) andR(−3), they are used to fix the ordinary gauge symmetry ofA(−2) andA(2) by the
action

(31)s
[
S(1)∂µA

(−2)
µ + �R(−3)∂µA

(2)
µ

]
.

To impose that the vielbein is a symmetrical matrix, and eliminate theΩ and �Ω dependence, we just add:

(32)s
[ �Ωab+

ebµV
µa

] = �Ωab+(
Ωab + · · ·) + bab

+
ebµV

µa,

keeping in mind that we had already used a terms[ �Ωab−
ebµV

µa]. After expansion, and a few field redefinition
one gets thatΩab and �Ωab are eliminated by Gaussian integration. As said above, this necessitates the intro
of an inverse vielbeinV aµ as background.

Last of the last, we must adds[ξ̄−1µ∂νgµν] to fix the reparametrization invariance.
The gauge-fixing of the gauge symmetries of topological gauge functions could have been done in a mu

refined way, using the technology of equivariant cohomology.8 This is a technicality that we have chosen not
present here. It would distract us from our main result, that is, we have finally end up our task of building a
for the Kalb–Ramond fieldBµν within the context of topological gravity. The result is that the standard TQ
procedure has lead us to a twisted version ofN = 1,D = 8 supergravity.

It is worth noticing that the topological gauge functions on the extended connection (8) and on the dilat
are the same appearing in the octonionic superstring equations [9]. By coupling our model with a non-
topological Yang–Mills theory, as it is defined in [7,8], one could thus obtain a topological theory which effec
describes the transverse properties of the octonionic superstring.

We believe that it will be interesting to study the possible dimensional reductions of the 8-dimen
topological gravity. This idea has already proven to be quite useful in the simpler case of the topological Yan
theory. The reduction to seven dimensions of the octonionic self-duality conditions on the spin connecti
relevance for manifolds with (weak)G2 holonomy [10]. The study of the dimensional reduction of the genera
self-duality conditions (8) and (11) could give a more general description of manifolds withG2-structure.

8 As remarked in the previous section, the equivariance is with respect to reparametrizations,Spin(7) ⊂ SO(8) Lorentz invariance and
two-form gauge symmetry.



L. Baulieu et al. / Physics Letters B 565 (2003) 211–221 221

olving
nsional
n give

lowship
Moreover, one may investigate the possibility of getting a generalization of the Seiberg–Witten theory inv
gravity. Generalizing the flat space analysis of [7], this theory could be derived as an adequate dime
reduction in four dimensions of the 8-dimensional topological gravity. Further dimensional reductions ca
interesting models in 2 and 0 dimensions.
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