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Abstract

We study an aspect of dimension group theory, linked to coding. The dimension group that we con-
sider is built on a given square primitive integer matrix M satisfying the conditions that |detM| � 2
and that the characteristic polynomial of M is irreducible. The coding is based on iteration of what
could be seen as a generalization to Zd of the Euclidean algorithm induced by the matrix M and in a
natural way we define a binary operation of addition in the coding group.

The set B of symbols is a subset of Zd , and if we denote by ρ the Perron–Frobenius eigenvalue of
M and by v a left eigenvector associated to ρ, we define a function Zd × BN

∗ → R which assigns to
the element (p, b1, b2, . . .) the series

〈v,p〉 + 1

ρ
〈v, b1〉 + 1

ρ2
〈v, b2〉 + · · ·

(in case M = (10), this is the decimal expansion) and the restriction of this function to finite codes is
the classical embedding of the dimension group into R.

Finally, and under some suitable conditions, we prove that the last function is surjective and this
allows the coding of real numbers and consequently the dimension group embedded into R appears
as the set of decimal numbers.
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1. Introduction

There exists an increasing literature devoted to the study of dimension groups, which
were introduced in [6] for the purpose of classifying certain non-commutative rings. An
ordered abelian group is called a dimension group if it can be expressed as the inductive
limit of a sequence of finite ordered group direct sums of copies of the integers, with non-
decreasing morphisms [2,3,5]. In 1980, Effros et al. [5] gave an axiomatic characterization
of dimension groups, namely, as countable ordered abelian groups which are unperforated
and have the Riesz interpolation property. Their result made it possible to produce easily
explicit examples of dimension groups [1,4] and to make certain inroads into the classi-
fication problem. We adopt in this paper a new point of view by studying an aspect of
dimension groups linked to coding.

A few words on terminology are in order. An inductive system of abelian groups is a
sequence (En,fn+1)n�0 of abelian groups and morphisms written as

E0
f1−→ E1

f2−→ E2
f3−→ · · · .

An inductive cone based on the inductive system (En,fn+1)n�0 is a sequence of mor-
phisms (gn :En → G)n�0 such that for any integer n, one has gn+1fn+1 = gn. An inductive
limit (in :En → E)n�0 is an initial inductive cone, i.e. it satisfies the following condition:

for each inductive cone (gn :En → G)n�0 there exists a unique morphism Φ :E → G

such that Φin = gn.

One has the following characterization:

An inductive cone (in :En → L)n�0 is an inductive limit of the system (En,fn+1)n�0 if
and only if the two following conditions are satisfied:

(a) For each x in L, there exists a couple (p, y) such that y ∈ Ep and ip(y) = x.
(b) If y ∈ Ep and z ∈ Eq satisfy ip(y) = iq(z), then there exists l � p,q such that

fpl(y) = fql(z), where fij = fjfj−1 . . . fi+1 in the case i < j and fii = fi .

Let us introduce the order. Consider an inductive system of abelian groups

Zd0
M1−→ Zd1

M2−→ Zd2
M3−→ · · · ,

each of which is equipped with the order defined by the natural positive cone associated
with the canonical basis. The morphisms are non-decreasing exactly when their matrices
are non-negative. The positive cone of the inductive limit ordered abelian group is

⋃
n�0

in
(
Ndn

)
.
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2. Coding

We are now ready to define the matrix with which we will be dealing throughout the re-
mainder of this paper. Let M be a non-negative d ×d integer matrix satisfying |detM| � 2,
and think of it as representing a linear map

Zd M−→ Zd .

The aim is to describe the corresponding dimension group GD , which is a limit of the
inductive system of ordered groups

Zd M−→ Zd M−→ Zd M−→ · · · .

The matrix M has an inverse in the ring of d × d rational matrices, and the inductive cone

Zd
M

M−n

Zd

M−n−1

Qd

has the inductive limit

GD =
⋃
n�0

M−n
(
Zd

) ⊆ Qd

with the order defined by the positive cone

⋃
n�0

M−n
(
Nd

)
.

Let us take one particular case. Suppose that the matrix M is just 1×1 and is equal to (10):

Z
10−→ Z

10−→ Z −→ · · · .

Then it is easily seen that the dimension group obtained by this procedure is the group of
decimal numbers coded by {0,1, . . . ,9}. Generalizing this classical code will be one of our
aims in this work. The analogue of an element of {0,1, . . . ,9} is a set B ⊂ Zd containing
|detM| elements and defined as follows:

The matrix M realizes an automorphism of the vector space Rd and is one-to-one on Zd .
We denote by

C =
d∑

[0,1[ei
i=1
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the hypercube [0,1[d of Rd . The family of translated hypercubes (p + C)p∈Zd defines a
partition of Rd . Moreover, if we denote by Mi , 1 � i � n, the columns of the matrix M ,
then the image of C under M is

R =
d∑

i=1

[0,1[Mi.

If we set B = R ∩ Zd , then the family (Mp + B)p∈Zd is a partition of Zd .
To bring out the structure of code, one notes that in the inductive system

Zd M−→ Zd M−→ Zd M−→ · · ·

the one-to-one mapping from each group Zd to the next one can be viewed as a magnifica-
tion: the element p of Zd is replaced by the finite set

Mp + B. (∗)

Example. Let M be

(
2 2
1 4

)
.

The set B is {(0,0), (1,1), (1,2), (2,2), (2,3), (3,4)}, and the vector
( 1

1

)
in the lattice Z2

at step n is replaced by the set

M

(
1
1

)
+ B = {

(4,5), (5,6), (5,7), (6,7), (6,8), (7,9)
}

in the lattice Z2 at step n + 1 where each one of the six elements appears as part of a
magnification of

( 1
1

)
.

Since the family (Mp+B)p∈Zd is a partition of Zd , one obtains a generalized Euclidean
algorithm:

Proposition 1. For each q in Zd , there exists a unique element (p, b) in Zd × B such that
q = Mp + b.

In other words, the mapping from Zd × B to Zd , which assigns Mp + b to the ele-
ment (p, b), is bijective. The term B which appeared in (∗) conveys the extra information
brought to the elements of Zd by the magnification effect induced by M .

On iterating, one obtains

Proposition 2. For each n � 1, the mapping
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Zd × Bn −→ Zd

(p, b1, . . . , bn) 
−→ Mnp + Mn−1b1 + · · · + bn

is bijective.

If we denote by cn its inverse (coding at level n),

cn : Zd −→ Zd × Bn,

we deduce an isomorphism of inductive systems:

Zd

� c0

M
Zd

� c1

M
Zd

� c2

. . .

Zd
i0

Zd × B
i1

Zd × B2 . . .

where

in(p, b1, . . . , bn) = (p, b1, . . . , bn,0).

The limit of the system

Zd i0−→ Zd × B
i1−→ Zd × B2 i2−→ · · ·

is Zd × B(N∗), where B(N∗) is the set of sequences (bn)n�1 of elements of B which even-
tually vanish. It results that one obtains, in the limit, an isomorphism

c∞ :GD −→ Zd × B(N∗)

which makes the following diagram commutative:

Zd

� cn

M−n

GD

� c∞

Zd × Bn
in,∞

Zd × B(N∗)

where in,∞(p, b1, . . . , bn) = (p, b1, . . . , bn,0, . . .), so that one associates to the code
(p, b1, . . . , bn,0, . . .) the element p + M−1b1 + · · · + M−nbn in GD .

We proceed to define a binary operation of addition in Zd ×B(N∗), compatible with that
in GD . The operation of addition in Zd × B(N∗) uses carrying. More precisely, to add two
elements (b1, . . . , bn) and (v1, . . . , vn) in Bn we take their pre-images in Zd

Mn−1b1 + Mn−2b2 + · · · + bn and Mn−1v1 + Mn−2v2 + · · · + vn
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respectively, we write

Mn−1(b1 + v1) + · · · + (bn + vn) = Mnp + Mn−1w1 + Mn−2w2 + · · · + wn,

and we set

(b1, . . . , bn) ⊕ (v1, . . . , vn) = (w1, . . . ,wn).

Let us look at the simple case n = 1. Let (b1, v1) be an element of B × B . There exists
a unique element of Zd × B written (f (b1, v1), b1 ⊕ v1) such that

b1 + v1 = M
(
f (b1, v1)

) + b1 ⊕ v1.

Thus, we define the operation of addition ⊕ on the group B and a function f :B × B →
{0,1}d named carrying. In the last example, addition on B is given by the table below:

⊕ (0,0) (1,1) (1,2) (2,2) (2,3) (3,4)

(0,0) (0,0) (1,1) (1,2) (2,2) (2,3) (3,4)

(1,1) (2,2) (2,3) (1,2) (3,4) (0,0)

(1,2) (0,0) (3,4) (1,1) (2,2)

(2,2) (2,3) (0,0) (1,1)

(2,3) (2,2) (1,2)

(3,4) (2,3).

As for the carrying map f :B × B → {0,1}2, one has the following table:

f (0,0) (1,1) (1,2) (2,2) (2,3) (3,4)

(0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

(1,1) (0,0) (0,0) (1,0) (0,0) (1,1)

(1,2) (0,1) (0,0) (0,1) (0,1)

(2,2) (1,0) (1,1) (1,1)

(2,3) (0,1) (1,1)

(3,4) (1,1).

In general, carrying is performed from right to left and this provides the element p.
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3. Embedding the dimension group into RRR

By following [2,5], we consider M as the matrix of an endomorphism of Rd . If ρ is
a non-zero eigenvalue and v ∈ (Rd)∗ a left eigenvector of M associated to ρ, then the
commutative diagrams

Zd
M

ρ−n〈v,.〉

Zd

ρ−n−1〈v,.〉
R

define an inductive cone which induces a mapping τ :GD → R, sending the code
(p, b1, . . . , bn) to the element

〈v,p〉 + 〈
v,M−1b1

〉 + · · · + 〈
v,M−nbn

〉 = 〈v,p〉 +
n∑

i=1

1

ρi
〈v, bi〉.

In the case that the mapping 〈v, .〉 : Zd → R is one-to-one, the real number

x = 〈v,p〉 + 1

ρ
〈v, b1〉 + · · · + 1

ρn
〈v, bn〉

has a unique code (p, b1, . . . , bn,0, . . .).
From now on, we suppose that the matrix M is primitive [7]. We denote by ρ the Perron–

Frobenius eigenvalue of M and by v a left eigenvector associated to ρ.
It is well known that the following statements are equivalent:

(i) The characteristic polynomial of M is irreducible;
(ii) The components of v are Z-free;

(iii) The mapping 〈v, .〉 : Zd → R is one-to-one.

We denote by (H0) the following hypothesis: the matrix M is integer, non-negative,
primitive, satisfies |detM| � 2 and its characteristic polynomial is irreducible.

Thus, under the hypothesis (H0), the dimension group embedded into R is the totally
ordered subgroup of R defined by

⋃
n�0

1

ρn

〈
v,Zd

〉
.

Indeed, the range of the mapping ρ−n〈v, .〉 : Zd → R is the subgroup ρ−n〈v,Zd〉 of R

which is included in ρ−n−1〈v,Zd〉; thus we get a non-decreasing sequence of subgroups
of R each of which is dense in R, because at least one of the components of v is irrational.
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Moreover, each element of the dimension group embedded into R can be written in a
unique manner as

〈p,v〉 + 1

ρ
〈v, b1〉 + · · · + 1

ρn
〈v, bn〉.

Indeed, let x ∈ ⋃
n�0 ρ−n〈v,Zd〉. For n � m, one takes in Zd pre-images x̄ and ȳ of x at

levels n and m respectively:

Zd
Mm−n

ρ−n〈v,.〉

Zd

ρ−m〈v,.〉
R.

The code of x̄ is (p, b1, . . . , bn) and the one of ȳ is (q, v1, . . . , vm). In other words,

x̄ = Mnp + Mn−1b1 + · · · + Mbn−1 + bn

and

ȳ = Mmq + Mm−1v1 + · · · + Mvm−1 + vm.

As

1

ρm
〈v, ȳ〉 = 1

ρn
〈v, x̄〉 = ρm−n

ρm
〈v, x̄〉 = 1

ρm

〈
v,Mm−nx̄

〉
then, taking the fact that the mapping ρ−m〈v, .〉 is one-to-one into consideration, we get
Mm−nx̄ = ȳ, so

Mm−nx̄ = Mmp + Mm−1b1 + · · · + Mm−n+1bn−1 + Mm−nbn

= Mmq + Mm−1v1 + · · · + Mvm−1 + vm.

This is equivalent to

(q, v1, . . . , vm−1, vm) = (p, b1, . . . , bn,0, . . . ,0),

i.e., p = q, v1 = b1, . . . , vn = bn and vn+1 = · · · = vm = 0. In conclusion, we get:

Proposition 3. Under the hypothesis (H0), the mapping Zd × B(N∗) → R which sends the
code (p, b1, . . . , bn,0, . . .) to the real number

〈v,p〉 + 1

ρ
〈v, b1〉 + · · · + 1

ρn
〈v, bn〉

is one-to-one and its range is a totally ordered dimension group.
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4. Completion

We intend to prove, under some hypotheses which we will formulate, the following
result: the mapping: Zd × BN

∗ → R that sends (p, b1, b2, . . .) to the real number

〈v,p〉 +
∑
n�1

1

ρn
〈v, bn〉

is surjective.
We consider the following set:

S = {
(qn)n�0 | qn ∈ Zd and qn ∈ Mqn−1 + B

}
.

Given the sequence (qn)n�0, we set qn = Mqn−1 + rn which gives a sequence (q0, r1,

r2, . . .). Thus, we define a bijection between S and Zd ×BN
∗
. The sequence (q0, r1, r2, . . .)

is an infinite code which generalizes the finite codes that appear in the dimension group.
In the case d = 1, it is a question of the usual coding of real numbers: the matrix M is an
integer b � 2, the sequence (q0, q1, q2, . . .) is given by qn = [bnx] and

qn

bn
= q0 + r1

b
+ r2

b2
+ · · · + rn

bn
.

We intend to generalize this situation. Let us take again the system

Zd M−→ Zd M−→ Zd M−→ · · · .

Every lattice is indexed by an integer 0,1, . . . which can be called the level. The transition
from one level to the next one is performed by M . So, in the sequence (q0, q1, . . .) ∈ S,
we must consider qn ∈ Zd as a term of level n of the inductive system. It is a question of
associating to each real number x an element (p, b1, b2, . . .) from the set Zd × BN

∗
such

that

x = 〈v,p〉 + 1

ρ
〈v, b1〉 + 1

ρ2
〈v, b2〉 + · · · .

We define a total order on Zd by setting z � z′ if 〈v, z〉 � 〈v, z′〉 and we denote by b1

(respectively bk) where k = |detM| − 1 the lowest non-zero (respectively the greatest)
element in B . Let us make the following hypotheses:

(H1) b1 = 1 = Mx1, x1 ∈]0,1[d ;
(H2) For each i,1 � i � k, we have bi+1 − bi � 1,

where 1 =
(

1
...

)
.

1
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One notices at once the equality bk +b1 = Mb1. Indeed, we observe that the elements of
B are Mx such that x ∈ [0,1[d and Mx ∈ Zd , so if x1 satisfies Mx1 = b1, then 〈v,Mx1〉 �
〈v,My〉 for each y ∈ [0,1[d\{0} such that My ∈ Zd . Let

y =
⎛
⎝ y1

...

yd

⎞
⎠ in [0,1[d\{0};

we denote by A the subset of {1, . . . , d} such that i ∈ A if yi �= 0 and set eA = (1A(i)).
Then M(eA − y) ∈ B and

〈v,Mx1〉 �
〈
v,M(eA − y)

〉
�

〈
v,M(1 − y)

〉
.

Thus, M(1 − x1) is greater than all elements My such that y ∈ [0,1[d and My ∈ Zd .
Let x be a real number; there exists p ∈ Zd such that 〈v,p〉 � x < 〈v,p + 1〉, whence

0 � ρ
(
x − 〈v,p〉) < 〈v,M1〉.

The subdivision that results from the inequalities

0 = b0 ≺ b1 ≺ b2 ≺ · · · ≺ bk ≺ M1

produces in R the inequalities

0 <
〈
v, b1〉 < 〈

v, b2〉 < · · · < 〈
v, bk

〉
< 〈v,M1〉,

and we have two possibilities.
The first possibility is that 〈v, bi〉 � ρ(x − 〈v,p〉) < 〈v, bi+1〉. In this case we get

ρ
(
x − 〈v,p〉) = 〈

v, bi
〉 + r1 and 0 � r1 <

〈
v, bi+1 − bi

〉
.

Consequently,

x = 〈v,p〉 + 1

ρ

〈
v, bi

〉 + r1

ρ
,

and we conclude, by taking the inequalities 0 � r1 < 〈v, bi+1 − bi〉 into consideration, that

0 � ρr1 <
〈
v,ρ

(
bi+1 − bi

)〉
� 〈v,M1〉,

which enables us to iterate with ρr1.
In the second case we have 〈v, bk〉 � ρ(x − 〈v,p〉) < 〈v,M1〉, which gives

ρ
(
x − 〈v,p〉) = 〈

v, bk
〉 + r ′ , 0 � r ′ <

〈
v,M1 − bk

〉
.
1 1
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Since bk + b1 = M1 and b1 = 1, we have

x = 〈v,p〉 + 1

ρ
〈v, bk〉 + r ′

1

ρ
,

and we conclude that 0 � ρr ′
1 < ρ〈v,1〉. Then, we get 0 � ρr ′

1 < 〈v,M1〉 and we can
iterate with ρr ′

1.
Finally, we have proved:

Proposition 4. Under the hypotheses (H0), (H1) and (H2) given above, the mapping Zd ×
BN

∗ → R which sends the element (p, b1, b2, . . .) to the real number

〈v,p〉 +
∑
n�1

1

ρn
〈v, bn〉

is surjective.
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