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the geometrically exact equations of motion in their intrinsic, or Hamiltonian, form before
the modal transformation. For nonlinear free vibrations about a zero-force equilibrium, it
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a b s t r a c t

Conserved quantities are identified in the equations describing large-amplitude free
vibrations of beams projected onto their linear normal modes. This is achieved by writing

is shown that the finite-dimensional equations of motion in modal coordinates are energy
preserving, even though they only approximate the total energy of the infinite-dimen-
sional system. For beams with constant follower forces, energy-like conserved quantities
are also obtained in the finite-dimensional equations of motion via Casimir functions. The
duality between space and time variables in the intrinsic description is finally carried over
to the definition of a conserved quantity in space, which is identified as the local cross-
sectional power. Numerical examples are used to illustrate the main results.

& 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY license.
1. Introduction

Conserved quantities in nonlinear Hamiltonian systems provide useful metrics to derive numerical integration algo-
rithms, to evaluate their stability, and to derive energy-based controllers. For geometrically nonlinear beams, energy- and
moment-preserving time-marching algorithms were first identified in the groundbreaking work of Simó et al. [1,2]. Their
approach, later refined by many others [3–5], can be summarized as follows: the partial differential equations of motion are
first written for the position and orientation of the beam cross sections, a time-marching algorithm on those variables
is then identified that preserves exactly the conservation of laws of the continuum problem, and a finite-element
discretization is finally introduced on the weak form of the equations that inherits those same conservation properties.
The main challenge was posed by handling both the updating and spatial interpolation of the (finite) rotations and it was
overcome using the properties of the rotation group. Robust finite-element solutions for flexible multibody dynamics have
been constructed based on this approach (see, for instance, Ref. [6]).

The above methodology does not extend however to nonlinear beam dynamics written in modal coordinates. In such
a case, the spatial projection would need to be introduced first, but the infinite-degree nonlinearities associated to the
rotation group would need to be truncated before they could be projected onto modal space. This was done, for instance,
in Refs. [7,8]. Even so, a solution of the nonlinear problem using modal coordinates is often attractive. For example, there
are many dynamical systems with weak nonlinearities for which linear modal vibration analysis provides a useful first
approximation to the response, and for which those modal coordinates may suit naturally a more refined subsequent
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Nomenclature

C cross-sectional flexibility matrix
C Casimir function
e1 unit vector in the beam axial direction
E0ðx1;x2Þ total energy
Ex2

ðδx1; δx2Þ perturbation energy
EN
x2
ðq1;q2Þ perturbation energy of discrete system

f vector of sectional internal forces (stress
resultants)

f1 vector of applied forces and moments per
unit length

fa vector of applied forces per unit length
IT average cross-sectional power
k0 local initial curvature vector
L symmetric differentiation operator
L1;L2 matrix operators in nonlinear equilibrium

equations
m vector of sectional internal moments (stress

resultants)
ma vector of applied moments per unit length

M cross-sectional mass matrix
q1j modal coordinates (velocities) of mode j
q2j modal coordinates (internal forces/moments)

of mode j
s curvilinear coordinate (arc length)
S total beam span
t time
v vector of local translational velocities
V(q) Lyapunov function
W linear dynamics of the unforced ODE system
x1 velocity states in the intrinsic model
x2 stress-resultant states in the intrinsic model
x2 equilibrium condition under constant

forcing ODE
η1j generalized force corresponding to mode j
ϕj mode shape of linear normal mode j
ω vector of local angular velocities
ωj angular frequency of linear normal mode j
Ω diagonal matrix of angular frequencies
lcmðT1; T2Þ least common multiple of T1; T2∈R
� value at static equilibrium conditions

A. Wynn et al. / Journal of Sound and Vibration 332 (2013) 5543–55585544
nonlinear analysis (see, for instance, many of the examples in Ref. [9]). Additionally, most methods for nonlinear vibration
control still rely on modal coordinates to provide a compact low-order representation of the system dynamics [8,10].

In this context, Palacios [11] has recently shown that an exact modal representation of the geometrically nonlinear beam
dynamics, with only quadratic nonlinearities, is actually possible if the equations of motion are first written in their intrinsic
form [12,13]. This approach uses a two-field description of the beam dynamics on first derivatives, both in space and
time, resulting in a model in which the primary variables are stress resultants and local velocities, respectively. Rotations
therefore do not appear explicitly in the equations of motion. Instead, they are obtained as either spatial or time integrals
of the local curvatures or angular velocities, respectively. The resulting Hamiltonian formulation closely resembles that
of rigid-body dynamics, with first-order equations of motion and quadratic nonlinearities. Energy-based control methods
developed for Hamiltonian systems [14] can then be applied to nonlinear vibration control. Although limited to linear
vibrations, Macchelli and Melchiorri [15] have already successfully shown the use of energy shaping methods in the vibra-
tion reduction on beams when their dynamics are written in intrinsic form.

Direct solution of the (nonlinear) intrinsic beam equations of motions has been carried out for aeroelastic analysis of
high-aspect-ratio-wing aircraft, using aerodynamic models which only depend on the local velocities [16–18]. The major
drawback of such an approach is that multipoint constraints in displacements cannot be imposed directly on the system
states. Numerical integration methods can then be borrowed from multibody dynamics, although effective numerical
methods have been developed recently specifically tailored to this problem [19]. The modal projection of the equations, on
the other hand, uses the linear normal modes (LNMs) of the structure, albeit expressed in terms of the intrinsic degrees of
freedom. However, those intrinsic LNMs do correspond to the vibration modes of a linearized displacement-based model
and can be obtained from them by simply taking derivatives with respect to time and space [20]. Seen in this light, the
intrinsic formulation becomes simply an artifice to describe the nonlinear beam dynamics without having to include
the rotation vector in the equations. Palacios [11] used this to show substantial algebraic advantages in the evaluation of the
nonlinear normal modes of anisotropic beams using the method of Pierre and Shaw [21].

This paper presents a theoretical investigation into the conservation laws in the intrinsic modal description of the
nonlinear beam dynamics. As mentioned above, this is relevant when developing methods for nonlinear vibration control,
but also to identify relevant metrics to evaluate the performance of time-marching algorithms in nonlinear vibration
analysis. The paper is structured as follows: in Section 2, we first review the intrinsic form of the geometrically nonlinear
beam equations, which will be written in the compact form of Ref. [11]. Next, we will compute the linear normal modes of
the system about an arbitrary fixed point of the system (that is, the static equilibrium under non-zero forces). Section 4
will introduce the nonlinear dynamics in modal coordinates around that fixed point. Different energy measures that are
conserved in either time or space in the free vibrations of the structure are then identified in Sections 5 and 6. In the case
of free vibrations about a non-zero equilibrium position, it is first shown that the total energy is generally not conserved.
However, in this situation, sufficient conditions are presented to ensure the existence of a conserved quantity for constant
follower forces by means of Casimir functions. Finally, Section 7 includes several numerical examples to illustrate the
main findings of this work. They correspond to cantilever beams in large-amplitude free vibrations and under periodic
loads.
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2. Intrinsic beam equations

Following Cosserat's model, a beam of length S is defined by the rigid motion of cross-sections linked to a deformable
reference line. This line needs not be straight, and its curvilinear coordinate in the reference configuration is the arc-length
parameter s. The components of the local initial curvature vector in a local reference frame will be denoted as k0ðsÞ∈R3.
There will be no assumptions in terms of material or geometric characteristics of the cross section other than its area being
small compared to the square of the typical scale in the beam deformations. The material constants are the cross-sectional
mass matrix M, and the flexibility (or compliance) matrix C, both of which are obtained from a structural homogenization
process [22]. They are full 6�6 symmetric matrices (including, in general, rotational inertia and transverse shear stiffness)
that may vary with the arc length s, although we do not make this dependence explicit. The intrinsic equations that describe
the beam dynamics under given applied forces, faðs; tÞ∈R3, and moments, maðs; tÞ∈R3, per unit length were developed
by Hodges [13]. Defining the vector of applied loads as f1ðs; tÞ ¼ fa;ma, they will be written here in the compact form of
Ref. [11] as

M _x1−x2′−Ex2 þ L1ðx1ÞMx1 þ L2ðx2ÞCx2 ¼ f1;

C _x2−x1′þ E⊤x1−L⊤
1 ðx1ÞCx2 ¼ 0: (1)

Dots ð _�Þ denote derivatives with respect to time, t, while primes ð�′Þ denote derivatives with respect to the arc length s. The
state vector components x1ðs; tÞ∈R6 and x2ðs; tÞ∈R6 are defined as

x1 ¼
v
ω

� �
; x2 ¼

f
m

� �
; (2)

where vðs; tÞ and ωðs; tÞ are the local translational and angular inertial velocities; fðs; tÞ and mðs; tÞ are the sectional internal
forces and moments, which are also often referred to as stress resultants. All vectors (including the applied forces, fa, and
moments, ma) are defined in the current configuration and expressed in their components in the local (deformed) material
frame. Therefore, constant values with time would denote constant following forces. The definition of the local velocities
and stress resultants in terms of beam displacements and rotations can be found, for example, in Ref. [23], but will not be
needed here.

The matrix E in Eq. (1) includes the effect of the initial twist and curvature and is defined as

E≔
~k0 0
~e1

~k0

 !
; (3)

where e1≔ð1;0;0Þ and ~� is the skew-symmetric (or cross-product) operator, and the linear operators L1 and L2 are
defined as

L1ðx1Þ≔
~ω 0
~v ~ω

� �
and L2ðx2Þ≔ 0 ~f

~f ~m

 !
: (4)

It can be easily seen that for each h1;h2∈R6, they satisfy

L1ðh1Þh2 ¼L2ðh2Þh1; (5)

L⊤
1 ðh1Þh2 ¼ −L⊤

1 ðh2Þh1: (6)

Finally, it is worth comparing this description to others in the literature. The first equation in (1) corresponds to the linear-
and angular-momentum balance equations, written in its intrinsic form. For static problems, it reduces to the equations
of Reissner [24]. A full derivation of the dynamic equations can be found in the work by Simó [25]. The second equation in
(1) is the compatibility condition between beam strains and velocities. It enforces that they correspond to the same
displacement field, and thus ensures the uniqueness of the solution. Details of the derivation of this equation can be found
in the work by Hodges [13]. The problem of numerically integrating Eq. (1) or otherwise characterizing its solutions
must be solved with end conditions at s¼0 and s¼S, for all t, as well as with initial conditions for x1 and x2, for all s.
The natural spatial boundary conditions satisfy1

x1;ið0; tÞx2;ið0; tÞ ¼ 0;

x1;iðS; tÞx2;iðS; tÞ ¼ 0; (7)

for i¼ 1;…;6. As it was mentioned in the Introduction, the intrinsic beam equations are related to Euler's rigid-body
equations of motion. Indeed, a physical interpretation could be to consider the beam as a collection of rigid cross-sections
moving as rigid bodies that are constrained by the internal forces and moments. Beam displacements and rotations would
appear explicitly in the equations only if the applied forces and moments in Eq. (2), or the boundary conditions, depend on
1 For a cantilever beam, the spatial boundary conditions are x1ð0; tÞ ¼ 0 and x2ðS; tÞ ¼ 0.
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them. They can be obtained, at individual positions along the beam, by direct integration of the local velocities using
methods of rigid-body dynamics [11].

3. Linear normal modes

In this section, we will obtain the linear normal modes (LNMs) of the system defined by (1) with boundary conditions
such as those given in Eq. (7). Such LNMs will be used in subsequent sections to obtain a finite-dimensional description of
the nonlinear beam dynamics. The LNMs of the undeformed beam have been derived in Ref. [11]. Here, we consider the
more general case of the dynamics about a static equilibrium condition with a constant forcing f1. The equilibrium state for
the system (1) subject to such a forcing term is given by x1 ¼ 0, i.e., zero velocities, and a distribution of stress resultants
x2ðsÞ given by the solution to

x′2 þ Ex2−L2ðx2ÞCx2 þ f1 ¼ 0: (8)

Once the static equilibrium is found, we can define the following perturbation states:

δx1≔x1;

δx2≔x2−x2: (9)

Substituting this definition into Eq. (1) with zero additional loading gives the free vibrations around a static equilibrium
(8). If we further assume small perturbations, it can be shown that the linearized beam dynamics around the equilibrium ð 0x2

Þ
are given by

Mδ _x1 ¼ δx′2 þ ½Eþ L1ðCx2Þ−L2ðx2ÞC�δx2;

Cδ _x2 ¼ δx′1−½ET þ LT
1ðCx2Þ�δx1; (10)

where identities (5)–(6) were used to obtain the final expressions. Eq. (10) defines a homogeneous linear partial differential
equation in the perturbation variables (9). Its solutions can be sought by inspection as in Ref. [18], that is,

δx1 ¼ ϕ1jðsÞ sin ðωjtÞ;

δx2 ¼ ϕ2jðsÞ cos ðωjtÞ: (11)

As this is a first-order formulation, each LNM has associated mode shapes defined both in terms of velocities and resultant
stresses. Consequently, substituting Eq. (11) into the homogeneous equation (10), defines an eigenvalue problem in the
mode shape pairs ϕj≔ðϕ1j

ϕ2j
Þ, as

ðLþ TÞϕj ¼ ωjϕj; (12)

where we have defined the differential operator

LðgÞ≔ 0 M−1

−C−1 0

 !
g′1
g′2

 !
; g≔

g1
g2

 !
∈DðSÞ; (13)

on an appropriate domain,2 D(S), and the bounded matrix operator

T≔
0 M−1ðE−L2ðx2ÞCþ L1ðCx2ÞÞ

C−1ðET þ LT
1ðCx2ÞÞ 0

 !
: (14)

In Section 4, solutions to the nonlinear beam dynamic equations are constructed in terms of the mode shapes ϕj using
a Galerkin projection method. It is therefore of interest to determine whether the mode shapes ϕj are orthogonal, which
is equivalent to asking whether Lþ T is a self-adjoint operator. Note first that, if elements of D(S) satisfy the boundary
conditions (7), L is self-adjoint with respect to the inner product

〈h;g〉M;C≔
Z S

0
ðh⊤

1Mg1 þ h⊤
2Cg2Þ ds: (15)

On the other hand, the bounded operator T is self-adjoint with respect to 〈�; �〉M;C if and only ifZ S

0
h⊤
2L⊤

2 ðx2ÞCg1 ds¼
Z S

0
h⊤
1L2ðx2ÞCg2 ds; ∀

g1
g2

 !
;

h1

h2

 !
: (16)

This condition holds if and only if x2 ¼ 0.
Using these results, we can now comment in detail how the properties of the operators L and T influence whether the

spatial mode shapes ϕj define an orthogonal set.
2 For a cantilever beam, DðSÞ≔fg : g1′;g2′∈L
2ð½0; S�Þ6 ; g1ð0Þ ¼ 0; g2ðSÞ ¼ 0g⊂L2ð½0; S�Þ6 � L2ð½0; S�Þ6.
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3.1. Undeformed initial equilibrium

In the case of an undeformed initial equilibrium x2 ¼ 0, Lþ T is self-adjoint and hence has an orthonormal basis of
eigenvectors satisfying

〈ϕ1i;Mϕ1j〉¼ δij ¼ 〈ϕ2i;Cϕ2j〉; i; j∈N; (17)

where 〈f;g〉≔
R S
0 f⊤g ds is the standard L2-inner product on L2ð½0; S�Þ6.

3.2. Deformed initial equilibrium

In the case of a deformed initial equilibrium, i.e., x2≠0, the operator T is no longer self-adjoint. However, since Lþ T is a
bounded perturbation of a self-adjoint operator, relatively mild conditions exist [26] under which Lþ T has a complete set of
eigenvectors ϕj, for which both ðϕ1jÞ∞j ¼ 1 and ðϕ2jÞ∞j ¼ 1 span L2ð½0; S�Þ6. If this is the case then the orthogonality condition (17)
cannot hold, in contrast to the undeformed equilibrium. To see why this is true, note that if (17) holds then Eq. (12) can be
used to show that

〈ϕ1i;L2ðx2ÞCϕ2j〉¼ 0; ∀ði; jÞ∈N�N: (18)

Since the eigenvectors span L2ð½0; S�Þ6 it follows that L2ðx2ÞC¼ 0 and hence, x2 ¼ 0.
In summary, assuming that Lþ T has a complete set of eigenvectors, the orthonormality conditions (17) are true if and

only if the reference conditions correspond to the undeformed beam.

4. Nonlinear equations of motion in intrinsic modal coordinates

The mode shapes ϕj obtained in the previous section will now be used to construct solutions of the partial differential
equation (1) by writing the states of the intrinsic model in the separated form

x1ðt; sÞ ¼∑q1jðtÞϕ1jðsÞ;

x2ðt; sÞ ¼∑q2jðtÞϕ2jðsÞ þ x2ðsÞ: (19)

Substituting this Ansatz into Eq. (1) and projecting the results onto each of the modal functions, ϕj, results in the following
system of ODEs for the temporal weighting functions q1ðtÞ≔ðq11; q12;…Þ and q2ðtÞ≔ðq21; q22;…Þ:

A1 _q1 ¼ B1q2−ðq1ℓΓℓ
1q1 þ q2ℓΓℓ

2q2Þ þ η1

A2 _q2 ¼ B2q1 þ q2ℓðΓℓ
2Þ⊤q1; (20)

where we have used Einstein's summation convention on repeated indices. The coefficients in this equation are the real
constants

ðA1Þjk≔〈ϕ1j;Mϕ1k〉

ðA2Þjk≔〈ϕ2j;Cϕ2k〉

ðB1Þjk≔〈ϕ1j;ϕ′2k þ ðE−L2ðx2ÞCþ L1ðCx2ÞÞϕ2k〉

ðB2Þjk≔〈ϕ2j;ϕ′1k−ðET þ LT
1ðCx2ÞÞϕ1k〉

ðΓℓ
1Þjk≔〈ϕ1j;L1ðϕ1kÞMϕ1ℓ〉

ðΓℓ
2Þjk≔〈ϕ1j;L2ðϕ2kÞCϕ2ℓ〉

η1j≔〈ϕ1j; f1−f1〉: (21)

Note that all these coefficients are constant functions of the problem data and consequently can be pre-computed offline,
and that they completely characterize the geometrically exact beam dynamic equations in modal coordinates. Using Eq. (6),
it can be shown that each of the matrices Γℓ

1 is antisymmetric. Moreover, since M and C are symmetric matrices, it follows
that A1 and A2 are symmetric. Note finally that these equations simplify to those of Ref. [11, Eq. (20)] when x2 ¼ 0, since in
this case (17) implies that A1 ¼ I and A2 ¼ I.

Since, in general, the mode shapes do not define an orthogonal set, Eq. (20) is still valid for any other suitable basis ϕjðsÞ.
This includes, in particular, a finite-element discretization of the curvilinear domain, as it was done in Ref. [23].
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5. Quantities conserved with time

We can now identify various energy metrics in the equations that describe the geometrically nonlinear beam dynamics.
The most obvious one is the total energy of the system (1), which is defined in the usual way as the sum of the instantaneous
kinetic and strain energy,

E0ðx1; x2Þ≔1
2 〈x1;Mx1〉þ 1

2〈x2;Cx2〉: (22)

It is easily shown from Eq. (1) that the energy dissipation rate is given by the instantaneous mechanical power of the
external forces, i.e.,

dE0

dt
¼ 〈x1; f1〉; (23)

which implies, as expected, that the free vibrations of the unforced system are energy-invariant. Next, consider the
perturbations of a system initially in static equilibrium with constant forcing f 1, defined by Eq. (8). Its subsequent dynamics
—keeping all nonlinear terms—is written in terms of the perturbation states (9) as

Mδ _x1−δx2′−Eδx2 þ L2ðδx2ÞCx2 þ L2ðx2ÞCδx2 þ L1ðδx1ÞMδx1 þ L2ðδx2ÞCδx2 ¼ 0;
Cδ _x2−δx1′þ E⊤δx1−L⊤

1 ðδx1ÞCx2−L⊤
1 ðδx1ÞCδx2 ¼ 0: (24)

From Eq. (23), the total energy of this forced system is not conserved. We can define instead its perturbation energy about the
equilibrium condition x2, by analogy with the total energy, as

Ex2
ðδx1; δx2Þ≔1

2 〈δx1;Mδx1〉þ 1
2〈δx2;Cδx2〉: (25)

Since the underlying partial differential equation (24) is nonlinear, it should not be expected that (25) is invariant, except in
the unforced case x2 ¼ 0. Indeed,

dE0

dt
−
dEx2

dt
¼ 〈Cδ _x2; x2〉¼ 〈δx′1−E⊤δx1 þ L⊤

1 ðδx1ÞCx2 þ L⊤
1 ðδx1ÞCδx2; x2〉

¼ 〈δx1;−x′2−Ex2 þ L2ðx2ÞCx2〉−〈L1ðδx1ÞCδx2; x2〉

ðby ð8Þ ¼ 〈δx1; f 1〉−〈L1ðδx1ÞCδx2; x2〉: (26)

Hence, and noting that δx1¼x1 for perturbations about static equilibrium, the expression (23) for the energy dissipation of
the original system can be used to show that

dEx2

dt
¼ 〈L1ðδx1ÞCδx2;x2〉; (27)

meaning that the energy dissipation rate corresponding to the perturbation states depends upon the interaction of
the gyroscopic term L1ðδx1ÞCδx2 (a cross product of the local angular velocity and the local beam strains) with the stress
resultants at the equilibrium position, x2. In general, the above expression is non-zero and hence the perturbation energy
Ex2

is not time-invariant in the free vibrations about a non-zero equilibrium condition. This result may still be useful, as
Eq. (27) gives the rate of change of the perturbation energy in the same way in which Eq. (23) gave the rate of change of the
total energy.

5.1. Energy in the free vibrations of the approximating finite-dimensional systems

It is now of interest to determine whether the energy conservation and dissipation properties of the full PDE, initially in
static equilibrium under constant forcing, Eq. (24), are inherited by its finite-dimensional approximations. As before, assume
that Eq. (24) has solutions of the form

δx1 ¼ ∑
N

j ¼ 1
q1jðtÞϕ1jðsÞ; δx2 ¼ ∑

N

j ¼ 1
q2jðtÞϕ2jðsÞ; (28)

for spatial mode shapes ϕjðsÞ satisfying the eigenvalue problem (12) and temporal weighting functions q1j
q2j

� �
satisfying the

ordinary differential equations (20). That is, solutions of the continuous problem are found using a projection on a
finite-number of mode shapes. The states in this ODE (20) will be written as

q1≔ðq11;…; q1NÞ; q2≔ðq21;…; q2NÞ: (29)

An energy-type quantity can be defined for each of the finite-dimensional systems as

EN
x2
ðq1;q2Þ≔1

2ðq⊤
1A1q1 þ q⊤

2A2q2Þ: (30)

This is the natural finite-dimensional analogue of the perturbation energy, Ex2
ðδx1; δx2Þ, since, by definition of A1 and A2

in (21), Eq. (30) is directly obtained by substituting the modal expansions (28) into Eq. (25). Note that the matrices
A1;A2 depend implicitly on the forcing f 1 since the mode shapes ϕj are defined (by Eq. (12)) in terms of the equilibrium

point 0
x2

� �
.
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An important special case is when f1 ¼ 0, which implies x2 ¼ 0 and that the modes ϕjðsÞ satisfy (17). As discussed
in section 4, in this special case we have A1 ¼ I¼A2 and, consequently, the energy of each finite-dimensional ODE
approximating Eq. (1) is

EN
0 ðq1;q2Þ ¼

1
2

∑
N

j ¼ 1
ðq2

1j þ q2
2jÞ: (31)

In the following section, it will be shown that the energy invariance of the unforced system, that was determined in
Eq. (23), is inherited by each of its finite-dimensional approximations, i.e., that dEN

0 =dt ¼ 0, for each approximation
dimension N. Similarly, for the case of an initially deformed configuration, the energy EN

x2
will be shown to have a dissipation

rate analogous to Eq. (27). To this end, using (20), the derivative of the ODE energy (30) is given by

dEN
x2

dt
¼ q⊤

1A1 _q1 þ q⊤
2A2 _q2 ¼ q⊤

1 ðB1 þ B⊤
2 Þq2

−q1lq
⊤
1Γ

ℓ
1q1−q2ℓðq⊤

1Γ
ℓ
2q2−q

⊤
2 ðΓℓ

2Þ⊤q1Þ ¼ q⊤
1 ðB1 þ B⊤

2 Þq2; (32)

where the final equality holds since each Γℓ
1 is anti-symmetric. One can use this expression to study the energy-invariance

characteristics of the free vibration about each of the two cases for the initial equilibrium.

5.1.1. Energy invariance for an unloaded initial equilibrium, x2 ¼ 0
In the undeformed case, the orthogonality relations (17) imply that A1 ¼ I¼A2. Furthermore, since the mode shapes ϕjðsÞ

satisfy (12) with x2 ¼ 0, it can be seen that B1 ¼Ω¼−B2, where Ω≔diagðω1;…;ωNÞ. It follows from (32) that

dEN
0

dt
¼ q⊤

1 ðΩ−ΩÞq2 ¼ 0: (33)

Hence, each finite-dimensional approximation of the undeformed system is energy-invariant. Note that energy invariance
of the finite-dimensional system holds regardless of the quality (accuracy) of the approximation that it provides to the
actual dynamics of the full system. This energy conservation will be shown numerically in Section 7 for the nonlinear free
vibrations of a cantilever beam.

5.1.2. Energy-dissipation rate for a deformed equilibrium, x2≠0
The energy of the perturbation states in the deformed case x2≠0 satisfies

dEN
x2

dt
¼ q⊤

1 ðB1 þ B⊤
2 Þq2: (34)

Using (21), it can be shown that

ðB1 þ B⊤
2 Þjk ¼ 〈L2ðϕ1jÞCϕ2j; x2〉 (35)

which provides the finite-dimensional analogue to Eq. (27). It can also be deduced from (21) that B1 ¼ A1Ω and B2 ¼ −A2Ω
and hence,

dEN
x2

dt
¼ q⊤

1 ðA1Ω−ΩA2Þq2: (36)

In general, A1Ω≠ΩA2 and the energy EN
x2

is not invariant. Note however that, if the energy EN
x2

were invariant (i.e., if
A1Ω¼ΩA2), then trajectories of the (20) would lie on the surface of the ellipse

q1

q2

 !
: ∥A1=2

1 q1∥
2 þ ∥A1=2

2 q2∥
2 ¼ 2K

( )
⊂R2N ; (37)

with K the perturbation energy at t¼0. In the next section we develop a more general method, based on constructing
Casimir functions, for searching for invariant quantities of the forced system dynamics.

5.2. Conserved quantities under constant forcing via Casimir functions

In the case of a deformed equilibrium, x2≠0, it was shown in the previous section that the perturbation energy EN
x2

associated with the finite-dimensional approximation to the forced PDE (1) is not invariant in general.3 A different approach
towards approximating the forced PDE is therefore needed. In particular, we employ Casimir functions [27] to derive
conditions for the existence of conserved quantities in this case.

To achieve this, we will need first to project the system of equations (1) on the mode shapes ϕj satisfying (12) for x2 ¼ 0,
that is, we make the substitution x1 ¼∑q1iϕ1i; x2 ¼∑q2iϕ2i and project by taking the inner product with each mode shape.
3 Note that due to the constant forcing f 1 in (23), the total energy EN
0 is not invariant either.
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This results in a forced ODE approximation of the form

_q1 ¼Ωq2−ðq1ℓΓℓ
1q1 þ q2ℓΓℓ

2q2Þ þ η1;

_q2 ¼ −Ωq1 þ q2ℓðΓℓ
2Þ⊤q1; (38)

where η1j≔〈ϕ1j; f 1〉 are constant coefficients and the matrices appearing in (38) are defined as in Eq. (21) with x2 ¼ 0. In
other words, the original, forced, partial differential equation (1) is approximated using a forced ODE. This is in contrast to
the approach taken in Section 4, where the PDE itself was first linearized about the deformed equilibrium condition.

The drawback of this approach is, of course, that the linearization of Eq. (38) no longer represents the small amplitude
oscillations about the (nonlinear) static equilibrium. However, the resulting dynamical system is a forced Hamiltonian system,
for which analysis methods are readily available in the literature [14]. Writing q¼ q1

q2

� �
, Eq. (38) can be written as

_q ¼ ðW þNðqÞÞqþ η1

0

� �
; (39)

where

W≔
0 Ω
−Ω 0

� �
; NðqÞ≔

−N1ðq1Þ −N2ðq2Þ
N2ðq2Þ⊤ 0

 !
; (40)

where N1ðq1Þ≔q1ℓΓℓ
1 and N2ðq2Þ≔q2ℓΓℓ

2. Properties of the forced system (38) can now be deduced using the particular
Hamiltonian structure of the system matrices (40). Since Ω is diagonal and each Γℓ

1 is anti-symmetric, it follows that W þ
NðqÞ is antisymmetric for each q∈R2N . It is also not difficult to verify that the equilibrium solutions q∈R2N of this forced non-
dissipative system are of the form q ¼ 0

q2

� �
, with q2 satisfying

q2 ¼ ð−ΩþN2ðq2ÞÞ−1η1: (41)

We now provide a sufficient condition for the existence of an invariant quantity for trajectories of the forced system (38)
about such an equilibrium position. Again motivated by Ref. [14], define the candidate Lyapunov function

VðqÞ≔1
2∥q∥

2
2−η

⊤
1Cðq2Þ; q¼

q1

q2

 !
; (42)

where C : RN-RN is a function which depends only upon the second component of the state q2. The derivative of V along
trajectories of (38) is given by4

dV
dt

¼ ∂V
∂q

_q ¼ q⊤− 0⋮η⊤
1
∂C
∂q2

� �� �
ðW þ NðqÞÞqþ η1

0

� �� �
;

ðby ð40Þ ¼ q⊤
1η1− η⊤

1
∂C
∂q2

ð−ΩþN2ðq2Þ⊤Þ⋮0
� �

q

¼ q⊤
1η1−η⊤

1
∂C
∂q2

ð−Ωþ N2ðq2Þ⊤Þq1: (43)

Consequently, if there exists a function C : RN-RN that satisfies the partial differential equation

∂C
∂q2

¼ ð−Ωþ N2ðq2Þ⊤Þ−1; q2∈R
N ; (44)

then dV=dt ¼ 0 along trajectories of the forced system. Hence, the quantity VðqðtÞÞ is preserved in time.
A function C satisfying (44) is called a Casimir function [27]. If a Casimir function can be constructed then, depending on

the inherited properties of V, information can be deduced about trajectories of the forced system. For example, if C is linear
(which occurs if N2≡0) then

VðqðtÞÞ ¼ 1
2 ∥qðtÞ−q∥22 ¼ 1

2 ∥q1∥
2
2 þ 1

2∥q1 þΩ−1η1∥
2
2 (45)

and each trajectory of the forced system lies on the surface of an sphere in R2N centred at q. More generally, if V is positive
definite then trajectories of (38) lie on closed contours of RN (the level sets of V). Note also that if C is a Casimir then, since
each equilibrium position q of the system satisfies (41), it follows that

∂V
∂q

ðqÞ ¼ 0; (46)

i.e., equilibrium points of the system are stationary points of V.
4 For the sake of clarity, we employ the convention ½∂C=∂q2�ij≔∂Ci=∂q2j .
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5.2.1. Existence of Casimir functions
In general, constructing a Casimir function C satisfying (44) is a difficult task and it is not always the case that such a

function exists. To provide a condition for existence, note that q2↦−ΩþNðq2Þ⊤ is a linear function of q2. Hence, there exists
a matrix Rðq2Þ∈RN�N , each entry of which is a rational function5 of q2, for which

ð−Ωþ Nðq2Þ⊤Þ−1 ¼ Rðq2Þ; q2∈R
N : (47)

Poincaré's Lemma implies that a Casimir function exists satisfying (44) if and only if

∂Rij

∂q2k
¼ ∂Rkj

∂q2i
; i; j; k∈f1;…;Ng: (48)

Now, for any matrix A which depends upon a scalar parameter z, ∂A−1=∂z¼ −A−1ð∂A=∂zÞA−1. Hence, (48) is equivalent to

ðRðq2ÞðΓi
2Þ⊤Rðq2ÞÞkj ¼ ðRðq2ÞðΓk

2Þ⊤Rðq2ÞÞij; i; j; k∈f1;…;Ng; (49)

which holds if and only if

ðRðq2ÞðΓi
2Þ⊤Þkj ¼ ðRðq2ÞðΓk

2Þ⊤Þij; i; j; k∈f1;…;Ng: (50)

Since Rðq2Þ can be calculated analytically, this condition can in principal be checked to verify the existence of a Casimir
function for the forced dynamics (38). For alternative conditions characterizing the existence of solutions to Eq. (44),
see Ref. [28].

We pose as an open question which, if any, conditions upon the structural matrices M;C imply that (50) is satisfied.

5.2.2. Approximation of Casimir functions
In practice, computing an analytical expression for Rðq2Þ may be difficult unless the state dimension N is small. If Rðq2Þ

cannot be calculated, we instead propose constructing an approximate Casimir function. Assuming ∥N2ðq2Þ∥o∥Ω∥, which
introduces an upper bound on the internal forces/moments, the inverse appearing in Eq. (44) may be written as

ð−Ωþ N2ðq2Þ⊤Þ−1 ¼− ∑
∞

n ¼ 0
ðΩ−1N2ðq2Þ⊤ÞnΩ−1: (51)

Now, if C has the form C¼∑∞
n ¼ 0CðnÞ and

∂CðnÞ
∂q2

¼−ðΩ−1N2ðq2Þ⊤ÞnΩ−1; n∈N∪f0g: (52)

it follows that C is a Casimir function.
As it will be seen in the numerical examples, it may be sufficient to compute only a finite number of terms CðnÞ to observe

preservation of the associated Lyapunov function V along trajectories of (20). We indicate how to calculate Cð0Þ and Cð1Þ.
For n¼0, select

Cð0Þðq2Þ ¼−Ω−1q2 (53)

For n¼1, suppose that Cð1Þ is a general quadratic polynomial in the variable q2, i.e.,

Cð1Þðq2Þ≔1
2ðq⊤

2Q
ðiÞq2ÞNi ¼ 1; Q ðiÞ ¼ ðQ ðiÞÞ⊤: (54)

We want to select matrices Q ðiÞ such that

∂Cð1Þ
∂q2

¼
q⊤
2Q

ð1Þ

⋮
q⊤
2Q

ðNÞ

0
BB@

1
CCA¼ −Ω−1N2ðq2Þ⊤Ω−1 ¼ q2ℓG

ðℓÞ (55)

where GðℓÞ≔−Ω−1ðΓℓ
2Þ⊤Ω−1. Let

Q ðiÞ≔ðqðiÞjℓ Þ≔
gðℓÞij þ gðjÞiℓ

2

 !
: (56)

A comparison of coefficients shows that (55) holds if

gðℓÞij ¼ gðjÞiℓ ; i; j;ℓ∈f1;…;Ng (57)

Even if this is not the case, it can be shown that Cð1Þ is the unique quadratic function for which that ℓ2-distance between the
coefficients of ∂Cð1Þ=∂q2 and −Ω−1N2ðq2Þ⊤Ω−1 is minimized.
5 A function f is rational in q2 if f ðq2Þ ¼ aðq2Þ=bðq2Þ for polynomials a; b : RN-R.
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In Section 7, VðqÞ ¼ 1
2 ∥q∥

2−η⊤
1Cðq2Þ is calculated for a numerical example of a cantilever beam vibrating freely about

a non-zero equilibrium. The Casimir function C is approximated by C≈Cð0Þ þ Cð1Þ and the resulting trajectory of V is plotted
in Fig. 6.

6. Spatial conservation laws

We consider finally spatial invariance of the average cross-sectional power at a given beam location, s, and over a period T,
defined as

IT ðsÞ≔
1
T

Z T

0
x1ðs; tÞ⊤x2ðs; tÞ dt; s∈½0; S�; T≥0; (58)

where x1; x2 are, as before, the local inertial velocities and stress resultants, respectively, satisfying Eq. (1) with boundary
conditions satisfying Eq. (7). To obtain the invariance property, we first differentiate IT with respect to arc length s, as

dIT
ds

¼ 1
T

Z T

0
½x⊤

1x2′þ x⊤
2x′1� dt ¼

1
T

Z T

0
x⊤
1 ðM _x1−Ex2 þ Lðx1ÞMx1 þ L2ðx2ÞCx2−f1Þ dt

þ 1
T

Z T

0
x⊤
2 ðC _x2 þ E⊤x1−L⊤ðx1ÞCx2Þ dt: (59)

From the definitions of L1 and L2 in Eq. (4), it can be seen that x⊤
1L1ðx1ÞMx1 ¼ 0, and x⊤

2L⊤
1 ðx1ÞCx2 ¼ x⊤

1L2ðx2ÞCx2. As a result,
and using the symmetry of M and C, Eq. (59) can be written as

dIT
ds

þ 1
T

Z T

0
x⊤
1 f1 dt ¼

1
T

Z T

0
x⊤
1M _x1 þ x⊤

2C _x2 dt ¼
1
T

Z T

0

d
dt

1
2
x⊤
1Mx1 þ

1
2
x⊤
2Cx2

� �
dt; (60)

or

dIT
ds

¼ 1
2T

ðx1ðs; TÞ⊤Mx1ðs; TÞ þ x2ðs; TÞ⊤Cx2ðs; TÞÞ−
1
2T

ðx1ðs;0Þ⊤Mx1ðs;0Þ þ x2ðs;0Þ⊤Cx2ðs;0ÞÞ

−
1
T

Z T

0
x1ðs; tÞ⊤f1ðs; tÞ dt: (61)

Hence, if x1 and x2 are periodic in time with periods T1 and T2, respectively, then I ~T ′ðsÞ ¼ 0 for ~T ¼ lcmðT1; T2Þ at any point in
which there are no applied forces, i.e., f1ðs; tÞ ¼ 0 and t∈½0; ~T �. Therefore, points of zero applied force are critical points of the
average cross-sectional power I ~T ðsÞ ¼ 0. Furthermore, if there are no applied forces (i.e., the beam is vibrating freely),
the natural boundary conditions (7) imply that I ~T ð0Þ ¼ I ~T ðSÞ ¼ 0 giving I ~T ðsÞ ¼ 0, for each s∈½0; S�. This situation corresponds
to a nonlinear normal mode (NNM) of the structure [21], and the condition I ~T ðsÞ ¼ 0, for each s∈½0; S�, defines then an
additional criteria to search for NNMs in 1D structures. This will be exemplified in Section 7.2 in the nonlinear oscillations of
an isotropic cantilever beam.

If the solutions x1; x2 are not periodic, but nevertheless satisfy x1; x2∈L∞ð½0; S� � RþÞ, then it is easy to see that
limT-∞I′T ðsÞ ¼ 0 for each s∈½0; S� where there are no applied external forces. Again, the spatial boundary conditions imply
that, for free vibrations, limT-∞IT ðsÞ ¼ 0 for each s∈½0; S�.

7. Numerical examples

The static equilibrium conditions are obtained from the steady state of the full dynamic equations (1) with constant
forces and large added dissipation. The numerical implementation is based on a second-order central difference in space
and forward difference in time for static equilibrium computation. A fourth-order Runge–Kutta time-marching algorithm
was used to solve the modal equations (20). Although the RK4 numerical scheme is not inherently energy-preserving,
results in this section are solved with an automatic selection of timestep (using a relative error tolerance of 0.1 percent) to
guarantee that negligible integration errors, as shown in the validation tests.

Two test cases are considered: The first test case (Test-case 1) is an initially straight cantilever with various applied initial
velocities and loading distributions, designed to test the convergence of the numerical scheme and the conservation in time
of the total energy, E. Test-case 2 is a highly flexible cantilever tested by Pai [29]. Its properties were already used in a
previous work [11] to identify nonlinear normal modes (NNMs) and will serve here to study the spatial conservation laws.

7.1. Test-case 1: quantities conserved with time

This is an initially straight cantilever beam with dimensions 50�1�0.5 m, mass density 8000 kg/m3, Young's modulus
200 GPa, and Poisson's ratio 0.3, which is modelled under Euler–Bernoulli assumptions with non-neglibible rotational
inertia, that is, C¼ diagð1=EA;0;0;1=GJ;1=EI2;1=EI3Þ and M¼ diagðρA; ρA; ρA; ρI1; ρI2; ρI3Þ.

Our implementation of the geometrically nonlinear beam model in intrinsic modal coordinates is first verified against a
standard FEM solution (200 1D 2-noded beam elements simulated with a timestep of 0.02 s in ABAQUS). The initial
conditions are a parabolic velocity distribution of the form vyðsÞ ¼ vzðsÞ ¼ vmax � ðs=SÞ2, with vmax ¼ 30 m=s, where y and z are



Fig. 1. Displacements (a) and velocities (b) at the free end obtained by the intrinsic model (N¼72) and ABAQUS (200 elements, Δt ¼ 0:02 s). Free vibrations
of Test-case 1 with initial parabolic velocity distribution with vmax ¼ 30 m=s.
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in-plane and out-of-plane bending directions, respectively. The beam is then allowed to vibrate freely. Fig. 1 shows the three
components, in the inertial coordinate system, of the instantaneous displacement and velocity vectors at the free end. They
were obtained using the 72 lowest-frequency modes in the intrinsic model and are compared to the FEM results. It should
be noted that in the FEM solution, the displacements are the nodal degrees of freedom, while in the present method they are
obtained in two steps: first the local translational and angular velocities are reconstructed from the time-histories of the
modal amplitudes, and then they are integrated (using the propagation equations of rigid body dynamics) to determine the
instantaneous position and orientation of that particular beam section.

Fig. 2 shows the RMS error in the three components of the tip displacement vector, normalized by the beam length,
between the converged results and those obtained with a smaller number of modes. It can be seen that the first 45 modes in
the intrinsic description already provide a very good approximation to the FEM results. Note however that no effort was
done in those results at removing mode shapes that have a negligible impact in the beam dynamics. For instance, it is clear
from Fig. 2 that including modes 21–25 (which are higher-order bending modes) does not result in a significant increase of
model accuracy.

In order to demonstrate conservation of total energy, E0ðx1; x2Þ, in the unforced oscillations about an undeformed
equilibrium, the beam in Test-case 1 is subjected to an initial transverse follower force of 1 MN applied at the free end in the
transverse direction (along the local z-axis). This force causes a tip displacement of 32.3 m transversely and 15.74 m
longitudinally. The force is then removed, causing the beam to vibrate around its undeformed configuration. The time-
marching simulations were obtained in modal coordinates, with modes obtained about x2 ¼ 0, and using enough modes
(N¼45) to guarantee convergence. Total system energy E0ðx1; x2Þ is conserved, as can be observed in Fig. 3, which also
includes the instantaneous total potential and kinetic energy of the system.

It is more interesting to look at the energy of non-converged finite-dimensional approximations. First, recall that upon
expanding modes around the undeformed configuration (x2 ¼ 0), the total ODE energy EN

0 ðq1;q2Þ of the 2N-dimensional
approximation is conserved. This was shown analytically in Eq. (33). An illustration of this is presented for the case of N¼1
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Fig. 2. Average error in the tip displacement with respect to converged ABAQUS simulation. Test-case 1, subject to an initial parabolic velocity distribution
with vmax ¼ 30 m=s.
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Fig. 3. Total, kinetic and potential energy components. Test-case 1, free vibrations with initial static transverse follower tip load of 1 MN.
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and N¼15 in Fig. 4. Note that mode shapes satisfying the undeformed linearized equations (12), i.e., with x2 ¼ 0, ensure
energy conservation in each finite-dimensional approximating system. Note that the energy level in both cases is below 1.
This is because the initial conditions were approximated on the modal projection.

Suppose that we instead approximate the nonlinear beam vibrations using modes shapes calculated in terms of the
initial (deformed) equilibrium condition, i.e., mode shapes which satisfy (12) for the static loading condition x2≠0. Those
results are also included in Fig. 4, for N∈f15;20;25;30;45g and show that the energy is no longer conserved by the finite-
dimensional approximations to the full system. However, since the total energy of the full system, E0, given by (22), is
conserved, the fluctuations of the finite-dimensional system decrease as more modes are used and the approximation to the
full system becomes more accurate. Lastly it can be seen in Fig. 4 that approximately 45 modes are required to observe near
energy invariance.

It should be also noted that the initial equilibrium, x2, is not expanded as a modal approximation in the latter case,
therefore there is no error in the energy at t¼0, unlike the case with x2 ¼ 0.

Finally, we consider vibrations about a static, non-zero, equilibrium. In particular, the beam in Test-case 1 is first subject
to a transverse follower tipload of 1 MN. Subsequently, an initial parabolic velocity distribution with vmax ¼ 30 m=s is again
applied and the beam vibrates about the deformed equilibrium ð 0x2

Þ. In this case, neither the total energy E0ðx1; x2Þ nor the
perturbation energy Ex2

ðδx1; δx2Þ is conserved and the perturbation energy is seen in Fig. 5 to fluctuate with an amplitude of
less than 10 percent of E0ðx1; x2Þ.
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To assess the ability of the Casimir approach towards constructing invariant quantities for the forced system dynamics,
we consider an ODE approximation of the form (38) to the previous system. This is constructed with N¼10 pairs of spatial
mode shapes. An initial forcing η1 is applied to the ODE system, which corresponds to the 10-mode projection of a
transverse follower tip load of 1 MN. The ODE approximation is initialized with a state corresponding to the 10-mode
projection of an initial parabolic velocity distribution with vmax ¼ 30 m=s. The Lyapunov function VðqÞ ¼ 1

2 ∥q∥
2−η⊤

1Cðq2Þ is
constructed using the second-order approximation to the Casimir function C, as described in Section 5.2.1. In Fig. 6 the
approximation of V is plotted against the total energy 1

2 ∥qðtÞ∥2 of the forced system. The Lyapunov function V oscillates at an
amplitude of less than 3 percent of that of the total system energy.
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0 ðq1 ;q2Þ ¼ 1
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2 and the second-order approximation to the Lyapunov function VðqÞ ¼ 1

2 ∥q∥
2−η⊤1Cðq2Þ. Quantities calculated

using a 10-mode ODE approximation of the beam in Test-case 1. The ODE is subject to a constant forcing η1 corresponding to the 10-mode projection of a
transverse follower tip load of 1 MN. Initial disturbance of the system is the 10-mode projection of a parabolic velocity distribution with vmax ¼ 30 m=s.
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7.2. Test-case 2: spatially conserved quantities

The second test case uses the configuration tested in Ref. [29], which corresponds to an initially straight very flexible
cantilever beam with dimensions 479�50.8�0.45 mm, mass density 4430 kg/m3 and Young modulus 127 GPa. It will be
used to demonstrate the conservation of the average cross-sectional power IT, defined in Eq. (58), which was established for
periodic beam dynamics. For unforced cases, that state corresponds, by definition, to a NNM and the results of Palacios [11]
can be directly used. Here, the initial excitation corresponds to the second NNM of the beam (that is, the NNM that reduces
to the second linear bending mode in the zero-energy limit). Two cases are shown in Fig. 7, corresponding to initial velocity
amplitude of the second mode of 0.1 and 0.25 (all other modes are defined according to the NNM constraints of Ref. [11]). In
Fig. 7 the value of T � IT is plotted at equally spaced locations from s¼ 5 percent S up to s¼ 95 percent S along the length of
the beam. Both simulations show that the integral IT returns to zero periodically and simultaneously everywhere along the
beam. The period of the oscillations changes with the amplitude of vibrations (different energy levels), in accordance with
the results in [11]. This change is not very large for the amplitudes under consideration, but it can be seen in the different
number of cycles for each of the two cases included in Fig. 7. At the end of each period, the integral T � IT goes to zero at all
locations along the beam, thus demonstrating the conservation of average cross-sectional power.
8. Conclusions

In this paper, conserved quantities are identified in the free vibrations of geometrically nonlinear beams. It is known that
the total energy is conserved in time in the free vibrations about an undeformed equilibrium position. More interestingly, if
the beam dynamics are approximated using a finite-dimensional ODE model formed using the linear normal modes of an
intrinsic description, then the ODE energy is also conserved irrespective of the dimension of the approximating system. This
is a remarkable property of the intrinsic form of the beam equations that may offer new insights into nonlinear structural
vibrations.

If the beam is subject to a constant forcing, the free vibrations are about a non-zero equilibrium. In this case, the total
system energy is in general no longer conserved in the free-vibration phase. However, using Casimir functions, a sufficient
condition is derived under which a conserved quantity can be constructed for an ODE approximation of the forced beam
dynamics. An additional quantity, identified as the average cross-sectional power, has been shown to be conserved spatially
for periodic oscillations of the beam. This has been exemplified for a cantilever beam vibrating in a nonlinear normal mode.

Finally, when time-varying distributed forcing is present, expressions have been given to determine the rate of the
change of the corresponding quantities of interest. The properties demonstrated for the finite-dimensional approximations
are guaranteed regardless of their actual accuracy in the estimation to the dynamics of the continuous system, which should
prove very useful in energy-based methods for nonlinear vibration control.



Fig. 7. Normalized value of T � IT at equally spaced locations along the beam length against the integration time, T, for the second nonlinear normal mode in
Test-case 2. Initial conditions are determined by the amplitude in velocities of the second bending mode, q12ð0Þ. (a) q12ð0Þ ¼ 0:1 (b) q12ð0Þ ¼ 0:25.
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