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Contact Dehn surgery, symplectic fillings, and Property P
for knots
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Abstract

These are notes of a talk given at the Mathematische Arbeitstagung 2005 in Bonn. Following ideas
of Özbağcı–Stipsicz, a proof based on contact Dehn surgery is given of Eliashberg’s concave filling
theorem for contact 3-manifolds. The role of the theorem in the Kronheimer–Mrowka proof of Prop-
erty P for nontrivial knots is sketched.
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1. Property P for knots

According to a fundamental theorem of Lickorish and Wallace from the 1960s, every
closed, connected, orientable 3-manifold can be obtained by performing Dehn surgery on
a link in the 3-sphere. Previous to the recent work of Perelman, which is expected to close
the coffin on the Poincaré conjecture, it was a natural question for geometric topologists
whether one might be able to produce a counterexample to that conjecture by a single
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Dehn surgery. This led to the definition of the following property, whose name is generally
regarded as a little unfortunate.

Definition. A knot K in S3 has Property P if every nontrivial surgery along K yields a
nonsimply connected 3-manifold.

Our knots are always understood to be smooth, or at least tame, i.e. equivalent to a smooth
one.

Let me briefly recall the notion of Dehn surgery along a knot K in the 3-sphere S3. Write
�K�S1 × D2 for a (closed) tubular neighbourhood of K. On the boundary �(�K)�T 2 of
this tubular neighbourhood there are two distinguished curves (which we implicitly identify
with the classes they represent in the homology group H1(T

2)):

1. The meridian �, defined as a simple closed curve that generates the kernel of the homo-
morphism on H1 induced by the inclusion T 2 → �K .

2. The preferred longitude �, defined as a simple closed curve that generates the kernel of
the homomorphism on H1 induced by the inclusion T 2 → C := S3\�K .

This preferred longitude can also be characterised by the property that it has linking
number zero with K. The knot K bounds an embedded surface in S3 (called a Seifert
surface for K), and � can be obtained by pushing K along that surface. For that reason, the
trivialisation of the normal bundle of K defined by � is called the surface framing of K.

Given an orientation of S3, orientations of � and � are chosen such that (�, �) is a positive
basis for H1(T

2), with T 2 oriented as the boundary of �K . In the contact geometric setting
below, the orientation of S3 will be the one induced by the contact structure.

Let p, q be coprime integers. The manifold Kp/q obtained from S3 by Dehn surgery
along K with surgery coefficient p/q ∈ Q ∪ {∞} is defined as

Kp/q := S3\�K∪gS
1 × D2,

where the gluing map g sends the meridian ∗ × �D2 to p� + q�. The resulting manifold is
completely determined by the knot and the surgery coefficient.

A simple Mayer–Vietoris argument shows that H1(Kp/q)�Z|p|. Therefore, saying that
a knot K has Property P is equivalent to

�1(K1/q) = 1 only for q = 0.

(Observe that p/q = ∞ corresponds to a trivial surgery.)

Example. The unknot does not have Property P. Indeed, every (1/q)-surgery on the unknot
yields S3, which is seen as follows. If K is the unknot, then the closure C of S3\�K is also a
solid torus. Write �C and �C for meridian and preferred longitude on �C. We may assume
� = �C and � = �C . When performing (1/q)-surgery on K, a solid torus is glued to C by
sending its meridian �0 to � + q� = �C + q�C . Now, there clearly is a diffeomorphism
of C that sends �C to itself and �C to �C + q�C . It follows that the described surgery is
equivalent to the one where we send �0 to �C = �, which is a trivial ∞-surgery.
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In the early 1970s, Bing and Martin, as well as González-Acuña, conjectured that every
nontrivial knot has Property P. By work of Kronheimer and Mrowka [1], this is now a
theorem.

Theorem 1 (Kronheimer–Mrowka). Every nontrivial knot in S3 has Property P.

Before describing the role that contact geometry has played in the proof of this theo-
rem, I want to indicate the importance of this theorem beyond the negative statement that
counterexamples to the Poincaré conjecture cannot result from a single surgery.

Proposition 2. If two knots K, K ′ in S3 have homeomorphic complements and one of the
knots has Property P, then the knots are equivalent, i.e. there is a homeomorphism of S3

mapping K to K ′.

Proof. According to a result of Edwards [2], two compact 3-manifolds with boundary are
homeomorphic if and only if their interiors are homeomorphic. Thus, if S3\K is homeo-
morphic to S3\K ′, then there is a homeomorphism �: C → C′, where C := S3\�K and
C′ := S3\�K ′.

Suppose K has Property P. This implies that there is a unique way of attaching a solid
torus S1 × D2 to C such that the resulting manifold is the 3-sphere. Hence, � extends to a
homeomorphism S3 → S3 mapping K to K ′. �

Observe that in this proof we did not actually use the full strength of Property P, but only
the weaker property that nontrivial surgery along K does not yield the standard 3-sphere.
This had been proved earlier (for K different from the unknot) by Gordon and Luecke [3].

Theorem 3 (Gordon–Luecke). Nontrivial Dehn surgery along a nontrivial knot in S3 never
yields S3.

It is clear that Theorem 1 implies Theorem 3.A positive answer to the Poincaré conjecture
would give the opposite implication. Either theorem, together with (the proof of) Proposition
2, implies that nontrivial knots are classified by their complement. Since the unknot is
characterised by its complement being a solid torus, this statement actually holds for all
knots:

Corollary 4 (Gordon–Luecke). If two knots in S3 have homeomorphic complements, then
the knots are equivalent.

2. Contact Dehn surgery

This section gives a brief report on joint work with Fan Ding [4]. Recall that a (coori-
entable) contact structure � on a differential 3-manifold is a tangent 2-plane field defined
as the kernel of a global differential 1-form � that satisfies the nonintegrability condition
� ∧ d� �= 0 (meaning that � ∧ d� vanishes nowhere). An example is the standard contact
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structure

�st = ker(x dy − y dx + z dt − t dz)

on S3 ⊂ R4. This can also be characterised as the complex line in the tangent bundle T S3

of S3 with respect to complex multiplication induced from the inclusion T S3 ⊂ T C2|S3 .
A (smooth) knot K in a contact 3-manifold (M, �) is called Legendrian if it is everywhere

tangent to �. The normal bundle of such a knot has a canonical trivialisation, determined
by a vector field along K that is everywhere transverse to �. This will be referred to as the
contact framing. We now consider Dehn surgery along K with coefficient p/q as before,
but we define the surgery coefficient with respect to the contact framing.

There is a dichotomy between so-called tight and overtwisted contact structures on
3-manifolds. I need the notion of tightness to give a precise statement concerning the
definition of a contact structure on the surgered manifold. The actual definition of tightness,
however, is irrelevant for an understanding of what follows. For more details on contact ge-
ometry see the introductory lectures by Etnyre [5], the historical survey [6], or a forthcoming
Handbook chapter by the present author [7].

It turns out that for p �= 0 one can always extend the contact structure �|M\�K to one
on the surgered manifold in such a way that the extended contact structure is tight on the
glued-in solid torus S1 × D2. Moreover, subject to this tightness condition there are but
finitely many choices for such an extension, and for p/q = 1/k with k ∈ Z the extension
is in fact unique. These observations hinge on the fact that �(�K) is a convex surface in the
sense of Giroux, i.e. a surface admitting a transverse flow preserving the contact structure.
On solid tori with convex boundary condition, tight contact structures have been classified
by Giroux and Honda. Furthermore, one knows how to glue contact manifolds along convex
surfaces, since the germ of a contact structure along a convex surface is determined by some
simple data on that surface. Again I refer the reader to [5] for more details on convex surface
theory.

We can therefore speak sensibly of contact (1/k)-surgery. The following theorem is
proved in [4].

Theorem 5. Let (M, �) be a closed, connected contact 3-manifold. Then (M, �) can be
obtained from (S3, �st) by contact (±1)-surgery along a Legendrian link.

Remarks. (1) There is a related theorem, due to Lutz–Martinet in the early 1970s, cf. [7],
saying that every (closed, orientable) 3-manifold admits a contact structure in each homo-
topy class of tangent 2-plane fields. The original proof is based on surgery along a link in
S3 transverse to �st. For an alternative proof using Legendrian surgery see [8].

(2) From the topological point of view, surgeries with integer surgery coefficient are best,
since they correspond to attaching 2-handles to the boundary of a 4-manifold. Thus, contact
(±1)-surgeries are best from both the topological and contact geometric viewpoint.

(3) If (M ′, �′) is obtained from (M, �) by a contact (1/k)-surgery, one can recover (M, �)

by a suitable contact (−1/k)-surgery on (M ′, �′), see [4].
(4) Contact (−1)-surgery is symplectic handlebody surgery in the sense of Eliashberg

and Weinstein, cf. [8], and preserves the property of being strongly symplectically fillable
(see below).
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3. Symplectic fillings

Contact geometry enters the proof of Theorem 1 via the notion of symplectic fillings.
Observe that a contact 3-manifold (M, �) is naturally oriented – the sign of the volume form
�∧d� does not depend on the choice of 1-form � defining a given �; similarly, a symplectic
4-manifold (W, �), i.e. with � a closed 2-form satisfying �2 �= 0, is naturally oriented by
the volume form �2.

Definition. (a) A compact symplectic 4-manifold (W, �) is called a weak (symplectic)
filling of the contact manifold (M, �) if �W = M as oriented manifolds (outward normal
followed by orientation of M gives orientation of W ) and �|� �= 0.

(b) A compact symplectic 4-manifold (W, �) is called a strong (symplectic) filling of the
contact manifold (M, �) if �W =M and there is a Liouville vector field X defined near �W ,
pointing outwards along �W , and satisfying � = ker(iX�|T M). Here Liouville vector field
means that the Lie derivative LX�, which is the same as d(iX�) because of d� = 0 and
Cartan’s formula, is required to equal �.

For instance, (S3, �st) is strongly filled by the standard symplectic 4-disc D4

with �st = dx ∧ dy + dz ∧ dt . The Liouville vector field here is the radial vector field
X = r�r/2.

It is clear that every strong filling is also a weak filling. The converse is false: There
are contact structures that are weakly but not strongly fillable; such examples are due to
Eliashberg and Ding-Geiges.

The contact geometric result that allowed Kronheimer and Mrowka to conclude their
proof of Property P was established by Eliashberg [9].

Theorem 6 (Eliashberg). Any weak symplectic filling of a contact 3-manifold embeds sym-
plectically into a closed symplectic 4-manifold.

An alternative proof was given by Etnyre [10]. Both proofs rely on open book decompo-
sitions adapted (in the sense of Giroux) to contact structures. Theorem 6 being a cobordism
theoretic result, it is arguably more natural to give a surgical proof. Özbağcı and Stipsicz
[11] were the first to observe that such a proof, based on Theorem 5, can indeed be devised.
In the remainder of this section, I shall sketch this surgical argument.

Theorem 6 is proved by showing that any contact 3-manifold has what is called a concave
filling that can be glued to the given (convex) filling. (For instance, a strong concave filling
corresponds to a Liouville vector field pointing inwards along the boundary.) Such a “cap”,
attached to the (convex) symplectic filling of the contact manifold, gives the desired closed
symplectic manifold.

(i) Strong fillings can be capped off: Let (W, �) be a strong filling of (M, �). By
Theorem 5, there is a Legendrian link L=L−
L+ in (S3, �st) such that contact (−1)-surgery
along the components of L− and contact (+1)-surgery along those of L+ produces (M, �).
By Remarks (3) and (4) we can attach symplectic 2-handles to the boundary (M, �)of (W, �)

corresponding to contact (−1)-surgeries that undo the contact (+1)-surgeries along L+.
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The result will be a symplectic manifold (W ′, �′) strongly filling a contact manifold
(M ′, �′), and the latter can be obtained from (S3, �st) = �(D4, �st) by performing con-
tact (−1)-surgeries (along L−) only.

A handlebody obtained from (D4, �st) by attaching symplectic handles in this way is in
fact a Stein filling of its boundary contact manifold, and for those a symplectic cap had been
found earlier by Akbulut–Özbağcı and Lisca–Matić. The cap that fits on the Stein filling
also fits on the strong filling (W ′, �′), since strongly convex and strongly concave fillings
of a given contact manifold can always be glued together, using the Liouville flow to define
collar neighbourhoods of the boundary.

(ii) Reduce the problem to the consideration of homology spheres only: Let (W, �) be a
weak filling of (M, �). We want to attach a (weak) symplectic cobordism from (M, �) to
some integral homology sphere 	3 with contact structure �′, so as to get a weak filling of
(	3, �′) containing (M, �) as a separating hypersurface.

We start from a contact surgery presentation of (M, �) as in (i). For each component Li of
L we choose a Legendrian knot Ki in (S3, �st) only linked with that component, with linking
number 1. These Ki can be chosen in such a way that surgery with coefficient −1 relative to
the contact framing is the same as surgery with coefficient 0 relative to the surface framing.
(In case you know the term: the Thurston–Bennequin invariant of Ki can be chosen to be
equal to 1). Performing these surgeries has the effect of killing the first integral homology.

I shall indicate presently that these surgeries can be performed by attaching symplectic
2-handles as in the case of a strong filling; the collection of these handles then gives the
desired (weak) symplectic cobordism. The claim about the surgeries follows from Lemma
2.4 of [12], where it is shown that by a C∞-small perturbation of � in a neighbourhood of
the Ki one can achieve that (W, �) is a strong filling near these Legendrian knots. By Gray
stability, cf. [7], the perturbed contact structure is isotopic to �. (The argument in [12] is
rather sketchy; full details can be found in a forthcoming book on contact topology by the
present author.)

(iii) Pass from a weak filling of a homology sphere to a strong filling: We begin with a
weak filling (W, �) of an integral homology sphere (	3, �), for instance the one obtained
in (ii); beware that we retain the original notation for the filling. We want to modify � in
a collar neighbourhood 	3 × [0, 1] of the boundary 	3 ≡ 	3 × {1} such that the resulting
symplectic manifold is a strong filling of the new induced contact structure on the boundary.
By (i) this can then be capped off.

Since H 2(	3)=0, we can write �=d
 with some 1-form 
 in a collar neighbourhood as
described. (We see that it would be enough to have 	3 a rational homology sphere.) Choose
a 1-form � on 	3 with � = ker � and � ∧ �|T 	3 > 0, which is possible for a weak filling.
Then set

�̃ = d(f 
) + d(g�)

on 	3 ×[0, 1], where the smooth functions f (t) and g(t), t ∈ [0, 1], are chosen as follows:
Fix a small ε > 0. Choose f : [0, 1] → [0, 1] identically 1 on [0, ε] and identically 0 near
t = 1. Choose g: [0, 1] → R+

0 identically 0 near t = 0 and with g′(t) > 0 for t > ε/2.
We compute

�̃ = f ′ dt ∧ 
 + f � + g′ dt ∧ � + g d�,
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whence

�̃2 = 2ff ′ dt ∧ 
 ∧ � + 2f ′g dt ∧ 
 ∧ d� + f 2�2

+ 2fg′� ∧ dt ∧ � + 2fg� ∧ d� + 2gg′ dt ∧ � ∧ d�.

The terms appearing with the factors f 2, fg′ and gg′ are positive volume forms. By choosing
g small on [0, ε] and g′ large compared with |f ′| and g on [ε, 1], one can ensure that these
positive terms dominate the three terms we cannot control. Then �̃ is a symplectic form
on the collar and, in terms of the coordinate s := log g(t), the symplectic form looks like
d(es�) near the boundary, with Liouville vector field �s .

4. Proof of Property P for nontrivial knots

Here is a very rough sketch of the proof by Kronheimer and Mrowka. It relies heavily
on pretty much everything known under the sun about gauge theory. All relevant references
can be found in [1].

Let K be a nontrivial knot. It had been proved earlier by Culler–Gordon–Luecke–Shalen
that �1(K1/q) is nontrivial for q /∈ {0, ±1}. It therefore suffices to find a nontrivial homo-
morphism �1(K1) → SO(3).

Arguing by contradiction, we assume that no such homomorphism exists. This implies
the vanishing of the instanton Floer homology group HF(K1). By the Floer exact triangle
one finds that the group HF(K0) vanishes likewise, and so does the Fukaya–Floer homology
group.

For K nontrivial, results of Gabai say that K0 is different from S1 × S2 and admits
a taut 2-dimensional foliation. Eliashberg and Thurston, in their theory of confoliations,
deduce from this the existence of a symplectic structure on K0 × [−1, 1] weakly filling
contact structures on the boundary components. According to Theorem 6, by capping off
these boundaries we find a closed symplectic 4-manifold V containing K0 as a separating
hypersurface (and satisfying some mild cohomological conditions).

Now, on the one hand, the Donaldson invariants of V can be expressed as a pairing on
the Fukaya–Floer homology group of K0 and therefore have to vanish.

On the other hand, results of Taubes say that the Seiberg–Witten invariants of V are
nontrivial. By a conjecture of Witten, proved in the relevant case by Feehan–Leness, the
Donaldson invariants are likewise nontrivial. This contradiction proves Theorem 1.
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