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2 
A b s t r a c t - - W e  observe in a domain G C R~ a standard Brownian sheet disturbed by an unknown 
constant (mean). We determine explicitly, the maximum-likelihood estimator of the mean by the help 
of the method of stochastic partial differential equations. 

K e y w o r d s - - B r o w n i a n  sheet, Maximum-likelihood, Gaussian random fields, Mean estimation, 
Stochastic partial differential equations. 

1. I N T R O D U C T I O N  

The Brownian sheet is one of the most important examples of the Ganssian random fields. In 
many papers, some fundamental results were proved on the properties of these fields (see [1-3] 
and others). For example, Rozanov proposed a method to s tudy Brownian sheet by the help of 
linear stochastic partial differential equations (in the sequel LSPDE). 

We say W(tl, t2)(tl, t2 _~ 0) is a standard Brownian sheet if it is a Gaussian random field with 
mean-zero 

+2 
E W ( t l , t 2 )  = 0, V(t l ,  t2) E R 0 , 

and with covariance function 

coy  (W(tl, t2), W(Sl, s2)) = min(tb s l)"  rain(t2, s2). 

In this paper, we discuss the problem of the estimation of an unknown mean. We assume, that  
instead of the standard Brownian sheet W(tl,  t2), we observe in a domain G C R~ 2 = {(tl, t2) : 
t l ,  t~ > 0} the Brownian sheet with mean m: 

W = W(t l ,  t2) + m, (h ,  t2) e G, 

where m is an unknown constant. Generally, a Brownian sheet is given by aW+m,  a > 0, - c ~  < 
m < ~ .  It is well-known that  a may be estimated with probability 1 [4]. 

The main result of our paper is the following (assuming a few smooth properties of domain G). 
The maximum-likelihood estimator of m depends on the values and the generalized normal 

derivatives of the field only on a part of the boundary of G. 
In Section 2, we give shortly the results corresponding to the Radon-Nikodym derivative of 

Gaussian measures with different means. In Section 3, we describe Rozanov's scheme of LSPDE. 
In Section 4, we determine the maximum-likelihood (in the sequel ML) estimator of the mean of 
fields given by LSPDE. Applying this result, we prove in the last section the main theorem of 
our work with respect to the ML estimator of the mean of a Brownian sheet. 
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2. E Q U I V A L E N C E  O F  G A U S S I A N  M E A S U R E S  

The systematic investigation of general conditions of equivalence of Gaussian measures was 
started with the works of Feldman [5] and Hajek [6]. Earlier such problems were discussed by 
Cameron and Martin. In the sequel, we describe some important facts about orthogonality and 
equivalence of Gaussian measures, which we have to use. We follow the second chapter of [7]. 

Let (~t,~4) be a measurable space with two probability measures P and P1, and ~(w,t), 
w E f~, t E T, be a (random) function on the parameter space T. Assume on the space (f~, ,4, P)  

is a Gaussian random function with zero mean 

Ep~(t) = 0, t E T, 

and covariance function B 

cov(~(t), ~(s)) = B(t, s), t, s e T. 

Further, on the space (~,A, P1) ~ is also a Gaussian random function, but with a different 
expectation function 

Ep,~(t)  = a(t), t e T, 

and with the same covariance function B. 
To give sufficient and necessary conditions for the equivalence of measures P and P1, we 

introduce the linear space U and the Hilbert space U: 

U:= {u : ~ --~ R, u(w) = ~'~ ck~(w, tk), n E N, ck E R, tk E T }  

and U is the closure of U by the help of scalar product 

= fn u@)v@) dP. 

The following statement is true. 

STATEMENT. (See [7, p. 33].) The measures P and PI  are equivalent, if and only if there exists 

¢ e U such that 

a(t) = Ja ~(w, t)¢(w) dP, t e T. (2.1) 

In this case, the Radon-Nikodym derivative is given by 

dP1 e ¢(~) 
dP @) = e~¢,¢)/2" 

Particularly if Pro, m E R, are probability measures, and 

Ep..~(t) = ma(t), t E T, 
u 

then the measures P and Pm are equivalent, if and only if there exists an element ¢ E U 
which satisfies the equation (2.1), and the P,~ion-Nikodym derivative and ML estimator ~ of m, 
respectively, are the following: 

•dp ~ e ' ~ ( ' )  (2.2) 

~ =  ¢ (2.3) <¢,¢)" 
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We can apply this Statement, also in the case when the parameter space T is a Hilbert space X 
with scalar product (., .)x and ~(w,x), w • fl, x • X is a Gaussian linear continuous random 
functional on X, with covariance operator B: 

~.p.  (~, x) = re(x, a)x, 
c o r p .  ((~, x), (~, y)) = <x, By)x, 

r e • R ,  x • X ,  a • X ,  

r e • R ,  x, y • X. 

(~, x) means the value of the random functional ~ at x. If there exists an element z • X, such 
that 

Bz = a, 

then the measures Pm and P (P = Po) are equivalent, and the formulae (2.2) and (2.3) remain 
valid 

m e m( ~'z ) 
(w) = em2(z,Bz)/2, (2.4) 

a =  if, z) 
(z, Bz)" (2.5) 

3. LINEAR STOCHASTIC PARTIAL 
DIFFERENTIAL EQUATIONS 

In the eighties, Rozanov proposed a new method to study generalized Gaussian fields given by 
LSPDE. In his paper [1], one can find a detailed description of these equations. In the sequel, we 
describe his scheme. 

Let Go C_ R q be a domain, and 

L = Z aa(')Da' 
I~l~p 

(as • c°°(c0)), 

be a nondegenerate linear differential operator. The term "nondegenerate" means that if ~on 6 
C~°(Go) and lim,_~oo [ILcfl,[IL2 = 0 (L2 = L~(Go)), then for every ¢ 6 C~°(Go), 

The operator 

lim (~o.,  ¢)L2 = 0. 
n---~OO 

L" = ~ (-1)l~lD~(a~.) 

lal~p 

is a formal conjugate differential operator. The Hilbert space of test functions 

X = {x 6 D ' ( G 0 )  : ~. 6 C~°(Go), l im  IIL~.IIL2 = 0 ~ (~n,x) - -  0~ J 
n - - ~ O 0  

is the closure of L*LC~°(Go) by the help of scalar product 

(L*L~o, L*L¢) x = (L'Lto, ~)L2 ' 

If  G C_ Go, we can define the following subspace: 

~, ¢ e C~°(ao). 

X(G) = {x 6 X:  suppx C~}. 

Then, the following identity is true: 

X(G) = C~(G) = L*L2(G) + x+(r), 

where r = aG and X + (r) C X(F). 

(3.1) 
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Now, it is possible to speak about LSPDE. Let 

~ : L2(G0) --* H, 

be a linear continuous Ganssian functional and E(~/, f )  = 0, E(I?, f)(~7,g) = if ,  g)L2, Vf,  g E 
L2(Go) (~7 is a standard white noise), where H = £2(f~, .A, P)  is a Hilbert space of random 
variables with finite second moments. 

Let us say that  ~ is a solution of the following equation 

L~ -- ~, in Go, (3.2) 

if ~ : X --* H is a linear, continuous Gaussian functional and 

(~, L*~) = (~, ~), V~ e C~°(Go). 

As L*C~°(Go) is dense in X, the equation (3.2) can be solved and the solution is unique. From 
the identity (3.1), we get that  if G C Go, F = OG, and x e X(F), then there exists ~n e C~°(G) 
such that  

E ((~, x) - (~, ~ . ) ) 2  = IIx - ~ 1 1 ~  -~ 0. (3.3) 

If G C Go, setting 7/: L2(G) --* H is a standard Ganssian white noise, further ~r : X+(F) ~ H 
is a linear, continuous Gaussian functional with zero mean (E(~r, x) = 0). 

Let us say that  ~ is a solution of the following random boundary problem: 

L~ = ~, in G, (3.4) 

(~,x) = (~r,x), x e X+( r ) ,  (3.5) 

if ~ : X(G) ~ H is a linear continuous Gaussian functional 

(~, L*~) = (~, ~), V~ • C~°(G), 

and (~, x) = (~r, x), for all x • X + (F). 
In [1], it is proven that  the problem given by (3.4),(3.5) can be solved and the solution is unique 

(~, x) = (~, f )  + (~r, xr),  

where x • X(G), f • L2(G), Xr • X+(F), and 

x = L*f  + xr.  

4 .  M L  E S T I M A T I O N  O F  T H E  M E A N  

In this section, we determine the ML estimate of the mean if the observable Gaussian field 

satisfies LSPDE. 
Let Go, G, and L be as in Section 3, (n, ,4) is a measurable space and 

(~, x) = ~(~,  x),  ~ • ~ ,  x • X(G)  

is a (random) functional on the Hilbert space X(G). On the probability space (f~, .A, P,~), m E R, 

: X(G)  -~ £ 2 ( ~ ,  4 ,  P ~ )  

is a linear continuous Gaussian functional and 

= ~m + m -u, (4.1) 



Mean Estimation 

where (rn is the solution of the random boundary problem (3.4),(3.5) 
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L~m = ~?m, in G, 

(¢~, x) = (¢~,r, z), z e x+(r ) ,  

r I and ~,n,r are independent functionals, and the covariance structure of Cm,r does not depend on 
m. u is the solution of the following deterministic boundary problem: 

Lu = h, in G (h e L2(G)), C4.2) 

(u,x)  = Cur, x), x E X+(F). C4.3) 

In this case, we get for x = L* f + xr,  y = L*g + yr E X(G) Cf, g E L2CG), x r , y r  E X+(F)) 

mCx, a )x  -- Ep..  C~, x) -- Epm [(~, x ) ÷  mCu ' x)] = mCu , x) = m [Cf, h)LiCG) ÷ CuF, xF)], 
Cx, S y ) x  = COVp,n [(~, x), (~, y)] = COVp., [(¢, X), (¢, y)] 

= (f,g)L2(G)+ COrp. [(~r,x), (~r,Y)] = (f,g)L2(V)+ ( z r , S y r ) x .  

This means that  there exists z E XCG ) such that 

B z  = a, 

if and only if there exists zr E X+(F) for which 

(xr, Brz r )x  = (Ur, Xr), VXr E X+(G), (4.4) 

and in this case 

From here and (2.4),C2.5), we get 

z = L*h + zr. 

_ (~,z) = (~ ,L*h)+(~ , z r )  = (~ ,L*h)+(~ , z r )  

C z, B z ) x  Ilhll~ + Czr,Brzr)x Ilhll~ + (ur, zr)" 

So, we proved the following theorem. 

THEOREM 1. The Radon-Nikodym derivative of Gaussian measures P,~ and P corresponding to 
the field ~ which is given by (4.1), one can get i f  there exists a boundary functional zr 6 X+(G) 
which fulfills (4.4). In this case, the maximum likelihood estimator of the unknown m is the 
following 

= (~, L 'h )  ÷ (~, Zr) 
llhll~2 + Cur, Zr)" 

The distribution of ~ is Gaussian. Let us consider the moments of the ML estimator, 

E p . , ~  = Ep,.(~,L*h) + EP..C~,zr) 
[[hi[~2 + (ur, zr) 

= Ep~ (~, L'h)  + Ep.~ (~, zr) + re(u, L 'h)  + mCu, Zr) 
Ilhll~, + Cur, z r )  = m, 

which means ~ is unbiased; 

rC¢,L*h) + (¢, zr)l 
D ~  = E p .  l Ilhlll,, + (~r, zr) J 

Ilhll~, + Cur, zr) 1 
[llhll~,~ + (ur, zr)] 2 = Ilhll~ + Cur, zr)" 



18 N.M. ARAT6 

EXAMPLE 1. Let us consider the case of the well-known stationary Ornstein-Uhlenbeck process. 
We can observe the process on the interval [0, T]: 

~(t) = ¢(t) + m, 

where 

O < t < T ,  

d~Ct) = -pC(t) dt + dw(t), t > O, 

where w is a standard Wiener-process. In this case Go = (-oo,  oo), G = (0,T), X+(G) = (5o) 
(60 is the Dirac function), u = 1 and the equations (3.4),(3.5) has the form 

( - ~ + p ) ~ = T h  in (O,T), 

(¢, 60) = ¢(0) = ¢o, 

and the equations (4.2),(4.3) give 

In the stationary case 

from equation (4.4), we have 

From here, we get 

and 

Finally, we can calculate L*p : 

( ~  + p) u= p, in (0,T), 

(u, 60) ---- u(0) = 1. 

1 
D2~(0) = D2~° = 2p' 

(6o, Br(a6o))x = a(6o, 6o)x = aD~(O) = (u, bo) = 1. 

z r  = 2p6o 

z = L*p + 2p~o. 

]o T ]o T (L 'p ,  ~o) = (L~o, P)L2 = (~'(t) + p~(t))  p dt = p2 ~o(t) dt + p (~o(T) - ~o(0)). 

This means 

and 

L*p=p2+p(6T -- 60) 

z=p2+p(6T+60).  

From here and from Theorem 1, we get that  the ML estimator of m is the following 

= p(~(O) + ~cCT)) + p2 f [  ~(t) dt = ~(0) + ~(T) + p f [  ~c(t) dt 
p2T + 2p pT + 2 

This formula is the same as the well-known Grenander formula (see [8]). 
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5. T H E  B R O W N I A N  S H E E T  

The standard Brownian sheet--as a generalized field--satisfies (3.2) type equation with oper- 
9 2 

ator L = L* = Y/;'~2: 
0 2 W  + 2 

0riOt2 = ~' in R 0 . 

+2 
If G C R 0 is an open domain, F0 C O G  is a part of the boundary, where 

Fo={(tl,t2): al <_tl < b l ,  t2 = 7 ( t l ) }  

= {( t l , t2) :  a2 < t 2  <b2,  tl =7 -1 ( t2 )} ,  
(5.1) 

where 7 is twice as differentiable strictly monotone decreasing function, then (see [1]) the following 
functionals are elements of the "boundary space" X(F).  

(i) The Dirac functions (functionals) 

~(,1,s2) = (~(Sl,S2), (~) = ~0(81, S2), (Sl,  S2) • ro, 

9 2 
6(s,,s2) = L*g = ~ ,  where 

1, (tl ,t2) • [0,81] X [0,82], 
g(t l , t2)  = O, (tl ,t2) ¢ [0, 81] X [0, 82]. 

(ii) The weighted Dirac functionals 

x = ( x , ~ ) = f r  y ( s )~ ( s )ds ,  
o 

y(81,~(81)) = h(sl) 
~ / 1 + ~ ' ( S l )  2 '  

(h E L2(a l ,b l ) ) ,  
(5.2) 

9 2 
x = L*g = ~ ,  where 

g(t l , t2)  = 

t[ y-l(t2) h(sl)  dsl ,  

t [ '  h(81) dsl ,  

~a ~-'(t2) h(Sl) dsl ,  
1 

/.i 
0, 

al < tl < bl, 

al < tl < bl, 

0 < t I < al,  

0 < tl < al ,  

otherwise. 

a2 < t2 < ")'(tl), 

0 < t2 < a2, 

a2 < t2 < b2, 

0 < t2 < a2, 

(5.3) 

(iii) The "derivative" functionals 

J r  0~o z = (z, v)  = y ( s ) ~ ( s )  ds, 
o 

y(31 ,~(81) )  = f1(81) 
~ 1 + ~ ' ( 8 1 )  2 '  

(fl  E L2(al, bl)) ,  

~2 
x = L*g = ~ ,  where 

I f l ( t l ) ,  al < ~1 < bl, 0 < ~2 < "~(~1), 
g ( t l '  ~2) = O, o therwise .  
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Similarly, we get 

==(='v)= fr V(s)~(s)ds, 
o 

y(s1,7(S1)) = f2(~(Sl)) 
X/1+1/7'(Sl) 2' 

(Jr2 e L2(a2, b2)), 

x = L*g = ~"~t2, where 

{ f2(t2), 0 < tl < 7-1(t2), a2 < t2 < b2, 
g(tl ,  t2) = O, otherwise. 

(iv) The "normal derivative" functionals 

x = (x,~o) = / r  Y(S)~nn(S)ds, 
o 

x -- L* (g + f) = ~ ,  where 

f Y (tl,")'(tl))'~"(tl), a l  < tl < bl, 
g(tl,t2) 

0, otherwise, 

Y ( ' ' ) t - l ( t 2 l ' t 2 )  0<tl <'~'-1(t2) , 
f(tz,t2) = ")" (7-I(t2)) ' 

O, otherwise. 

0 < t2 < 7 (h ) ,  

a2 < t2 < b2, 

(5.4) 

(5.5) 

We say that (W,x) = fro y(s)~(s)ds is the weighted generalized normal derivative of the 
Brownian sheet W. A similar definition can be found in [9]. 

In the following, we assume that we observe not a standard Brownian sheet in a domain G, 
but a Brownian sheet W with mean m. In the sequel, we determine the ML estimator of this 

mean. 
Thus, we assume that on the probability space (f~,A, Pm), m E R, 

w(h ,  t=) = w.. (h,  t2) + m, (h, t2) e C, 

where W,~ means a standard Brownian sheet. We assume that  G has the following form: 

G c_ { ( t l ,  t2) : 0,1 _< t:l ~ bl, "y(tl) _< t2} ! j  { ( t l ,  t2) : bl <_ t l ,  a2 _< t2}, (5.6) 

where the function 3' determines the part of boundary of O (see (5.1)). The main result of our 
work is the following. 

THEOREM 2. Let us observe a Brownian sheet with an unknown mean m in the doma/n G, 
which satisfies condition (5.6). Then, the Oauseian measures correspondinE to ~ t  means 
are equivalent and the maximum-likelihood estimator of the mean depends on the values and the 
generalized norma/derivatives of the field "W only on the part ro of the boundary of G, where 
r0 is given by (5.1) 

(5.7) 

PROOF OF THEOREM 2. If Z E X(G),  then from (3.3), we get that  there exists ~ ,  E C~°(G) 
such that  

E , z  - , (p.  "--~ O. n-,,+oo 
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As ( W , ~ . )  = f cW( t )~ . ( t )d t ,  thus there exists t(k) e G, ak e R such that 

E , x  - a k  t ~ 0.  
n - -*C¢)  

k----1 
(5.s) 

Thus, if there exists x* E X(G) one gets 

(5.9) 

then from the formula (2.1) of the Statement the Gaussian measures Pm are equivalent, and 
from (2.3) the ML estimator of m is the following: 

On the basis of Theorem 1, we may assume that x* E X(G) which satisfies the identity (5.9) is an 
element of the boundary subspace X(F). For this reason, we try to find this x* in the following 
form: 

x* = L* g = a$(a~,b2) + ~6(b~,a2) + L*(gl + g2 + g3), (5.11) 

where gl is a function of form (5.4), gs is a function of form (5.5), and g3 is a function of form (5.3): 

f gl(tl), al < t l  <bl ,  0 < t s < ' y ( t l ) ,  
gl(tl,t2) (5.12) 

0, otherwise, 

f gs(t2), 0 < t l  <7-1(ts) ,  a s < i s < b 2 ,  
g2(tl,ts) (5.13) 

0, otherwise, 

where 

gl ( t l )  
g2 (A/(~I)) ----" (~/,1(1~i))2, al  < 1~ 1 < bl, (5.14) 

ftl ~-~(t2) h(sl)dSl, al < t l  <bl ,  a 2 < t 2 < 7 ( t 1 ) ,  

~t[ 1 h(Sl) dsl, al < tl < bl, < t2 < a2, 0 

gs(tl, t2) = f ~f-l(t~) (5.15) 
! h(sl)dSl, O < t l < a l ,  a2<ts<b2 ,  

fb lh(s l )dS l ,  0 < t l  < a l ,  0 < i s < a s ,  

0, otherwise. 

We can write the identity (5.9) in the following form: 

~0 tz ~0 t~ = g($1, S2) ds2 dSl = 1, vt  = ( t l ,  t2) G. 

As 

suppg C_ {(1[:1,t2) : a l  _~ 1[;1 ~ bl, 0 ~ t2 ~ 'T(tl)} U {( t l , t2)  : 0 < t l  _ a l , 0  ~ t2 ~ b2}, 
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we have tha t  g satisfies the previous identity, if 

0 al ~0 b2 9(Sl, 82) d82 dSl = 1, (5.16) 

oT(t~)g(tl,S2)ds2 = O, Val ~ t l  <~ bl, (5.17) 

fO g(sl , / ;2)dsl  = O, Va2 _~/;2 _~ b2. (5.18) 

For (tl,/;2) • {(/;1,/;2) : al <: tl <= bl, 7(tl) <: t2 _< b2}, we obtain 

0 tl ~0 t2 g(81,82) ds2 dSl 

= ~0 / g(Sl,S2)ds2dSl + g(sl,S2)dsl dS2 

g(Sl, S2) ds2 dsl 

~0 ~ ~11 f'}'('l) d81 /a,~b2 a, g(Sl,  S2) ds2 dsl  g(Sl, 82) ds2 g(sl ,  s2) 1, = - = ds2 dSl = 
JO 

and for (tl, t2) E {(tl, t2) : bl < tl, a2 _~ t2} it follows 

~0'l~t2g(SlvS2)ds2dSl ~bl ~a2 ~(Sl, s2)ds2 ds I ~oa l~  b2 = : = g(Sl,  S2) ds2 dsl  1, 

and finally for (t l , t2) E {(tl , t2) : al _< t l ,b2 <_/;2}, one has 

g(sl, s2) ds2 dsl = g(sl, s2) ds2 dsl = 1 .  

Assuming that g is differentiable and by derivation of (5,17) with respect to t~, we get 

/~C~) ogCtl, s2) 
g (/;1,7(tl))7'(tl) + / ds2 = O, Val <= tl <= bl. (5.19) 

Jo Oil 

Similarly, by derivation of (5.18) with respect to/;2, we get 

and thus, 

~0 7-1Ct2) #g(Sl,/;2) dsl = O, (~--1(t2)' 1~2) (~--1(/;2))' "~- ~2 

1 ftl 0g(81,7(tl)) 
g (~1,")'(/;I)) ~ "[- J0 ~ 2  d81 ~- O, 

Prom (5.11)-(5.13), and (5.15), we get 

g(tl, ')'(/;1)) ~-~ gl(tl) q" g2(~/(tl)), 

0g(tl, t2) = gi(tl ) -- h(tl), 
0tl 

Og(tz,t2) t t 1 
0t 2 = g2(2) q- h (')'-1(/;2)) ,),,(~_1(t2)), 

Va2 <~t2 < ~ ,  

Val < tl < bl. (5.20) 

al < tl < bt. 
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From here and from (5.19),(5.20) 

(gl(~l) + g2(~(~1))) ~t(tl) + ")'(~1) (g~( t l )  -- h ( t l ) )  = O, 

(gl(tl)+g2('~(tl)))-~l)+tl gi(7(tl))+h(tl) - -0 ,  

which gives together with (5.14) a first-order ordinary differential equation for gl 

1 ~/'(tl) 1 ~"(tl)'~ 
g~(tl) + gl( t l )  ~ - 2 7 ' ( t l )  1 + 7'(t1) 2 + ~ - ~ )  ] = O, al < t~ < bl. 

From this relation, we get 

1 7 ' ( t l )  2 
g l ( t l )  = Ct l~ , ( t l )  1 -~- 7 t ( t l )  2'  al < t l  < bl ,  

1 1 
g2("~( t l ) )  = Ct l '~ ' ( t l )  1 + "yt( t l )  2 '  al < tl < bl, (5.21) 

c (")'t (tl) 2 "/'t(t 1)~/(tl) "yt(tl)2 ~ 
h(t,)  = 1 + ~,(t,)2 \ t ~ - ~ ) 2  + t,7(tl---~ 1 + ~,(t~)2 ~ ] ,  ai < t, < b,, 

where c is a constant. (5.17) gives for tl = bl 

f 
-y(b~) 

0 = g(bl, s2) ds2 = g l (b l )a2  +/~a2. 
JO 

This means 
fl = -g l  ( bl ) , (5.22) 

and similarly 

= -g~(b~). (5.23) 

Thus, if we choose a and fl in this way, and gl,g2, and h as in (5.21), then g satisfies equa- 
tions (5.17) and (5.18). Further, for suitable chosen c, g satisfies (5.16) 

1 = g(sl, s2) ds2 dsl. 

This gives that (W,x*) = (W,L*g) fulfills equation (5.9), and so Pm and P0 are equivalent, 
and the ML estimator of m has the form (5.10). 

From (5.22) and (5.23), we get 

- -  fro ~/1 h(sl)+ ~/'(81) 2 W(s1,~(Sl))d(Sl,'~(81)) ( '~W,x*/ = -g2(b2)WCal,b2) - gx(bl)W(bl,a2) + 

(5.9) and (5.8) give 

( ( ) )  fa b~ ( 1  fZ~ 1 ) D~o 'W,x* = (1,x*) = a + / 3 +  h ( S l ) d 8 1 = - c  ~ 1 ~ +  ~ d 8 1  . 
1 l 
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So, (5.21) and (5.10) give (5.7), where 

1 
dl -- 

alb2(1 + 7 ' ( a l ) 2 ) d  ' 

d2 = 7 ' (bl )2  
bla2(1 + 7 '(b1)2)d ' 

-I (~'(tl) 
yl(tl,V(tl)) = (1 + 71(ti)2) 3/2 ~ , ~  JC - -  

- 1  "f l( t l )  1 
Y2(t1'7(t1)) --'~ fly'(t1) 1 + ~'l(tl) 2 d' 

d =  ~ + , t ~ ( t l )  dsl  . 

2 'T" (~1)~/(~1) v'(tl) 2) 1 
tl2,.f(tl) d, (5.24) 

Thus ,  the  t heo rem is proved. 

EXAMPLE 2. First ,  let us consider the  case when G = ( q h r l )  × (q2,r2). 
T h e o r e m  2 because  G does not  sat isfy the  condit ion (5.1). Bu t  T h e o r e m  

immedia t e ly  show t h a t  

= W(ql ,  q2). 

We cannot  app ly  

1 (or S ta t emen t )  

EXAMPLE 3. Let us consider the case, when a part of the boundary is a hyperbola and G satisfies 

condition (5.6): 
1 1 

7( t l )  = ~ ,  a l  = a2 = ~,  bl = b2 = 2. 

F rom this  

(5.24) gives 

-I 2 
~'(~1) = t-T'  ~"(tl) = t~" 

r0 = tl, : ~ ~tl <: 2 , 

d = ln(4e), 

1 
dl = d2 = 

171n(4e) '  

yl 0 1 , ¼ )  = ( ¼ + t ~ )  -3/~ :•+ 1/(t~) + t~ ln(4e)' 

y2( t l ,~ l )  = (1/(tl~+t21 ) 1 In,e)" 
This means 
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