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I. COUNTEREXAMPLE 

Consider the equation 

2 + f(x, i)i + g(x) = 0. (1) 

It is equivalent to the differential system 

.t= v, 

d = -f(x, v)v - g(x). 

For the differential system (2), P. J. Ponzo and N. Wax in [ 1 ] have 
shown a result about the existence of periodic solutions as follows. (See [ 1, 
Theorem 1 ] ) 

Let (Hl) (a) f(O, 0) < 0, 
(b) f(a,v)=f(b,v)=O, a<O,b>O,Vu, 
(c) f(x,u)>O,x<a,x>b, 

(d) f(x, v) is locally Lipschitz in x and v, 
(e) for v > 0 and every fixed x < a, uf(x, v) is a strictly increasing 

function of v, with lim,, +ao vf(x, u) = +cc; 

032) (a) xg(x)>O,x#O, 
(b) g(x) is locally Lipschitz, 

(c) for G(x)hjGg(5)4,G(+m)= +a; 

(H3) u*,(x)=max,., u L (s) exists for every x < a, where 

u,(X)f(X,UL(X))+g(X)=O, x < a. 
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Then Eq. (2) has at least one non-zero periodic solution if (Hl)-(H3) 
are satisfied. 

These conditions, however, are not sufficient. In this paper, we shall give 
an example such that the conditions (Hl )-(H3) are satisfied, but there is 
no non-zero periodic solution. Moreover, we shall give some sufficient 
conditions for the existence of periodic solutions. 

EXAMPLE 1. Consider the equation 

~+(i-z+1)(x2-4)i++=0. (3) 

It is equivalent to the system of ordinary differential equations in the plane 
i = v. 

where 

d= -(x2-4)(2?+ l)v-x, 

f(x, v) = (x2 - 4)(v2 + l), g(x) =x. 

(4) 

We now prove that the conditions (Hl)-(H3) are satisfied. 
In fact, we have 

(Hl) (a) f(0, 0) = (-4). 1 = -4 < 0, 
(b) let a = -2, b = 2, then 

f(a, v)=(4-4)(v2+ l)=O, vv, 

f(b, v)=(4-4)(v2+ l)=O, Vu, 

(c) j-(x, v) > 0, x < a, x > 6, 

(d) f(x, v) = (x2 - 4)(v2 + 1) is locally Lipschitz in x and v, 
(e) for v b 0 and every fixed x< a, vf(x, v) = (x2 -4)(v3 + v) 

is a strictly increasing function of v, with lim,, +oo vf(x, v) = 
lim “’ +a (x2-44)(v3+v)= +co; 

(H2) (a) xg(x)=x2>0,x#0, 
(b) g(x) = x is locally Lipschitz, 
(c) for G(x)~S~g(5)dr=S~5d5=~x2, then G(fco)= +oo; 

(H3) for v B 0 and every fixed x <a, vf(x, v) is a strictly increasing 
function of v, with lim,, +oo vf(x, v) = +co. 

Thus 30, > 0 such that v,f(x, v,) > -g(x). Moreover, 0 .f(x, 0) = 
0 < -g(x), and vf(x, v) and g(x) are both continuous functions, thus 
there exists a unique continuous function U,(X) > 0 such that 
(x’-4)(~~(x)+1)~~(x)+x=0, x<a. 



GENERALIZED LIkNARD EQUATIONS 3 

Because lim X---m (-x/x*-4)=0, then X>O,Jx< -k*u,,(x)<l. 
Hence u:(x) = max, G x u L (s) exists for every x < a. 
Thus, the conditions (Hl)-(H3) are satisfied in the system (4). 
We now prove that there does not exist a non-zero periodic solution of 

the system (4). 
We make a curve passing through the point A( 1, a) 

o.99’s fi 
u=(l.9-X)9’8’ 

1 <x < 1.9. (5) 

Thus 

dv 
-= p . o.99/8 J3 
dx (1.9-x)r7’*’ 

On the curve (5), the slope of trajectories of the system (4) is 

dv 

z (4) 

=(4-x2)(2+ 1)-J 

=(4-x2)+(4-x2)~3.0.99’4(1.9-x)-9’4 

- 0.9 -918 . 3 - 112 . x( 1.9 - x)9/8. 

We now compare the (du/dx)l,,, with the slope of the curve (5). Let 

q(X)=(4-X*)(1+3~o.99’4~(1.9-x)~9’4) 

_ 0.9 -9~ .3 ~ ‘12 .x(1.9 _ x)9/8 

- g .0.99/g .&1.9-x)-‘7’8 

(4 - x2)( 1.9 - x)9’4 + 3 * o.99’4(4 - x2) 

= 
-0.9-918 .3-J/*.x(1.9-x)*7/8- ;.0.99/* fi(1.9-x)u8 

(1.9-x)9/4 

(1 <x< 1.9). 

For 1 < x < 1.9, (1.9 - x)9/4 > 0, 

2 + x > 0.9 -9’8 . 3 ~ ‘I2 . x 

(2-~)(1.9-~)‘*‘~>(1.9-x)~~‘*, 

thus 

(4 - x2)( 1.9 - x)9/4 > 0.9 -9’8 .3 - ‘P . x( 1.9 - xy7’8, 
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We prove the following inequality 

3 o.99’4 . (4 - x2) 
;. ()g9/8 . &1.9-x)“8 

= 0.8 $ o.9”8(4 - x2) > 1 
(1.9-x)“S ’ ’ 

16x< 1.9, 

that is 

0.8 fi. 0.9l”(4 -x2) 2 (1.9 - x)‘? 

It is equivalent to the inequality 

0.88 34 .0.9(4 -x2)8 2 1.9 -x, 1 < x < 1.9. 

Let 

y = 0.9 . 0.88 . 34(4 -x2)8 - (1.9 - x) 

= h,(x) - h2(X), 

thus 
4 z= -l6.O.9.O.88.34x(4-x2)7+ 1, 

d2y dx2= 16.0.9.0.8’ .34(4-x2)6.(15x2-4)>0, 16x< 1.9. 

Moreover 

dy <o 
dx \-=, ’ 

dy >o 
&=I.9 1 

so, there exists a unique solution x,, of the equation 

dy Z’O, (1 <x--c 1.9). 

Let 
xl = 1.89, 

x2 = 1.889, 

x3 = 1.8895, 

thus x0 E (1.889, 1.89). 

then y(xl) z 0.003746296, 

then y(xz) z 0.003748056, 

then y(x3) z 0.003739536, 

(6) 
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For x E [ 1, 1.9), h,(x) is a decreasing function, thus 

Then 

Y(X,) = hhl) - ~*(xcl) 
2 Ch,(x,)-&(x,)1 - CM%)-WI)1 
> 0.00374629 - 0.001 > 0. 

Y(X) ’ 0, 1 6 x < 1.9. 

It follows that 

0.8 J5 0.9”8(4 -x2) > (1.9 - xps, 

thus 

q(x) ’ 03 when 1 <x < 1.9. 

By the definition of q(x), we obtain 

dv -du>o 
dx c41 dx ’ 

Hence. we have 

dv 
>e>o. 

dx c4j dx 

Note that for the system (4), dxjdt = u > 0 in the half plane v > 0. So, the 
trajectory of the system (4) through any point of the curve (5) passes for 
increasing t through this curve from below to above. Then, it follows from 
dx/dt > 0 that the positive semi-trajectory f(A, R+) lies above the curve 
(5). Since the curve (5) starting at A approaches monotonically to infinity 
as x + 1.9 and there are no singular points in the strip 1 d x < 1.9, it 
follows that f( A, R + ) approaches to infinity as r --+ + 00. 

Let 2(x, a) = v2 +x2, thus 

d2 

z (4) 

=2(v.ti+x.i) 

=2[-xv-(x2-4)(v2+1)02+xv] 

=2(4-x2)(u2+ 1)~~. 

Let B, denote the region x2 + v2 d 4. Note that (dL/dt)l,,, 3 0 in II,, and 
the set B= {(x, ~)EB, I(dJ/dt)l,,,= 0) does not contain any whole non- 
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zero trajectory of the system (4). By the tangent curve method of Poincare, 
it follows that there are no closed trajectories or singular closed trajectories 
of the system (4) in B, (see [3]). Since the point A(1, ,/?) is a strict exit 
point of the region B, and (&/&)I,,, > 0, the negative semi-trajectory 
f(A, R-) must stay in B,. 

Therefore the a-limit set of f(A, R - ) must be contained in B,. By the 
Poincare-Bendixson theory, it is either a single critical point, or a single 
closed trajectory, or a connected set which is the union of whole trajec- 
tories, some of which are critical points and the others non-closed trajec- 
tories tending to critical points both as t -+ -co and as t + +co. As stated 
above, there are no closed trajectories or singular closed trajectories of the 
system (4) in &, so,f(A, R-) must tend to the origin. 

Thus every trajectory of the system (4) is such that one side of it tends 
to the origin and the other side approaches to infinity. 

Hence there does not exist a non-zero periodic solution of the system (4). 

II. THE EXISTENCE OF PERIODIC SOLUTIONS 

In this paper, we shall give a sufficient condition about existence of 
periodic solutions. 

As first we assume 

(4 f(O, 0) < 0, 

(b) a<O,b>O,f(x,u)3Oforx<a,x>6,V’v. 

For Vx E [a, b] and Vu, f(x, u) 3 -M, where M is a positive constant, 

(c) xg(x)>O,x#O. For G(x)&JS;,g(<)&, G(fco)= +co, 

(d) f(x, u) is locally Lipschitz in x and u, g(x) is locally Lipschitz. 

(e) for u 3 0 and every fixed x < a, uf(x, u) is a strictly increasing 
function of v, and 3u,>O such that u,J(x, ~,)a -g(x). UT(x) = 
max,., u L (s) exists for every x < a, where 

U,(X).f(X, uL(x))+ dx)=O. 

THEOREM. System (2) has at least one non-zero periodic solution if 
(a)-(e) are satisfied. 

Proof: By the conditions, existence and uniqueness of solutions of 
initial value problem are valid. 

Let 2(x, u) = u2/2 + G(x), thus 



GENERALIZED LIhNARD EQUATIONS 

dA 

z (2) 
=u.d+g(x).i 

= -j-(x, u)02- g(x)u+ g(x)0 

= -f(x, u)u2. 

By the conditions (a) and (d), for 0 < c0 < 1, every point (x, u) on the 
closed curve u*/2 + G(x) = cO, we have f(x, u) < 0, thus 

dl 

2 (2) 
> 0, 0 #O. 

Then the oval u/2 + G(x)=c, serves as an inner bound for the annulus. 
(See Fig. 1) 

We define 

Because G(x)-+ +co, as x+ --co, then 

u*,‘(x) ~+G(x) + +a, as x+ --oo. 

Thus 3x, E ( - co, a - l] such that c( = uT2(x0)/2 + G(x,). 

FIG. 1. The phase plane annulus described in the proof of the theorem. 
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Now define r, in x<a-- 1 as 

z-:0= ;&,),]I,* i 
for x<xO, 
for x,<x<a- 1. 

We start our outer bound at the point pr at x(pr) ==a- 1, v(pr) = 
,/2[c(- G(a - l)]. We consider the unique solution of Eq. (2) passing 
through pr. One of three possibilities must hold: 

(1) it will intersect the x axis at pi on the line segment 2’; or 
(2) it will intersect the line x= b at point pz, where x(pz) = b, 

4~~) > 0; or 
(3) it will stay in the region D: u > 0, a - 1 6 x < b. 

At first we consider the case (3). Because there is no critical point in the 
region D, and origin 0 is a repellar, then the positive semi-trajectory y + (pl) 
is not bounded. Moreover, in the region D, we have dx/dt = v>O, thus 
the positive semi-trajectory y ‘(p,) has a vertical asymptotic line. That 
is 3x, E (a- 1, b] such that on the positive semi-trajectory y’(pl) we 
have lim,,,,~, du/dx = +co. Because du/dx = -f(x, u) - g(x)/o, and for 
XE [a- 1, b], g(x) is a bounded function, so on the y’(p,) we have 
lim x-x, p0 f(x, u) = -co, but this contradicts the condition (b). 

We now consider the case (2). The total oval going through p2 

U2(P*) 
;+G(x)=- 2 +G(b) 

will intersect the x axis at p3, and the line x = b again at p4. One has that 
x(p3) = B, u(p3) = 0, where 

G(B) = f+)+ G(b), 

4~4) = b, U(P4) = -4P2). 

Proceeding as before, the trajectory of Eq. (2) passing through the point 
p4 is such that either 

(1’) it will intersect the x axis at p; on the line segment pq where 
ida - LO); or 

(2’) it will intersect the line ~=a-- 1 at ps, where x(p5) =a- 1, 
U(P,) < 0. 

At first we consider the case (I’), the vertical segment p; to p;, a point 
on the arc f(p, ; 0, to), where f(p, , to) = p2. Completes the outer bound. 
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We consider the case (2’). The oval going through ps 

Ij;T+G(x)= V2(P5) 
L 

2+G(a- 1) 

will intersect the x axis at p6 . One has that x(p6) = A, v(p6) = 0, where 

G(A 
U2(Ps) 

I= 2 -++(a-1). 

The vertical segment p6 to p,, a point on the f, completes the outer bound. 
To the case (1 ), proceeding as before, completes the outer bound. 
This completes the proof of the theorem. 

III. AN EXAMPLE 

EXAMPLE 2. Prove equation 

j;-+(x*i*+x*- 1)x+x=0 

has at least one non-zero periodic solution. 

Proof. Equation (7) is equivalent to the differential system 

i = II, 

(7) 

zj = -(x2v2 + x2 - 1)v - x. 

where f(x, v) = x2v2 + x2 - 1, g(x) = x. 
Then we have 

(8) 

(a) f(O,O)=O+O- 1= -1 CO, 
(b) leta= -1, b=l, thenf(x,v)>O,forx<a,x>b,Vo. LetM=l, 

for Vx E [a, b], Vu, 

f(x, u) = x2v2 + x2 - 1 > -1 = -M, 

(c) xg(x)=xZ>O, x#O; G(x)=j;g(<)d~=j;,<d~=~~~, then 
G(+m)= +a, 

(d) g(x) = x is locally Lipschitz, and f(x, a) = x2v2 + x2 - 1 is locally 
Lipschitz in x and U, 

(e) for u > 0 and every fixed x < a, vf(x, v) = (x’v’ + x2 - 1)~ is a 
strictly increasing function of v, and 3, = 1 such that 

u,rf(x, v,) =x2 +x2 - 1 > x2 > -x = -g(x). 
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Then there exists a unique continuous function uL(x) < 1 such that 

u,(X)fk uL(X)) + g(x) = 0. 

Thus u*,(x)=max,., u L (s) exists for every x < a. 
Thus the conditions (a)-(e) are satisfied. 
Hence by the theorem, Eq. (8) has at least one non-zero periodic 

solution. 
So Eq. (7) has at least one non-zero periodic solution. 
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