2,5-Di-(*tert*-butyl)-1,4-benzohydroquinone mobilizes inositol 1,4,5-trisphosphate-sensitive and -insensitive Ca²⁺ stores

Katherine A. Oldershaw and Colin W. Taylor

Department of Pharmacology, Tennis Court Road, Cambridge, CB2 1QJ, UK

Received 10 July 1990; revised version received 7 September 1990

In permeabilized rat hepatocytes a maximal concentration (25 μ M) of 2,5-di-(*tert*-butyl)-1,4-benzohydroquinone (tBuBHQ) mobilized 70% of sequestered Ca²⁺ and a half-maximal effect was produced by 1.7 μ M tBuBHQ. Inositol 1,4,5-trisphosphate (Ins(1,4,5)P₃) stimulated release of about 40% of the intracellular Ca²⁺ stores. Combined applications of a range of tBuBHQ concentrations with a maximal concentration of Ins(1,4,5)P₃ demonstrated that tBuBHQ has slight selectivity for the Ca²⁺ transport process of the Ins(1,4,5)P₃-sensitive stores. We conclude that the Ins(1,4,5)P₃-sensitive stores are a subset of those sensitive to tBuBHQ and that the latter is therefore unlikely to prove useful as a tool to discriminate Ins(1,4,5)P₃-sensitive and -insensitive Ca²⁺ stores though it may provide opportunities to design more selective agents.

Inositol 1,4,5-trisphosphate; Intracellular Ca²⁺ store; 2,5-Di-(*tert*-butyl)-1,4-benzohydroquinone

1. INTRODUCTION

Inositol 1,4,5-trisphosphate (Ins(1,4,5)P₃), formed after activation of Ca²⁺-mobilizing receptors, binds to specific intracellular receptors and thereby stimulates Ca²⁺ release from intracellular stores causing an increase in cytoplasmic [Ca²⁺]. A sustained increase in cytoplasmic [Ca²⁺]depends upon Ca²⁺ influx from the extracellular space [1]. Measurements on single cells reveal additional complexities because the intracellular Ca²⁺ signal appears to be precisely organised in both space and time with different areas of the cell responding differently and with signals often taking the form of a complex series of spikes [2,3]. Ins $(1,4,5)P_3$ appears to play a part, directly or indirectly, in regulating Ca²⁺ entry [4] and in controlling the more complex features of the Ca²⁺ signal [2,3]. A feature of many models proposed to account for these actions of $Ins(1,4,5)P_3$ is regulated communication between discrete intracellular Ca²⁺ stores, only a fraction of which are sensitive to $Ins(1,4,5)P_3$ [5]. However, neither the biochemical characteristics nor the anatomical identity of the $Ins(1,4,5)P_3$ -sensitive Ca^{2+} stores are known [6]. Pharmacological tools that distinguish the different stores would clearly be useful.

Thapsigargin has been used to empty intracellular Ca^{2+} stores because it specifically inhibits the Ca^{2+} -ATPase of the stores without affecting plasma membrane Ca^{2+} transport, but it does not usually discriminate between $Ins(1,4,5)P_3$ -sensitive and -insensitive stores [7]. 2,5-Di-(*tert*-butyl)-1,4-benzohydroquinone (tBuBHQ), however, has been claimed to selectively

mobilize the same intracellular Ca^{2+} stores as $Ins(1,4,5)P_3$ [8]. Here we demonstrate that although tBuBHQ has some selectivity for the Ca^{2+} transport system of $Ins(1,4,5)P_3$ -sensitive stores, the selectivity is weak and tBuBHQ mobilizes substantially more Ca^{2+} than does a maximally effective concentration of $Ins(1,4,5)P_3$.

2. MATERIALS AND METHODS

The methods used to prepare and permeabilize rat hepatocytes and to measure ${}^{45}Ca^{2+}$ fluxes in the permeabilized cells have been described in detail in earlier publications [9,10]. Briefly, isolated hepatocytes were permeabilized by incubation with saponin (75 µg/ml, 10 min, 37°C) in a Ca²⁺-free cytosol-like medium (140 mM KCl, 20 mM NaCl, 2 mM MgCl₂, 1 mM EGTA, 20 mM Pipes, pH 6.8), washed and resuspended in the same medium with CaCl₂ added to give a final free [Ca²⁺] of 120 nM. Cells were loaded to steady-state with ${}^{45}Ca^{2+}$ (2 µCi/ml) in the presence of mitochondrial inhibitors (10 µM oligomycin and 10 µM antimycin) and ATP (1.5 mM). The ${}^{45}Ca^{2+}$ contents of cells before and after additions were measured by rapid filtration of the samples and then expressed relative to the ATP-dependent ${}^{45}Ca^{2+}$ content of the cells.

Ca²⁺ fluxes were measured with fluo-3 at 37°C by resuspending permeabilized cells (10⁷/ml) in nominally Ca²⁺-free cytosolic medium (without EGTA) in the presence of mitochondrial inhibitors (oligomycin 10 μ M; antimycin 10 μ M). Fluorescence ($\lambda_{ex} = 503$ nm, $\lambda_{em} = 530$ nm) was measured with a Perkin-Elmer LS50 luminescence spectrometer. Autofluorescence was recorded before addition of fluo-3 free acid (2 μ M) and Ca²⁺ uptake was then initiated by addition of ATP (1.5 mM). After the permeabilized cells had reduced the free [Ca²⁺] to a new steady-state, tBuBHQ or Ins(1,4,5)P₃ was added and ionomycin (1 μ M) was subsequently added to release all sequestered Ca²⁺. Traces were calibrated by addition of EGTA (2 μ M) to obtain F_{min} followed by Ca²⁺ (15 μ M) to obtain F_{max} and the [Ca²⁺] then computed from:

 $[Ca^{2+}] = K_d(F-F_{min})/(F_{max}-F); K_d = 864 \text{ nM} [11].$

Materials were from the suppliers listed in earlier publications [9]. Fluo-3 free acid was from Molecular Probes and tBuBHQ was from Aldrich.

Published by Elsevier Science Publishers B.V. (Biomedical Division) 00145793/90/\$3.50 © 1990 Federation of European Biochemical Societies

Correspondence address: C.W. Taylor, Department of Pharmacology, Tennis Court Road, Cambridge, CB2 1QJ, UK

Fig. 1. Effect of tBuBHQ on ${}^{45}Ca^{2+}$ content of intracellular stores. ATP-dependent ${}^{45}Ca^{2+}$ content is shown after incubation for 5 min with tBuBHQ (mean \pm SE, n = 7).

3. RESULTS AND DISCUSSION

Addition of tBuBHQ to permeabilized hepatocytes loaded to steady-state with $^{45}Ca^{2+}$ (4.4 ± 0.4 nmol/mg protein) caused a concentration-dependent decrease in their ⁴⁵Ca²⁺ content (Fig. 1). A maximal effect, release of $68 \pm 6\%$ of the Ca²⁺ accumulated, was evoked by 25 μ M tBuBHQ and a half-maximal effect occurred with 1.7 μ M. These results, both the concentration-dependence and the inability of even supramaximal concentrations of tBuBHQ to fully empty the Ca²⁺ stores are the same as those reported by Kass et al. [8]. We have also confirmed in permeabilized cells results that they obtained in microsomes showing that unidirectional ⁴⁵Ca²⁺ efflux from preloaded stores is unaffected by tBuBHQ (results not shown). The effect of tBuBHQ is therefore to inhibit Ca^{2+} sequestration by the stores and not to stimulate a Ca^{2+} efflux pathway suggesting that the inhibitory effects of tBuBHQ on microsomal Ca²⁺-ATPase [12] probably underlie its effects on intracellular Ca²⁺ stores.

A maximal concentration of $Ins(1,4,5)P_3$ (10 μ M) stimulated release of $37 \pm 4\%$ of the ${}^{45}Ca^{2+}$ accumulated by the stores (Fig. 2), the remainder was rapidly released after addition of ionomycin. This is consistent with our earlier work [9] and many earlier reports [13-15]. By contrast, Kass et al. [8] reported that 80-90% of the stores were released by $Ins(1,4,5)P_3$. Our preparation, where a substantial fraction of the stores are insensitive to $Ins(1,4,5)P_3$, therefore provides a better opportunity to assess the selectivity of tBuBHQ for the $Ins(1,4,5)P_3$ -sensitive and -insensitive stores. It is noteworthy that GTP has been reported to regulate the size of $Ins(1,4,5)P_3$ -sensitive Ca^{2+} stores [13] and this may account for their variable size in different studies (25-90\%) [8,9,13].

Earlier experiments [9] and the results shown in Fig. 3A demonstrate that the net Ca^{2+} release stimu-

Fig. 2. Effect of tBuBHQ on the size of $Ins(1,4,5)P_3$ -sensitive ${}^{45}Ca^{2+}$ stores. Cells were incubated with various concentrations of tBuBHQ (0-100 μ M) for 2 min prior to addition of a maximal concentration of $Ins(1,4,5)P_3$ (10 μ M) for 30 s. Shaded bars show ${}^{45}Ca^{2+}$ released by tBuBHQ alone (% of control; mean \pm SE, n=4-6). Open bars show the amount of ${}^{45}Ca^{2+}$ released by $Ins(1,4,5)P_3$ expressed as a fraction of the ${}^{45}Ca^{2+}$ content remaining after the 2 min tBuBHQ treatment. Cells appear less sensitive to tBuBHQ in this figure (compare Fig. 1) only because they were exposed to tBuBHQ for a shorter period (2 min rather than 5 min).

lated by $Ins(1,4,5)P_3$ is complete within 10 s. We therefore examined the selectivity of tBuBHQ for the $Ins(1,4,5)P_3$ -sensitive stores by measuring the fraction of sequestered ${}^{45}Ca^{2+}$ that could be released by a maximal concentration of $Ins(1,4,5)P_3$ (10 μ M for 30 s) after brief (2 min) tBuBHQ treatment. Under these conditions if tBuBHQ were to selectively inhibit Ca²⁺ sequestration into $Ins(1,4,5)P_3$ -sensitive stores, we would expect that as the concentration of tBuBHQ is increased a progressively smaller fraction of the remaining stores would be released by a maximal concentration of $Ins(1,4,5)P_3$. The results (Fig. 2) demonstrate that within a narrow range of tBuBHQ concentrations $(10-25 \ \mu M)$ there is a significant reduction (from $37 \pm 4\%$ to $20 \pm 2\%$) in the fraction of sequestered Ca²⁺ released by $Ins(1,4,5)P_3$. At higher concentration of tBuBHQ (50-100 μ M) Ca²⁺ sequestration by $Ins(1,4,5)P_3$ -sensitive and -insensitive stores seems to be similarly inhibited because although the total Ca²⁺ content of the stores is substantially reduced (by $54 \pm 3\%$) the fraction released by $Ins(1,4,5)P_3$ is similar in control $(37 \pm 4\%)$ and tBuBHQ-treated $(33 \pm 5\%)$ cells. These results suggest that tBuBHQ has some selectivity for $Ins(1,4,5)P_3$ -sensitive stores, but only over a narrow concentration range.

The earlier study of tBuBHQ [8] used quin-2 to monitor the medium surrounding the permeabilized cells, but its high affinity for Ca²⁺ ($K_d = 115$ nM) and low fluorescence intensity make it less sensitive to the observed changes in free [Ca²⁺] (100-500 nM) than fluo-3 which is more fluorescent and has lower affinity for Ca²⁺ ($K_d = 864$ nM at 37°C) [11]. When ATP was added to permeabilized cells in the presence of fluo-3

Fig. 3. Effects of $Ins(1,4,5)P_3$ and tBuBHQ monitored with fluo-3. The effects of sequential additions of $Ins(1,4,5)P_3$ (10 μ M), tBuBHQ (25 μ M), and ionomycin (1 μ M) (Iono) are shown after the permeabilized cells have already reduced the free [Ca²⁺] from about 400 to 200 nM following addition of ATP. Results are typical of at least 4 separate experiments.

they sequestered Ca²⁺ and reduced the free [Ca²⁺] of the medium from about 400 nM to about 200 nM (Fig. 3). Addition of maximal concentration of Ins(1,4,5)P₃ (10 μ M) stimulated release of 40% of the sequestered Ca²⁺ and subsequent addition of more Ins(1,4,5)P₃ evoked no further release. Half the remaining Ca²⁺ was released by a maximal concentration of tBuBHQ (25 μ M) and ionomycin completely emptied the stores by stimulating release of the final 30% (Fig. 3A). Addition of tBuBHQ (25 μ M) before Ins(1,4,5)P₃ abolished the response to the latter although the small amount of Ca²⁺ remaining in the stores was released by ionomycin (Fig. 3B). These results therefore confirm those obtained by ⁴⁵Ca²⁺ flux measurements.

There is convincing evidence that intracellular Ca^{2+} stores are heterogeneous [6] and in bovine adrenal chromaffin cells two immunologically distinct Ca^{2+} . ATPases with different subcellular distribution have been reported [16]. Our results suggest that tBuBHQ inhibits Ca^{2+} uptake by a fraction (about 80%) of intracellular stores that includes, but is not restricted to, the Ins(1,4,5)P₃-sensitive stores. The slight selectivity of low concentrations of tBuBHQ for Ins(1,4,5)P₃-sensitive stores may reflect the presence of distinct though closely related Ca^{2+} -ATPases in the Ins(1,4,5)P₃-sensitive and -insensitive stores. Although the selectivity of tBuBHQ is too weak for it to be useful it may provide opportunities to design more selective agents. Acknowledgements: Supported by the MRC and a MRC studentship to K.A.O. We thank Steve Upstone (Perkin Elmer) for providing software to analyse fluo-3 fluorescence traces.

REFERENCES

- [1] Putney, J.W. (1986) Cell Calcium 7, 1-12.
- [2] Berridge, M.J. and Galione, A. (1988) FASEB J. 2, 3074-3082.
- [3] Jacob, R. (1990) Biochim. Biophys. Acta 1052, 427-438.
- [4] Taylor, C.W. (1990) Trends Pharmacol. Sci. 11, 269-271.
- [5] Taylor, C.W. and Putney, J.W. (1985) Biochem. J. 232, 435-438.
- [6] Meldolesi, J., Madeddu, L. and Pozzan, T. (1990) Biochim. Biophys. Acta (in press).
- [7] Thastrup, O., Cullen, P.J., Drobak, B.K., Hanley, M.R. and Dawson, A.P. (1990) Proc. Natl. Acad. Sci. USA 87, 2466-2470.
- [8] Kass, G.E.N., Duddy, S.K., Moore, G.A. and Orrenius, S. (1989) J. Biol. Chem. 264, 15192-15198.
- [9] Taylor, C.W. and Potter, B.V.L. (1990) Biochem. J. 266, 189-194.
- [10] Taylor, C.W., Berridge, M.J., Cooke, A.M. and Potter, B.V.L. (1989) Biochem. J. 259, 645-650.
- [11] Merritt, J.E., McCarthy, S.A., Davies, M.P.A. and Moores, K.E. (1990) Biochem. J. 269, 513-519.
- [12] Moore, G.A., McKonkey, D.J., Kass, G.E.N., O'Brien, P.J. and Orrenius, S. (1987) FEBS Lett. 224, 331-336.
- [13] Thomas, A.P. (1988) J. Biol. Chem. 263, 2704-2711.
- [14] Burgess, G.M., Godfrey, P.P., McKinney, J.S., Berridge, M.J., Irvine, R.F. and Putney, J.W. (1984) Nature 309, 63-66.
 [15] Joseph, S.K., Thomas, A.P., Williams, R.J., Irvine, R.F. and
- [15] Joseph, S.K., Thomas, A.P., Williams, R.J., Irvine, R.F. and Williamson, J.R. (1984) J. Biol. Chem. 259, 3077–3081.
- [16] Burgoyne, R.D., Cheek, T.R., Morgan, A., O'Sullivan, A.J., Moreton, R.B., Berridge, M.J., Mata, A.M., Colyer, J., Lee, A.G. and East, J.M. (1989) Nature 342, 72-74.