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Abstract 

Mukund, M. and P.S. Thiagarajan, A logical characterization of well branching event 
structures, Theoretical Computer Science 96 ( 1992) 35-72. 

We develop a tense logic for reasoning about the occurrences of events in a subclass 
of prime event structures called well branching event structures. The well branching 
property ensures that two events being in conflict can always be traced back-via the 
causality relation-to two events being in minimal conflict. Two events are in minimal 
conflict if they are in conflict and their “unified” past is conflict-free. Thus the minimal 
conflict relation captures the branching points of the computations supported by the 
event structure. Our logical language has explicit modalities for talking about causality, 
conflict, concurrency and minimal conflict. We define the semantics of this logic using 
well branching event structures as Kripke frames. Our main result is a sound and 
complete axiomatization of the valid formulas over the chosen class of frames. 

1. Introduction 

Event structures have come to play a central role in the formal study 
of distributed systems. They clearly capture the intuition concerning the 
nonsequential and indeterminate behaviours of distributed systems. They 
have a rich mathematical structure [ 13,181. There are natural bridges to 
other theories of distributed systems such as net theory and the theory of 
trace languages [ 13,141. Event structures can be used to provide the nonin- 
terleaved denotational semantics of CCS-like languages as demonstrated by 
Winskel [ 181. Hence there is a good deal of motivation for developing a 
logical framework to reason about the behaviours of distributed systems as 
represented by event structures. 

The general problem of developing proof systems based on syntactic 
presentations of event structures (via, say, a CCS-like language) appears to 
be difficult. Here we attempt something more modest. Our aim will be to 
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characterize a subclass of prime event structures, called well branching event 
structures, using a suitably chosen version of tense logic. The modalities 
that we introduce in our logic will permit us to explicitly talk about three 
basic features of distributed systems: causality, conflict and concurrency. 
The strong characterization result proved here should lead to a deeper 
understanding of the interplay between the behavioural aspects of distributed 
systems as captured by event structures and tense logic. 

Prime event structures are in some sense the basic form of event structures. 
A prime event structure consists of a set of event occurrences partially 
ordered by a causality relation. In addition, the structure contains a binary 
conflict relation between the events. The conflict relation is required to be 
irreflexive, symmetric and inherited via the causality relation. The idea is 
that an event can occur in a computation only if all the events that lie 
in its past have occurred in the computation. No two events that are in 
the conflict relation can both occur in a computation. Two events that are 
neither causally related nor in conflict are said to be concurrent; whenever 
they both occur in a computation, they do so with no order over their 
occurrences. 

In a well branching prime event structure two events being in conflict can 
always be traced back-via the causality relation-to two events being in 
minimal conflict. Two events are said to be in in minimal conflict if they 
are in conflict and no two events in their (unified) past are in conflict. In 
such an event structure, the branching points of a computation-where the 
system chooses between alternate courses of action-can be clearly identified 
in terms of a choice made between two events in minimal conflict. These 
ideas will become more transparent in the next section where we present a 
brief formal introduction to well branching prime event structures. 

Prime event structures that model the behaviour of realizable distributed 
systems will certainly be well branching. In fact, such event structures will 
have at least two other attributes which we do not handle in this paper. 
Firstly, the events will be labelled with the elements of an action set. 
Secondly, these event structures will be finitary; every event will have at 
most a finite number of events lying in its past. The problems that arise when 
one tries to handle these two attributes will be discussed in the concluding 
section. 

Turning now to our logical language, it is a tense (temporal) logic with the 
usual past and future modalities. In addition it has three unary modalities 
for expressing concurrency, conflict and minimal conflict. Actually, in the 
present work, where only well branching event structures are admitted, the 
conflict modality can be expressed in terms of the past, future and minimal 
conflict modalities. We have included the conflict modality as a first class 
object in our language mainly for technical reasons. More remarks regarding 
this point can be found in Section 3 which presents the language and 
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develops a Kripke-style semantics for it with well branching prime event 
structures serving as the frames. 

The conflict modality was introduced by Penczek [ 15 1. He also introduced 
the logical means for talking about the maximal computations of an event 
structure called runs. In [ 161 he uses a modality called the immediate 
conflict modality. However this modality is not interpreted as the minimal 
conflict relation. Instead, it is given a rather weak interpretation. We will 
discuss in greater detail how our work relates to Penczek’s work in the 
concluding section. 

The main technical contribution of this paper is a sound and complete 
axiomatization of validity with respect to the chosen semantics. The ax- 
iomatization is presented in Section 4. The completeness proof, which is 
somewhat formidable, is spread over Section 5 and the Appendix. In Sec- 
tion 6 we discuss related work and issues. 

2. Event structures 

In this paper, we will deal only with prime event structures and hence we 
will simply call them event structures. 

Definition 2.1. An event structure is a triple ES = (E, <, #) where 
(i) E is a set of events (or better, event occurrences). 

(ii) < C E x E is an irreflexive and transitive causality relation. 
(iii) # C E x E is an irreflexive and symmetric conflict relation. 
(iv) # is inherited via < in the sense that el # e2 < es implies that 

el # e3 for every el, e2, es in E. 

Usually the causality relation is required to be a partial ordering relation. 
We have made it a strict partial ordering relation because it fits in better 
with the completeness argument. 

Let ES = (E, <, #) be an event structure. Then 

id dzf {(e,e) 1 e E E}, 

> d2f {(e,e’) 1 (e',e) E <}, 

< dgf < u id, 

> dgf > u id, and 

codzf EXE-(,<u>u#). 

The relation co is called the concurrency relation. Observe that the relations 
{<, >,#,co, id) partition E x E. 
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It is necessary to define one more auxiliary relation. Let ES = (E, <, #) 
be an event structure and e. e’ E E. Then 

e #P e’ dGf e # e’ and Vei, e; E E: [e, d e and ei < e’ and el # ei 
implies el = e and ei = e’]. 

#P identilies the minimal elements (under <) of the # relation and is 
hence called the minimal conflict relation. The # relation identifies pairs 
of events which are inconsistent with each other and therefore cannot both 
occur during any run of the system. #P identifies the branching points in the 
behaviour where choices are made between conflicting events. This “basic” 
conflict then propagates to causally related events and “generates” other 
conflicts. 

In general, there may be events in # whose inconsistency cannot be traced 
back to a pair of events in #@ - a typical example consists of two infinite 
descending chains of events in # with each other. However, it is difficult to 
find useful examples of concurrent systems for modelling which one requires 
such event structures. We shall therefore restrict our attention to the class 
of well branching event structures. 

Definition 2.2. Let ES = (E, <, #) be an event structure. ES is well branch- 
ing iff for all e, e’ E E we have that 

e # e’ implies 3el, e[ E E: el d e and ei < e’ and eI gP ei. 

Assuming well branching, we can specify an event structure by displaying 
its < and #@ relations. The # relation is then uniquely determined by part 
(iv) of Definition 2.1. 

Figure 1 is an example of an event structure. The squiggly lines represent 
the #P relation. The causality relation is shown in the form of the associated 
Hasse diagram. In this event structure, el # e6 because ei gfl e2 < 6%. It iS 

also easy to see that e6 co e7. 
Notice that a well branching event structure may have infinite descending 

chains of events-and even pairs of infinite descending chains of events 
in # with each other. All that well branching ensures is that every pair of 
events in # is “guarded” below by a pair of events in #P. Thus, in Fig. 2, 
every pair (e,, f,), i, j >, 0, is in #. However, each such element in # can be 
traced back to the pair (e;, &’ ) E #p, where k = max (i, j ), and so the event 
structure is well branching. Thus, well branching is a fairly weak restriction 
and does not, in particular, imply well foundedness with respect to <. 

The states of an event structure are called configurations. A configuration 
identifies a set of events that have occurred “so far”. An event can occur 
only if all the events in its past have occurred. Two events that are in conflict 
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e9 0 q el0 

e5 0 q e6 e7 q -0 e8 

v 
el q -0 e2 

v 
e3 q -0 e4 

Fig. 1. An event structure. 

. . . 
q . 

F * q t 

fs fl F 
Fig. 2. A well branching event structure that is not well founded. 

can never both occur in the same stretch of behaviour. Before formalizing 
these notions it will be convenient to adopt the following notation. 

Let ES = (E, <, #) be an event structure and X 5 E. Then 

jX={e’I3eEX:e’Ge}. 

For a singleton {e}, we shall write le instead of l(e). 

Definition 2.3. Let ES = (E, <, #) be an event structure and c & E. Then 
c is a configuration iff 

(i) c = _Ic (left-closed), 
(ii) (c x c) n# = 0 (conflict-free). 

For the event structure shown in Fig. 1, {e2, es, es} is a configuration. 
{ez, e5, eta} is not a configuration because it is not left-closed and {ej, e7, es} 
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is not a configuration because it is not conflict-free. 
Let CEs denote the set of configurations of the event structure ES. In this 

paper, we will be concerned with only the local configurations of an event 
structure. The notion of a local configuration is based on a simple but crucial 
observation which lies at the heart of the theory of event structures [ 131. 

Proposition 2.4. Let ES = (E, <, #) be an event structure and let e E E. 
Then _le is a configuration. 

Proof. Follows easily from the definitions. 0 

We now define LCES = { le 1 e E E} to be the set of local configurations 
of the event structure ES = (E, <, #). We shall interpret the formulas of 
our logical language only at the local configurations of an event structure. 

The configuration le corresponds to the state of the system when the 
event e has just occurred and thus represents the view of the system seen 
by observers participating in e. Suppose that ES = (E, <, #) models the 
behaviour of a system of communicating sequential processes. Then at least 
one process or agent will be involved in the occurrence of each event. If the 
agent j participates in e, then le will represent the local history of agent j up 
to the stage where e has occurred, together with the “latest” histories of all 
the agents that have communicated with the agent j up to the occurrence of 
e. This will be true of every agent that participates in e. In other words, le 
represents a “synchronized” set of local states of the agents that participate 
in the occurrence of e. 

Another motivation for only considering local configurations comes from 
the work of Nielsen, Plotkin and Winskel. In [ 131, they show that the poset 
(C,, C) of configurations ordered under inclusion is prime algebraic and 
coherent. The fact that this poset is prime algebraic basically means that 
certain configurations in the poset are “special”. These are called the prime 
elements of the poset. An arbitrary configuration is completely characterized 
by the prime elements that it dominates in the poset. It turns out that the 
prime elements of the poset (CES, C) are precisely the local configurations, 
so it makes sense to tie our assertions about the event structure to these 
configurations. 

3. The language and its models 

We fix P = {p1,p2,. . .}, a countably infinite set of atomic propositions. 
We let p, q with or without subscripts range over P. The formulas of our 
language are then defined inductively as follows. 

(i) Every member of ‘P is a formula. 
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(ii) If CY and /3 are formulas then so are X, (Y V /3, q a, b, v a, A Q and 

V/l a. 
0 and q will denote the future and past modalities of tense logic re- 

spectively. v will capture conflict, B will capture concurrency and V~ will 
capture minimal conflict. 

For the rest of the paper, 0 will denote the set of formulas of our language. 
We let a, p, y and 6 with or without subscripts range over 0. 

A frame is an ordered pair Fr = (ES, LCES) where ES = (E, <, #) is a 
well branching event structure and LC ES is the set of local configurations 
of ES. The members of LC’E~ will play the role of possible worlds in the 

Kripke-style semantics we are about to define. 
A model is an ordered pair M = (Fr, V ) where Fr = (ES, LC',y,y ) is a 

frame and V : P + 2Lc~s is a valuation function. 
Let M = (Fr, V) be a model with Fr = (ES,LCES), ES = (E, <,#) 

and le E LCE~. Then the notion of a formula Q being satisfied at the local 
configuration le in the model M is denoted as M, le k cy and is defined 
inductively as follows. 

MJe F=P iff le E V(p), forp E P. 

M, le k 7~ iff M, le p Q. 

M, le k (Y V /I iff M, le k Q or M, le k j?. 

M, le k •~ iff Ve’ E E: e < e’ implies M, le’ k a. 

M, le k q a iff Ve’ E E: e’ < e implies M, le’ b cr. 

M, le + v cy iff Ve’ E E: e #I e’ implies M, lee’ t= a. 

M,le + Acr iff Ve’ E E: e co e’ implies M, le’ 1 cr. 

M, le + vp (Y iff Ve’ E E: e #p e’ implies M, le’ k cy. 

The formula (Y is satisfiable if there exists a model M = ( (ES, LC,Q), V ) 
and a local configuration le E LCES such that M, le b a. a is M-valid- 
denoted M + a-iff M, le k cr for every le E LCES. a is valid-and this is 
denoted by + a-iff O. is M-valid for every model M. 

We define the derived connectives of the propositional calculus (PC) such 
as A, 1 and E in terms of 7 and v in the usual way. In addition, we define 

00 d&f -lo-Q, 

ecu d&f +&a, 

va d&f 7v-q 
def 

Aa = 7n7a, 

VP a dgf 7 Lyp -a. 

It is easy to verify that v (u E op (Y v 0 op Q v op Oa v 0 Q, 0~ is a valid 
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formula. Thus we could eliminate the modality v from the definition of 
the language and instead make it a derived modality using vP, q and 8. 
However, it will be very convenient to keep v in the logic as a basic 
operator. We will instead throw in the above “definition” of v in terms 
of vP, 0 and q as an axiom of our logical system. In [9], it is shown 
that the language which contains the v operator but not the vfl operator is 
strictly less expressive for the class of models based on well branching event 
structures. 

Also, notice that the usual reflexive forms of the future and past operators 
are easily expressible in our logic. (u A q cu defines a reflexive future operator 
while Q A q a defines the corresponding reflexive past operator. 

A number of interesting properties of distributed computations can be 
expressed in our language. 

To illustrate, consider a finite set of sequential agents Ai, AZ,. . . , A,. 

Assume that { Qi, Q2, . . . , Qn} is a collection of pair-wise disjoint finite 
nonempty sets. Qi is the set of local states that agent Ai can assume. The 
agents communicate with each other asynchronously. The means for associ- 
ating an event structure with such a system will be assumed to be available 
(see for example [ lo] ). Let us call such event structures communicating 
sequential agents (CSAs). 

To reason about such systems in our logic, we specify certain “frame 
axioms”, and focus on models based on CSAs over which these axioms are 
valid. We can then use these frame axioms in conjunction with the general 
proof system for event structures (which is presented in the next section) 
to derive facts about this class of models. 

To begin with, suppose that for each i and each q E Ql we have an atomic 
proposition, also called q for convenience, which denotes that the current 
local state is q. We first make the following assertions (where Q = lJi Qi). 

(i) V 4, 

(ii) A q 3 74’. 
q,q’EQ, qfq’ 

These ensure that the local configurations of the models we consider can 
be mapped uniquely to the state space of the agents. In this framework, 
attdzf VqEQ, q will denote the fact that the current local configuration belongs 
to A,. 

We can capture the fact that the individual agents are sequential-i.e. they 
exhibit no concurrency in their local behaviours-by asserting 

(iii) //(at, 3 n(lati)). 
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The next assertion expresses the important fact that (nondeterministic) 
choices in the behaviour are made locally by the individual agents. 

To be able to reason about the behaviour of the agents, it is convenient to 
have the means for talking about the computations of an event structure 
ES. Let (C,, C) be the poset of configurations of ES ordered under inclu- 
sion. The maximal elements of this poset correspond to the maximal (i.e. 
“nonextendable”) computations of the event structure, which we shall call 
the rurzs of the event structure. 

Following [ 151, we reserve a proposition p to designate a run. Let 
ES = (E, <, #) be an event structure. It is easy to verify that Y C E is 
a run iff 

‘de E E: (e E Y iff Ve’ E E: e # e’ implies e’ $ r ). 

Keeping this in mind, we can demand that the local configurations satisfying 
p constitute a run in any model we consider by asserting the following: 

Now suppose that the agents are running a common protocol to achieve a 
stable property-that is, once the property is satisfied in a run it remains 
true for the remainder of the run. For instance the agents may be running 
a protocol such as the snapshot algorithm [ 31, superimposed on the actual 
computation, to detect the termination of the main computation. 

Let (II denote the fact that an individual agent has “recognized”, as a result 
of running the protocol, that the system has achieved a stable property- 
in this case, cy would denote that the agent has detected that the main 
computation has terminated. If the protocol has worked correctly, Q will be 
become true in any run within an agent only if the stable property has in 
fact been achieved, and so Q: itself must be “stable” within each agent. The 
formula 

can be used to specify this. 
In addition, to verify the protocol we have to check that in each run of the 

system, if Ai achieves a local state satisfying a then every other agent also 
eventually achieves a local state satisfying LY. Notice that any pair of local 
states that occur in the same run must either be ordered or in co with each 
other. As a result, during a run Ai can “look across” to all the local states of 
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some other agent Aj which belong to the same run using the modalities 0, 
q and 8. Hence, we can specify the correctness of the protocol by asserting 

atiApA(~. 3 /I\[n((UIjAp) >O(Q~?,A/IA(Y)) 

j#l 

AB((at,Ap) 3 O(at, ApAct)) 

An((UtjAp) >0(at,ApA~~))]. 

On the other hand, suppose that the agents are meant to constitute a 
nonterminating system. We can specify that the system is free from “local” 
deadlock by asserting that every run is “perpetual” within each agent as 
follows: 

We can also specify the weaker property that the system as a whole has no 
finite computations, though individual agents may terminate, as follows: 

/\{ (ati A P) 2 [o(ati A P)) 

vv(‘((Ut,Ap) >O(UtjAp)) 

j#l 

Am((UfjAp) >O(Ut,A/l)) 

\ An((utjAP) ~O(utjAp)))I}. 

This formula asserts that in case an agent is unable to make progress 
within a run, it must be able to look across to some other agent which is 
nonterminating, thereby ensuring that the run is infinite. 

The intuitive notion of frame axioms used in the example can be for- 
malized. Let A = {a,, ~2,. . . , a,} be a finite set of formulas. Then, we will 
say that A semantically entails P-and denote this by A + p-iff for every 
model M, if M i= cy, A cx2 A. . A (Y, then A4 + /3. Thus, in the example above, 
the intention is that the formulas we use for specifying properties about the 
class of models based on CSAs should be semantically entailed by the frame 
axioms (i)-(v) together with a suitably chosen set of assertions satisfied by 
a protocol. This will then ensure that the protocol (semantically) meets the 
specifications. 

We can relate the notions of semantic entailment and validity. To do this, 
we introduce the modality & defined as follows: 

~cE~~~~AAcxABcIA~~:ABcx. 
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&a is to be read as “everywhere (Y”. From the semantics it is obvious that 
if Eu is satisfied at a local configuration in a model then CI: is satisfied at 
every local configuration in the model. We then have the following result. 

Proof. Follows easily from the definitions. 0 

4. The axiom system 

Our axioms are a combination of standard modal logic axioms and tense 
logic axioms [ 1,4], along with a few new axioms which reflect the restrictions 
imposed on the relations <, #I and co in the definition of event structures. 
We first present the logical system in full, and then provide some explanatory 
remarks. 

Axiom schemes. 

(Al ) All the substitution instances of the tautologies of propositional 

logic. 

(AZ) (i) q (cr. 2 p) > (Ua > O/3) (Deductive closure) 

(ii) fl(a 2 j3) > (mu: > O/3) 

(iii) v(a: 2 j3) 1 (Va 2 v/3) 

(iv) n(a: 3 p) 2 (na > n/3) 

(v) &(a 2 8) 1 (V/La 1 V/J) 

(A3) (i) q la 1 00~ (Transitivity of <) 

(ii) 812 2 ElElf_~ 

(A4) (i) Q 2 VVa (Symmetry of #, #P and co) 

(ii) cy 2 vPvcn 

(iii) 0 3 B L CI: 

(A5) (i) a 1 q Ocv (Relating past and future) 

(ii) Q 2 q Oa 

(A6) va > nOa (Conflict inheritance) 

(A7) ~~~~,crvO~,~~~,O~vO~,,Ocr (Well branching) 
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(ii) ncu > q (Ocr: V Acu) 
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(Conflict-free past) 

(A9) (i) O~~O(CXVO~VOCYV~~VA~) 

(ii) Vo>~(nVOtrVOaVVcuVa~) 

(iii) .A(Y~A(~VO~VVOCYV~~~VA~) 

(iv) Ocy 1 q (cu V Ock V @a V Aa) 

(AlO) rycu>A(Ocuv~avAa) 

(All) na> q (OctV~aVAa, 

(A12) vcw> q (Oav~avA~) 

Inference rules. 

(Relating weak and 

strong modalities) 

(Relating A and v) 

(Relating B and 0) 

(Relating v and q ) 

(i) E 
q a 

(ii) & (iii) L 
v (1 

(iv) -!Z- 
Aa 

(v) L+L 
V/l 0! 

d3c-r: 
WNIQ) ~ where p is an atomic proposition not appearing in (Y, 

a 
and ddAfp A 07~ A q lp A A -p A v -p. 

Axioms (Al ) and (A2) and inference rules (MP) and (TG) are standard. 
(A3) and (A4) are versions of the modal logic axioms 4 and B, respectively, 
which express the transitivity of < and the symmetry of #, #p and co. (A5) 
is the standard tense logic axiom relating the past and future modalities. 
(A6) expresses the fact that conflict is inherited via <. (A7) captures the 
fact that the event structure is well branching. (A8i) characterizes #fl as the 
minimal conflict relation while (A8ii) ensures that any two events related 
by co have consistent (i.e. conflict-free) pasts. The remaining axioms are 
necessary to capture the fact that the relations <, <-I, # and co “cover” 
the event structure-i.e., any two distinct events are related by one of these 
relations. 

The rule (UNIQ) is adapted from [2]. Notice that given a proposition p, 

the formula d can be true at at most one local configuration, by the definition 
of b. Hence, we can label each local configuration le, by a distinct formula 
5,. The rule (UNIQ) allows us to construct this labelling, which is crucial 
in demonstrating the completeness of the axiomatization. 

A formula a is a thesis if it is derivable in our axiom system. We denote 
that cy is a thesis by F cr. 
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Theorem 4.1 (Soundness). 1f 1 a then + a. 

Proof. It is routine to verify that the axioms (Al )- (Al 2) are valid and that 
the rules (MP) and (TG) preserve validity. 

To show that (UNIQ) preserves validity requires a little bit of work. We 
have to show that if d 2 0: is valid, and p does not appear in a, then cy 
is valid as well. This is equivalent to showing that if YE is satisfiable then 
b A icy is satisfiable (i.e. p Q implies F d 3 a.) 

Therefore, suppose that icy is satisfiable. Then there exists a model 
A4 = ((ES,LC~~), V) and a local configuration .leo E LCES such that 

M, le0 k la. For p E 0, let VOC( p ) denote the set of propositions that 
appear in /3--VOC( /3) is to be read as the vocabulary of p. 

Define a new valuation function I/’ as follows: 

Vq E P: V’(q) = 
V(q) if q E Voc(x), 

{Leo} otherwise. 

Let M’ = ( (ES,LCEs), V’). Let p E @ such that Voc(p) C VOC(X). It is 
easy to verify the following, by induction on the structure of /3. 

Vie E LCES: M’, le k /I iff M, le + 8. 

Thus we have M’, .leo + 1c-y. At the same time, since p $ VOC(X), M’, lea k 
i. So M’,.leo +P A 1~: and we are done. 0 

We can now define the notion of a theory. Let A = {al, ~2,. . . , a,,} be 
a finite set of formulas (here we mean concrete formulas and not schemes 
closed under substitution). We say that A derives P-which we denote as 
A 1 /3-iff we can derive p in a finite number of steps using the formulas 

{Ql,Q2,..., a,} in conjunction with our axioms and inference rules. 
To ensure that our axiomatization is sound for finite theories, we have 

to parametrize the rule (UNIQ) by the theory. For example, consider the 
following derivation, where p, q E P. 

i > cj k j II tj (Assumption) 

d>i k 4 UJNIQ) 

It is easy to verify that d 3 4 p 4, and so the rule (UNIQ) is not sound as 
it stands. Instead, for the theory A, we have to define the rule (UNIQA ) as 
follows: 

Ab-p>a 
UJNIQA) A t ff ’ 

where p is an atomic proposition appearing 
neither in cy nor any of the formulas in A 
and bdGfp A 01~ A EITP A A up A v up. 
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The remaining axioms and inference rules do not change for finite theories. 
The axiomatization presented earlier then turns out to be a special case of 
the general axiomatization of finite theories, where the set of assumptions 
A is empty. 

Recall that Ecr stands for the formula a A q a A q a A v cx A A a. We then 

have the following result. 

Theorem 4.2 (Deduction). {ai, a~, . ..,a,} I- /? z-$-F &(cr:,AcqA...Acu,) 3 p. 

Proof. Set Q = alAcqA.. . A a,,. It suffices to show that a t- fi iff k &a: 1 j?. 
Suppose E &a > B. Then we have cy E ECY 2 j3. Using the inference rule 

(TG), it is easy to see that the following is a derived inference rule: 

Hence, since (Y E cr, we get that CJ k Ea. Using (MP), we can then derive 
a E p. 

The proof in the other direction is by induction on the length of the 
derivation cy k j3. Let A = {CE 1, ~2,. . . , a,}. The base case, where p is 
an instance of one of the axioms or is one of the formulas ai E A is 
straightforward. For the induction step, the only interesting case is when the 
rule (UNIQA) is used to derive /?. We then know that at some earlier step 
in the derivation we have a t d 18, where p does not appear in Q: or p. By 
the induction hypothesis, we have t Ecu 1 (j 2 j3). Rewriting this we get 
E (la: A$) I p and hence E d > (ECY 2 j3). We can then apply (UNIQo) to 
obtain E Ea > p. •I 

From Theorems 3.1, 4.1 and 4.2 it follows that A 1 p implies A + j3. 
We will be able to prove the implication in the other direction when we 
establish the completeness of the axiomatization. 

We shall need some theses and derived inference rules to prove the 
completeness of our axiom system. For convenience, we shall merely state 
these theses and rules here. The theses and rules are derived in detail in 

[121. 
We begin with some standard theses and inference rules of the modal logic 

system K [4]. In what follows we let o range over the set { q ,8, v, A, v~}. o 
will abbreviate 7 o 1. We have adopted the convention that in any formula 
(scheme) the same value is substituted for all appearances of 0. Thus, for 
example, o a 1 o a: would actually stand for q cu 1 Oa, q a 3 @a, v Q > v a, 

Ba 2 .~Icr and ~~a: 1 ~~a. 

(TKl) O(cwA~)-@aAc3/? 

(TK2) O(aAp) 3OaAOB 
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(TK3) oaAoj3>o(aAP) 

(DRK) (i) Omaha (ii) a>P 
Oa>OP 

We shall also need the “dual” versions of some of the axioms. 

(T6Dual) OCX>v7C% 

(T8Dual) Oa>A(OcuV@.o) 

(TlODual) ACY 2 ~(0a.V ~a V Aa) 

(TllDual) 0~ 3 A(Oa:V~aV~a) 

(T12Dual) OQ, 2 ~(@a V vcr. V Aa) 

In addition, we need the following theses concerning j. 

Ud) (i) Olj>‘pABlpA~~pAAlp 

(ii) Op>~pAO~pAV’pAA~p 

(iii) ~p3~pAo~pAo~pAA~p 

(iv) AfY37pAOlpAB7pAvlp 

(v) V(dAQ) 3V7(dxa) 

Finally, we need a restricted type of substitution rule. 
Let f : P + P be a function mapping atomic propositions to atomic 

propositions. We can extend f in an obvious way to f : @ + @ through 
the syntax of our language, namely: 

f(4) =f(q), forallqEP, 

fbd = Tm, 

Since j is uniquely determined by f, henceforth we shall always write f (cu) 
insteadof_? forallf:P+Panda:E@. 

The derived inference rule that we want is 

(SUB) f;:CY) (f:~+ P). 

5. Completeness 

We now wish to show that the axiomatization presented in the previous 
section is complete. 



50 M. Mukund, P.S. Thiagarajan 

As usual, by a consistent formula, we shall mean a formula whose negation 
is not a thesis of our system. Our proof of completeness will establish that 
every consistent formula is satisfiable-in other words, we show that if y icy 
then /& 1~. 

The finite set of formulas {cul, ~2,. . . , a,} is consistent iff cyl ACU~ A. . . A am 

is consistent. A set of formulas is consistent iff every finite subset is. A 
maximal consistent set (MC’S) is a consistent set of formulas which is not 
properly included in any other consistent set. 

We shall assume the usual properties associated with MCSs. We shall also 
assume Lindenbaum’s Lemma which says that any consistent set of formulas 
can be extended to an MCS. 

In a model, the set of formulas satisfied at each local configuration is an 
MCS. Thus, given a frame, we can define a model by associating an MCS 
with each local configuration, instead of specifying a valuation function. 
Following [ 1 ] we call a function assigning MCSs to a frame a chronicle, and 
a frame together with a chronicle a chronicle structure. 

Clearly, not every chronicle structure corresponds to a model. We need 
to define coherency conditions which must be satisfied by the chronicle in 
order to yield a model. When these conditions are satisfied, the chronicle 
is said to be perfect. A perfect chronicle defines a model where the set of 
formulas satisfied by each local configuration is exactly equal to the MCS 
assigned to that local configuration by the chronicle. 

To show that a consistent formula cl0 is satisfiable, we shall incrementally 
construct a chronicle structure which will eventually be perfect and yield a 
model for cro. 

Before defining chronicles and perfect chronicle structures, we need to 
define four binary “semantic” relations over MCSs as follows. 

Definition 5.1. Let A, B be maximal consistent sets. 

(i) A < B gf {a 1 q a E A} G B. 

(ii) A 3 B Ef {Q 1 80 E ,4} c B. 

(iii) AcbB%f{aIna~A}~B. 

(iv) A *P B sf {a 1 vP a E A} g B. 

The next result follows from standard arguments, using axiom (A5 ) for (i) 
and axiom (A4) for (ii)-( 

Proposition 5.2. Let A, B be maximal consistent sets. 

(i) A 2 B iff {O/3 I P E B} C A ti {P I q P E B} C A 
iff {ecu ( a E A} G B. 
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(ii) As:B ~~~{vPIPEB)GA iff{PlvP~B)&A 
iff{~alcr~A}CB. 

(iii) A&B iff{nj?(/?~B}cA iff{PInfi~B}CA 
iff{&+x~A}~B. 

(iv) A*ir,B ~~~{~~PIPEB}CA~~~{~IB~PEB}CA 
iff {Q Q I a E A) C B. 

We shall use 5 to denote the relation (7 )-’ . 
The semantic relations defined on MCSs are designed to behave like their 

counterparts in an event structure. We now verify that our definitions do 
have the desired effect. 

Proposition 5.3. 
(i ) 2 is transitive. 

(ii) 3, cb and ap are symmetric. 
(iii) *P C %. 

Proof. (i) and (ii) follow at once from axioms (A3) and (A4). (iii) follows 
from (A7). 0 

We can now define the notion of a chronicle structure. 

Definition 5.4. A chronicle structure is a triple CH = (ES, T, p ), where 
(i) ES = (E, <, #) is a well branching event structure with #P as its 

minimal conflict relation. 
(ii) T is a function, called a chronicle over ES, which assigns an MCS 

to each le E LCEs. 
(iii) p C #P. 

Abusing notation, we shall always talk of a chronicle T assigning an MCS to 
an event e rather than to the corresponding local configuration le. Notice 
that we have augmented the chronicle structure with a parameter fi which 
singles out a special subset of #P. This will be needed because the relation 
#P is not stable with respect to our incremental construction of chronicle 
structures. The exact role played by ,D will become clearer when we describe 
the construction. 

Next, we need the notion of coherence. 

Definition 5.5. Let CH = (ES, T, ,u) be a chronicle structure, where ES = 
(E, <, #). CH is coherent iff it satisfies the following conditions. 

(i) Ve,e’ E E: e < e’ implies T(e) 2: T(e’). 
(ii) Ve,e’ E E: e #e’ implies T(e) $$ T(e’). 
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(iii) Ve,e’ E E: e co e’ implies T(e) cb T(e’). 
(iv) Ve,e’ E E: (e,e’) E ,u implies T(e) tiU T(e’). 

Coherence ensures that the chronicle is consistent with the underlying frame. 
Notice that for the #P relation, the chronicle need only be coherent with 
respect to the special subset ,u. 

A coherent chronicle may still have “gaps”. These gaps can be described 
in terms of “unfulfilled requirements”, in the following sense. 

Definition 5.6. Let CH = (ES, T, ,u) be a coherent chronicle structure, where 
ES = (E, <, #). 

(i) A live future requirement is a pair (4, Oa) such that e E E and 
Ocu E T(e) and there does not exist e’ such that e < e’ and cy E T (e’). 

(ii) A live past requirement is a pair (e, 0~) such that e E E and 
0~ E T(e) and there does not exist e’ such that e’ < e and a E T (e’). 

(iii) A live choice requirement is a pair (e, v a) such that e E E and 
~7 (Y E T(e) and there does not exist e’ such that e # e’ and cy E T(e’). 

(iv) A live concurrent requirement is a pair (e, n a) such that e E E and 
a a E T(e) and there does not exist e’ such that e co e’ and cy E T (e’). 

(v) A live minimal choice requirement is a pair (e, Q a) such that e E E 
and oP a E T(e) and there does not exist e’ such that (e,e’) E p and 
CY E T(e’). 

(vi) A live requirement is a pair (e,/3) such that (e,p) is a live future 
requirement or a live past requirement or a live choice requirement or a 
live concurrent requirement or a live minimal choice requirement. 

Once again, observe that the liveness of a minimal choice requirement is 
defined with respect to ,H and not with respect to #P. 

We can now state the criteria under which a chronicle structure is perfect. 

Definition 5.7. The chronicle structure CH = (ES, T, ,u) is perfect iff it sat- 
isfies the following three conditions: 

(i) CH is coherent; 
(ii) CH has no live requirements; 

(iii) ,u = #@, where #P is the minimal conflict relation of ES. 

From the work of Burgess [ 11, it follows that demonstrating the satisfiability 
of a consistent, formula reduces to the problem of constructing a certain type 
of perfect chronicle structure. 

Lemma 5.8. Let CH = (ES, T, ,u) be a perfect chronicle structure, where 
ES = (E, <,#), and let a0 be a formula such that for some eo E E, 
rwg E T (e. ). Then cue is satisfiable. 
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Proof. Let I+ : P + 2Lc~s be given by: 

vp E P: VT(p) = {le 1 e E E and p E T(e)}. 

Consider the model Mr = ( (ES, LCES), VI- ). 

Claim. V’cr E 0: Ve E E: Mr,le k Q iffa E T(e). 

We omit the proof of the claim, which is a simple induction on the structure 
of cy. 

Now, since we know that CQ E T(ea), we get MT, 1% b a~. 0 

For the remainder of the section, we fix a consistent formula ~0. The 
aim is to construct a perfect chronicle structure CH = (ES, T, ,u ), with 
ES = (E, <,#), such that cyo E T(eo) for some es E E. 

We shall build up CH inductively. With this in mind, we fix a countably 
infinite set of events B = {eo,ei, ex,. . .}. Let {qo,ql, . . . , qx} be the set of 
atomic propositions that appear in ao. Fix an enumeration of P of the form 

40,41,...,4x,PO,Pl,.... Finally, fix an enumeration of l? x @, where 0 is 
the set of formulas in our language. 

For clarity of presentation, we shall omit a couple of lengthy proofs 
from this section. These proofs are given in the Appendix. This section 
together with the Appendix provides a complete account of the inductive 
construction. 

The general idea is to begin by extending QO to an MCS Ao. We can then 
define a chronicle structure CHo = (E&, TO, 0), where ES, = ({eo}, 8,8) 
and To(eo) = Ao. 

At stage i in our inductive construction, we shall eliminate one live 
requirement (e,/3) from CHi = (ES,, Ti,,Uu,), where ES, = (Ei, <i,#i) and 
e E Ei. In general, this will involve adding an event ei+ I to Ei. For example, 
if j3 is of the form n /IO, we shall add an event ei+ 1 such that e co ei+ 1 and 
extend T, to T, + 1 SO that Bo E Ti+l(ei+l) and Ti+i(e) ~2 T,+i(ei+i). 

When we add e, + 1 to E,, we also have to fix the relationship between ei, 1 

and all the other events in E,. To then extend T, to a coherent chronicle 

is+1 on ESi+i, we will need to selectively modify the MCSs assigned by 
Ti to the events in Ei. While doing this, we have to ensure that live 
requirements that have been killed at earlier steps remain killed. To achieve 
all this, we will need to “name” each event ei that we add to our chronicle 
structure by the formula di. Recall that for p E P, a abbreviates the formula 
p AOTp AB7p llv’lp A A-Jp. 

Keeping all this in mind, we shall assume that the chronicle structure 
CH, = (ES,-, Ti, pi) constructed at stage i satisfies a set of inductive condi- 
tions ZC. ZC captures the fact that Ei contains events from {eo, el, . . . , ei}, 

each event being “named” by &i.e. ii E Ti (e,). ZC also ensures that 
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ct’o E I; (eo) is maintained as an invariant condition, and that Ti is a co- 
herent chronicle on ES,. The detailed description of ZC is given in the 
Appendix. 

To ensure that CHo conforms to ZC, we have to be careful about extending 
a0 to an MCS Ao. Since we want to have To(eo) = AO, we must ensure that 

do E Ao. 
Define the function go : P + P as follows. 

VPEP. go(P) = 

i 

P ifP E {40,41,...,4,x), 

P,+~ ifp=p;fori>,O. 

In other words, replace po by pI, p1 by p2 . . . , but leave the atomic propo- 
sitions 90, ql,. . . , qx untouched. For (Y E @, let (1 abbreviate go (cy). 

Extend the consistent set {aa} to a maximal consistent set A. Let A’ = 
go (A). Clearly A’ is free of po. 

Lemma 5.9. A’ is consistent and ~0 E A’. Moreover, A’ U {&} is consistent. 

Proof. Suppose A’ is not consistent. Then we must have k -XX’ for some 
CY’ E A’. Let ho : P + P be given by: 

vp E P: 
ho(P) = 

ifp E {40,41,...,qx) U {PO}, 

if p = p I for i > 1 / . 

It is easy to check that ho(&) = cy. Then, by the derived inference rule 
(SUB), k ~CX, which is a contradiction because cy E A. Hence A’ is consistent. 
Since go (crc ) = ~0, ~0 E A’. 

Next, we must verify that A’ udo is consistent. Suppose not. Then k PO > 
X’ for some a’ E A’. By the choice of go, Q’ is free of PO. Hence, by 
(UNIQ), t- TQ’, which contradicts the consistency of A’. 0 

Now extend A’ u {do} to an MCS Ao. Set CXa = (ESo, To, 8), where ES0 = 
({eo}, 0,0) and To (eo) = Ao. We can verify that CH,J satisfies the inductive 
conditions ZC. 

We now proceed to construct CHi+ 1 from CH,. The basic idea is to 
“kill” some live requirement (e, p) present in CHi. While doing so, we do 
not wish to “disturb” the fact that QO E T, (eo) and i, E T, (ej ) for each 
ej E Ei, 0 < j 6 i. At the same time, in case the event e;, l is added to Ei 
to kill (e, P), it should be named ii+ i, for which we shall have to “shift up” 

propositions p, + 1, pi f 2 . . . as we did for p. using go. Consequently, we shall 
demand two things of the live requirement (e, p) chosen to be “killed”. 

(i) At most the propositions qo, ql,. . . , qey,po, ~1,. . . , pL may appear in p. 
(ii) Among all the live requirements in CHi which satisfy (i), (e, j3) has 

the least index in the enumeration which we have fixed for i? x @. 
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To be precise, for j > 0 let L’j = (40, 41, . . . , qx} U {po,p~, . . . ,p,}. Let @j 
be the least subset of @ containing Zj such that if y and 6 are in @j then 
so are ly, 7 v 6, 07, 07, ~7, By and vP y. Clearly 0 = Ujao @j. 

Among all the live requirements of the form (e’, p’) in CH; which satisfy 
the condition p’ E @;, let (e, /3) be the live requirement with the least 
index (in the enumeration we have fixed for .!? x 0 ). If there are no 
such live requirements, set CH;+I = CH;. Otherwise, assume that e = ej, 
j E {O,l,..., i}. We shall deal in detail with the case where p is of the form 

VP PO. 
The live requirement (e,, vfi PO) in CH; can be killed in two different 

ways. In fact, this is the reason why we give a detailed treatment of this 
case. For all other cases (e, p) can be killed in only one way. This will 
become clearer as we proceed. 

The first case corresponds to the situation where there already exists 
ek E E; such that fro E T;(ek) and ej #Di ek, but (e,,ek) $ ,u;. In other 
words, ek was added at stage k < i to kill some other live requirement, 
and (ej, ek ) “accidentally” happens to belong to #Pr. In general, we cannot 
assume that the event ek kills the live requirement (e,, vfi PO) because #Pi 
is not stable with respect to our inductive construction. For example, given 

(e,,ek) E gfi;, we may add e,+l to E; to kill a past requirement of the form 

(ek, @y), and set e,+l <;+I ek and e,+l #;+I e, whereby (e],ek) $! #pi+,. As 

a result, if the liveness of minimal choice requirements were to be defined 
with respect to the relation #P;, requirements assumed to be killed at earlier 
stages in the construction may become live again at later stages. 

This is precisely the reason why we identify a special subset of #P; by p;. 
From the way we build up p;, it will turn out that if an element of #Pr is 
included in ,u;, then it will always remain in #tin for all n > i. Thus, by 
killing a minimal choice requirement using an element in y,, we can ensure 
that the requirement never becomes live again. 

On the other hand, it will turn out that R, c Ri+, for R E {<, >,#,a~}. 

The inductive conditions ZC will then ensure that for live requirements of the 
form (ej,O&), (e,,@Po), (e,,oj?o) and (e,,~Lj30), once the requirement 
has been killed at some stage k, the requirement never becomes live again 
at any later stage. 

SUppOSe then that there exists ek E E, such that ej #Pi ek and DO E T; (ek) 
and, further, T;(e,) %‘/1 7;(ek). Set E,+r = E;, cl+1 = cl, #1+1 = #; and 
T I+1 = 7;. Finally, set ,~;+r =~iu{(ej,ek),(ek,e,)}. 

It is easy to verify that CH, + 1 is a well-defined chronicle structure. We 
know that ES;+ 1 = ES, and T;+ 1 = T;, so all we have to check is that 

Yi+l C #JL,+~. Since ,u; C_ #Pi by the induction hypothesis and the new 
elements added to ,u, to obtain p;+r were assumed to be in #Pi, we know 
that y;+r G #P;. But clearly #P, = #P,+l and so ,~;+r C: #Pi+, as well. 

It is straightforward to check that CHi+ , satisfies the inductive conditions 
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ZC. Clearly (ej, oP pa) is no longer a live requirement in CHj+ 1. It is also 
easy t0 see that for all j?’ E @j and for all ek E E,, if (ek, p’) is not a live 
requirement in CHi then it is not a live requirement in CHj+I either. 

Now we consider the more difficult case. Assume that there does not exist 
ek E Ej with ej #Pi ek such that PO E Tj(ek) and ri(ej) 8P ri(ek). 

To kill the live requirement (ej, vP DO) in this case, we will extend ESi 

to ESj+l SO that Ei+l = Ej U {ej+l} and Ri+l n(EjxE,) = RjforRE 
{<, >, #, CO}. We will transform T, to Tj+ 1 in such a way that Tj+l (ek)n@i = 
T,(ek) fl @j for all ek E Ei, 0 < k < i. We will ensure that (ej,ei+i) E ,D+i 
and PO E Tj+I (ei+l) SO that (ej, VP /3o) is not a live requirement in CHj+l. 

Naturally, in all this we must ensure that CH,+ 1 satisfies the inductive 
assumptions ZC. 

The actual steps involved in the construction are as follows. 
First we must “free” pi+ 1 so that ej+i can be labelled with di+i. To do 

this, define the function gj+i : P + P as follows: 

‘dPEP: &+1(P) = p 
ifPe {40,4~,...,4~}U{PO,Pl,~~~,Pi}, 

pk+l ifp = pk fork 3 i + 1. 

In other words, gj+i replaces pi+, by p1+2, p1+2 by pi+3 . . . , but leaves 

40,41,. . . > qx and PO~PI,... ,pi untouched. For (Y E @, let cy’ abbreviate 

gi+l tau)- 

For convenience, let Ak denote z (ek ) and let AL denote gi+ 1 (Ak) for 
ek E Ej, 0 < k < i. By Lemma 5.9, Ai is consistent for all such k. 

The next step in the construction is to transform 7; to T, + ,. We begin by 
creating a consistent set of formulas containing j?o and ii+ 1 which is in *, 
with A[I. 

Lemma 5.10. Ai,, = {a’ 1 ryp a’ E Ai} U {PO} U {p^j+l} is consistent. 

Proof. Suppose not. Then I- dj+ 1 I 7 (a’ A /30) for some cy’ such that vP a E 
Aj. The definition of g,, 1 ensures that (Y’ is free of pl+ 1. Since we chose 
(ej, v/1 PO) as the live requirement to be killed at stage i, we know that 
ofl PO E @j and SO PO E @j as well. But p,+, 6 Z,, so PO is also free of 
pj+i. Hence, by the rule (UNIQ), we get t ~(LY’ A/&). By (TG), we then 
get k vfi 1 (Q’ A PO) and hence t- 1 oP ((u’ A PO). Now, consider the function 

hi+ 1 : P --f P given by 

VPE 7’: h,+,(p) = ’ 
ifp E {40,41,...,&, PO,PI3...~Pi+lI, 

p&l ifp =pk fork 3 i+2. 

Since hj+l(-vp(a’/IPo)) = -y~,(ar\Po), using the derived rule (SUB) 
we get k 1 vP (cu A PO). But we began with vfl Q E Aj. Since oP PO E Aj as 
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well and A, is an MCS, by (TK3) we get oP ((u A /IO) E Ai. So ryp (a A PO) 

is consistent, which is a contradiction. 0 

Extend A:,, to an MCS B,+i. We now have to go back and extend A) to 
an MCS that is in *f, with Bi+ i. 

Lemma 5.11. Ai U {/3 1 vp p E Bi+ ,} is consistent. 

Proof. Suppose not. Then b a’ 1 l/3 for some (Y E A, and vP P E B,+I. 
But then, by axiom (A4ii), vP oP Q E A, and hence vP vP a’ E A). As a 

result, ~,cY’ E A:+l c Bi+l. Now, applying (DRKii) to k a’ > -/3, we get 
k vP Q’ 2 vti -p, which then implies that vP up E Bi+ 1. This contradicts 

the assumption that vP p E Bi+ 1. 0 

Now extend A; U {/I 1 vp j3 E B,, I} to an MCS Bj. It is easy to verify that 
Bj *I Bi+l. 

Ti + 1 will assign Bi+ 1 to e, + 1 and Bj to ej. We must now extend 7;+1 to the 
events in Ei - {e,}. We shall deal with the concrete case where 6?k E Ei - {ej} 
and ek <i ej. Let Ai = {/? 1 q p E Bj}. 

Lemma 5.12. Ai u Ai is consistent. 

Proof. Suppose not. Then k Q’ 3 -p for some a E Ak and q /3 E B,. 
Since Z was a coherent chronicle on ESi, we must have had Ak =? A,. 
So, Oa E A, and hence @a’ E A(I C Bj. Applying (DRKii) to t (Y’ > l/? 
we get k @a’ > OTB, which implies that Olp E Bj. This contradicts the 
assumption q p E Bi. 0 

Extend Ai U Ai to an MCS Bk. It is straightforward to verify that Bk < Bj. 
For the cases ek >i ej, 6?k #i ej and ek CO1 e,, We Set Ai t0 {p 1 up E Bj}, 

{P I VP E Bjl and {p 1 h j3 E Bj}, respectively. In each case, by an 
argument similar to Lemma 5.12, Ai U Ai is consistent and can be extended 
t0 an MCS Bk. 

At this stage, for each ek E E,, ,, 0 G k G i + 1, we have managed to 
find an MCS Bk which we shall use to define c+l. We can now define 

CHi+i = (Esi.1, 7;+i,Pi+i),whereESi+i = (Ei+i,<i+i,#,+i),asfollows. 

(i) Ei+i = Ei U {ei+l}. 

(ii) <i+l = <,U{(ek,e,+l) IekE& d k d i, andBk ?B,+I} 

U { (ei+l,ek) I ek E Ei,O < k d i, and Bi+l ? Bk}. 

(iii) >i+i = (<1+i)-1. 
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(iv) %+I =#~U{(ek,ei+I),(e,+l,ek) IekEEi,o,< k d i, 
and Bk @ Bi+l}. 

(v) co,+1 = (EL+1 x E,+l) - (cl+1 U >,+I U#,+I Uidi+l). 

(vi) Vek E Ei+i: T,,, (ek) = &. 

,u~ U { (e,, e,, i ), (ei+ 1, e, )} if the live requirement con- 

sidered at stage i was of the 

(vii) ,L!i+i = form (e,, oG PO) (which we 

are assuming to be the case), 

Pi otherwise. 

We have to do a fair amount of work to prove the next result. The details 
are given in the Appendix. 

Lemma 5.13. CH,+ I is a well-defined chronicle structure which satisfies the 
inductive conditions ZC. 

Clearly, by our construction, the live requirement (ej, vP PO) that we selected 
for killing in CH, is not live in CHi+ 1. To ensure that our inductive con- 
struction works properly, we finally have to show that all live requirements 
killed at earlier stages remain “dead” in CHi+,. 

Lemma 5.14. Ve E Ei: V(Y E Qi: Zf (e,(x) is not a live requirement in CH,, 
then it is not a live requirement in CHi+,. 

Proof. This follows from the following two observations. 
(i) In extending CH, to CHi+ i we preserve the semantic relationships 

between the MCSs assigned by 7;. 
(ii) Formulas from @ are left untouched in the MCSs assigned by Ti 

during the process of “shifting up” propositions to accommodate a,+ 1 in 

K+i (ei+l). 17 

The other four types of live requirements-(e,, Up,), (e,, O/3,), (ej, v PO), 
(ej, A De)-are also killed by adding an event e, + I to Ei and extending ES, to 
ES,-+, and T, to T,, 1 in a suitable manner. The procedure is almost identical 
to that described above for the case (e,, oP PO). Virtually the only change 
to be made is in the step where B, + 1 is constructed. For live requirements 

of the form (e,,OPo), (ej,@Po), (e,,oPd and (e,,aPo), Bi+i and B, 
must be suitably defined so that B, 2 B,, 1, Bj 5 B,+l, B, $k Bi+l and 
Bj c”o Bi+l, respectively. The new event er+ I can then be “hooked up” to the 
other events in E, exactly as described above, yielding a chronicle structure 
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CHi+, in which the requirement considered at stage i is no longer live. In 
all four cases ,ui is left untouched-i.e. /Li+r = pi. 

Thus, we can construct an infinite sequence CHo, CH,, . . . of chronicle 
structures so that each member of the sequence satisfies the inductive 
conditions ZC. Now define CH = (ES, T, ,u ), where 
l ES = (E, <,#), with E = lJiao Ei, < = Ulao <i, and # = UlaO #r. 
l T : E -+ 2@ is given by: 

Vei E E: T(ei) = U{Tj(e,) n @; 1 j 3 i}. 

We can then verify the following result, whose proof is given in the 
Appendix. 

Lemma 5.15. CH = (ES, T, p) is a perfect chronicle structure in which cwg E 

T(eo). 

From the preceding lemma and Lemma 5.8 it follows that every consistent 
formula a0 is satisfiable. We have thus established our main result. 

Theorem 5.16 (Completeness). Zf + cy then F cy. 

It is straightforward to extend this result to obtain completeness for finite 
theories. 

Corollary 5.17. Let {cyl, cx2,. . . , a,} be a finite set of formulas. 

IfI ffl,Q2,..., a,> 1 P then {al,a2,...,~,} k 8. 

Proof. By Theorem 3.1, we know that 

Since our axiomatization is complete, we know that 

+&(a1 ACQA... Acr,) >/3 implies F&(uIA~~A...A~~) 3p. 

By Theorem 4.2, 

{a1,a2,... ,&}I-p iff kE(cxIAcr2A~..Acxn) I/?, 

and we are done. 0 
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6. Discussion 

In this paper we have obtained a sound and complete axiomatization of 
the class of well-branching prime event structures. We have achieved this 
using a temporal logic which appears to be rich in expressive power. 

Our completeness proof leans heavily on the techniques developed in our 
earlier work [ 1 I]. However, the logic considered there did not have the 
Q operator. Moreover the frames for the logic consisted of all prime event 
structures. As noted earlier, what we really need is a logic that characterizes 
finitary prime event structures. It is easy to check that every finitary prime 
event structure is also well branching. Thus the present work, in comparison 
to [ 111 represents advances on two fronts; the set of frames has been 
suitably shrunk (though not as much as we would have liked) and the 
logical language, due to the addition of the vp operator, is provably more 
expressive [ 91. The present completeness proof also requires some new ideas 
and is a lot more delicate. 

Partial orders have also been considered as structures for temporal logics 
by-among others-Pinter and Wolper [ 171 and Katz and Peled [ 51. In 
these studies assertions are tied directly to the global states of the system. 
Also, there are no modalities for directly expressing concurrency and conflict. 

In [6,7] and in the much improved [8] a subclass of event structures 
is used to model systems of communicating sequential agents. The logical 
language consists of future and past modalities indexed by the names of the 
agents. There are no modalities to express conflict and concurrency. 

As mentioned earlier, Penczek [ 15,161 has carried out closely related 
work. He was the first one to identify the v operator and use it to exploit 
the important notion of a run. In [ 15 ] a sound and complete axiomatization 
of (all) prime event structures is given. In our notation, the logical language 
consists of the 0, q and the v operators with neither the B operator nor the 
vfi operator. Moreover, a special proposition p is reserved in the language 
and is used to mark the runs of an event structure. A frame consists of an 
event structure together with a run. The valuation function is required to 
ensure that the special proposition p is assigned the run associated with the 
frame. 

It is easy to check that we could, if we wished to, follow the same route 
using well-branching event structures. As in [ 151 we would add p E v -p 

as an axiom to our system. We would then get a sound and complete 
axiomatization (with respect to the extended notion of frames and models) 
in the presence of the additional operators B and vD. Consequently the 
resulting logic would be more powerful in comparison to [ 151 with the 
added advantage that non-well-branching event structures would not arise 
in the process of producing models for consistent formulas. 

We feel however that it is better to retain a “pure” notion of frames and 
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embed the notion of a run into theories concerning specific applications 
as indicated in Section 3. This is so because this nice idea of Penczek to 
logically talk about runs can be extended in a number of useful ways. And 
these extensions, if brought into the “core” language, would lead to more and 
more elaborate notions of frames. It would then be difficult to distinguish 
the foundation from the superstructure, so to speak. 

For instance one could reserve a special proposition r and use it mark 
the sequential components of an event structure. By a sequential component 
we mean a maximal co-free subset of the events. The axiom r - B lr will 
then capture this notion. One could reserve two more propositions II and 
x and use them to mark the maximal chains and anti-chains of an event 
structure. The respective characteristic axioms would be A - B 4 A v 4 
and x = q 1x A 01~. We could go further down this road but we will stop 
here. The point however is that the logic presented here appears to be well 
suited for capturing many interesting behavioural notions concerning event 
structures. 

Turning now to [ 161, Penczek also introduces what he calls an immediate 
conflict operator which we will denote here as vrn . However, all that is 
required of the corresponding frame relation & is that it should generate 
the conflict relation # via the causality relation in the obvious sense. As 
a result, for a fixed # very many subsets of # could play the role of #m. 
In particular, #m could be # itself! Stated differently, all that is demanded 
semantically from T,~ is that the axiom (A7) be sound. The problem of 
course is that (ASi) which is in some sense the characteristic axiom for the 
minimal conflict relation cannot be formulated in [ 161 due to the absence 
of the B operator. 

It is worth pointing out in this connection that the term immediate conflict 
is suggested by net theory. With each event structure, one can associate a 
special kind of net called an occurrence net [ 181. For occurrence nets the 
notion of two events being in immediate conflict is well-defined-they should 
share a pre-condition. However, the means for associating occurrence nets 
with event structures suggested in [ 181, and also in [ 131, would identify 
grn with #. Thus the notion of immediate conflict, applied to prime event 
structures, is not an interesting behavioural notion. 

At present we do not know anything about the decidability of our system. 
The finite model property does not hold and hence standard filtration 
techniques are not applicable. It seems difficult to identify a suitable notion 
of a pseudo model in which the causality relation will be just a preorder. 
Stated differently, what is lacking is a finite representation of event structures 
that are possibly infinite but “regular”. The model checking problem is also 
at present not meaningful because we do not know what finite but “cyclic” 
event structures look like. Notice in this connection that the weaker system 
of [ 15 ] is shown by Penczek to be decidable. 
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As mentioned in Section 1, we lack the means for handling labelled event 
structures. One possibility would be to introduce next state and previous 
state operators and use reserved propositions to code up the label set. Once 
again due to the lack of a suitable notion of a pseudo model, standard 
techniques cannot be applied to obtain completeness. 

Finally the problem of characterizing finitary event structures seems to be 
a difficult one. The standard well foundedness axiom for irreflexive frames 
0~ 1 0 (a A E!-vzx) will certainly be sound for finitary event structures. 
However, the past of an event will in general be a partially ordered set 
rather than a totally ordered set. Hence even well foundedness seems to be 
hard to capture let alone finitariness. 
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A. Appendix 

Here we fill in the details of the completeness proof which are missing in 
Section 5. In this appendix, we describe in detail the inductive hypotheses 
ZC which are used in our incremental construction of a perfect chronicle 
and then provide the proofs of Lemmas 5.13 and 5.15. 

First, we need some preliminary results concerning the semantic relations 
defined on MCSs. We begin with a characterization of $fi in terms of 8. 

Lemma A.1. Suppose A and B are MCSs such that A 8 B and p is an atomic 
proposition such that d E B and V,J? E A. Then A $‘/I B. 

Proof. It suffices to show that {v~ p ) /I E B} C A. Suppose that p E B 
and op p $ A. Then, since A is an MCS, 7 vfi ,8 E A and hence vfl ~j? E A. 
We know that ofi j E A, so in fact ofi 6 A vp -/3 E A. Hence, by (TK3 ), 
o,(d A -/I) E A and so, by axiom (A7), ~(6 A lp) E A as well. But, by 
(Tbv), o(d A lp) 2 v((Li 1 lp) so we must have v(d 1 -/3) E A. Then, 
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Table 1 

63 

RI R2 R3 

since A * B, (j 3 -j?) E B by the definition of *. But (d 2 ~/3) E B and 
j E B implies that l/I E B, which is a contradiction. 0 

Let E = {q, e2, e3) be a set of three events. Suppose we choose relations 
Rt2,Rts E {<, >,#,co} and let el Rt2 e2 and el Rt3 es. It is easy to 
verify that we can always complete the “triangle”, choosing an appropriate 
R23 E { <, >, #, co}, such that setting e2 Rx3 e3 yields a valid event structure 
ES = (E, <, #). 

The next lemma establishes an analogous result for MCSs. 

Lemma A.2. Let A, B and C be distinct MCSs such that A r?, B and A A2 C 
for WI, R2 E { Z:,S,*, Co} as specified in Table 1. Then it must be the case 
that B R3 C, i?3 E (-?:, 5, *, Co>, for at least one of the options specified for 
a3 in the corresponding row of Table 1. 

Proof. Consider the case where A ?: B and A -? C. Since B and C are 
distinct, there exists j3 E B such that 1-3 q! C. Now, suppose that (B, C) $ 
(5, <:, k, &}. Then, by Proposition 5.2, there exist yI, 72, ~3, y4 E B such that 

OYI 4 C, WZ $ C, D ~3 $ C and n ~4 $ C. 
Let Sdgfj3 A y1 A y2 A y3 A ~4. Since A -? B and 6 E B, Proposition 5.2 

guarantees that OS E A. Hence, by axiom (A9i) we must have q (6 V OS V 

OS V 7 6 V iJ 6 ) E A, since A is an MCS. But then, since A -? C, we appeal 
to the definition of ?: to conclude that (6 V OS V 06 V v 6 V n 6 ) E C. Hence, 
6~CorO6~CorO~~Cor~~~Cor~~~C’.If~~C,then~~C 
as well. Alternatively, if OS E C, then since Sdgffp A yt A y2 A y3 A y4 and 
E O(p A yt A y2 A y3 A ~4) 3 Og A Oyt A 0~2 A 0~3 A 0~4 (TK2), we must 
have Oyt E C. Similarly, if OS E C then 0~2 E C, if v 6 E C then v y3 E C 
and if n 6 E C then n y4 E C. In any case, we obtain a contradiction. 
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The proofs of the other cases are similar. Instead of axiom (A9i), we 
would have to use axioms (A5), (A6), (A9ii)-(A9iv) and (AlO) and 
theses (T8Dual), (TllDual) and (Tl2Dual). 

The requirement that the MCSs be distinct is strictly necessary only for 
the cases which use axiom (A9), but the more restrictive statement of the 
lemma will be sufficient for our purposes. 0 

Note that there are no entries for &p in the table above. It turns out that it 
is sufficient to establish the following result in this connection. 

Lemma A.3. Let A, B and C be MC,% such that A *P B and A 5 C. Then, 
either B 5 C or B ~“0 C. 

Proof. Similar to the proof of Lemma A.2, using axiom (A8i). 0 

The next lemma demonstrates why we have been naming MCSs using 
formulas of the form d. 

Lemma A.4 Let A be an MCS such that d E A, p E P. Then, for any other 
MCS B, (A, B) can be in at most one of the semantic relations (2, T,*, cb}. 

Proof. Consider the case where A * B. By Proposition 5.2, we know that 
od E B. But od > lp A 07~ A q 7p A B 1p by the thesis (Tdiii). Again 
appealing to Proposition 5.2, we obtain that (A, B) $ {-?,5, to}. A similar 
argument can be used for the cases A -? B, A 5 B and A c”o B. 0 

With these preliminaries out of the way, we can now describe in detail the 
inductive hypotheses ZC. Recall that at stage i we assume that we have 
built up a chronicle structure CH, = (ES,, z, ,ai), where ES, = (E,, <i, #l ). 
Henceforth let co1 and #pi denote the concurrency and minimal conflict 
relations of ES’,, respectively. The inductive conditions satisfied by CH, 
consist of five clauses. 

(Cl) E; C {eo,el,...,ei). 

(C2) ForO<j<i,ife,EEithendjET,(e,). 

(C3) ~0 E T,(eo). 

((3) Ve,,ek E E,,O < j,k < i: Ti(e,) r? T,(ek) iff e, Ri ek, 
where R E {<, >,#,co}. 

((3) Vej,ek E E,,O d j,k < i: (ej,ek) E ,a, implies Ti(ej) &P 7;(ek). 
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(C2) ensures that each event e, present in Ei is assigned the unique name ij 
by Ti. Note that the “G” direction of (C4) along with (CS) imply that CHi 
is coherent. We have chosen to state the conditions separately because it 
turns out to be more convenient. Also, note that (C4) does not cover the case 
ej #Pi ek. It is thus possible that ej #P1 ek whereas ( 7; (ej ) , Ti (ek ) ) $ *p. 

Before beginning with the proof of Lemma 5.13, we explicitly state and 
prove a result which has been mentioned in passing while describing the 
inductive construction. 

Recall that we had abbreviated T, (ek ) by Ak for all ek E Ei. In order to 
kill the live requirement (e,, 7, PO), we constructed an MCS B,, I containing 
/3a and modified the MCS Aj to an MCS Bj such that Bj 3, B, + 1. We then 
modified the MCSs Ak corresponding to events ek E E, - {e,} to MCSs Bk, 
ensuring that the relationship between Aj and Ak was preserved between Bj 
and Bk, 

We can now verify the following result. 

Lemma AS. For all ek E Ei, 0 < k < i, the following conditions hold: 

(i) & n @, = T,(Q) f? @j and jk E Bk. 
(ii) For k # j, if Ak R A, then Bk R Bj for I? E {<:, T,*, cb}. 

Proof. (i ) By the definition of gi+ 1, for every Q E @i we have gi+ 1 (a) = (Y 

and so Q: E Ai iff cy E Ak. But then our construction ensures that Ai C: Bk 

and hence Ti((ek) n @i c Bk n @i. 
To establish Bk fl @i C T, (ek ) fl @i, suppose that there exists Q E Bk rl @i 

such that n E Bk - Ak. Then a $ Ak and consequently T(Y E &. But this 
would imply that 1~ E Ai g Bk as well, which contradicts the consistency 
Of &. 

Since dk E @i and dk E T, ( ek ) for all ek E E,, it follows from the previous 
argument that dk E Bk as well. 

(ii) Consider the case .‘$ 2 Aj. Then {/? 1 q p E B,} = AZ C Bk by con- 
struction and so Bk 2 B,. (A; was defined immediately before Lemma 5.12). 
Similar remarks apply to the other cases. 0 

Now we can prove Lemma 5.13. 

Lemma 5.13. CH,+l is a well-defined chronicle structure which satisfies the 
inductive conditions ZC. 

Proof. TO verify that CHi+ 1 is a well-defined chronicle structure, we have to 
check that ESi+ 1 is a well branching event structure and that ,Ui+ 1 C #pi+, . 
It is then clear from the definition of Ti+ I that Ti+ I is a chronicle on ESi+ 1. 

Some of the inductive conditions can be verified before proving that 

CH,+r is a chronicle structure. 
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Condition (Cl ): Assuming that Ei C {eo, el, . . . , pi}, our construction guar- 
antees that El+, G {eo,el,...,ei+,}, so CH,+l satisfies condition (Cl). 

Condition (C2): Lemma A.5 (i) guarantees that we have not disturbed any 
of the formulas dk in going from Ti(ek) to Ti+, (ek) for ek E Ei. We have 
also ensured that pi+, E Bi+t = Ti+l (e,,, ), so CH,,, satisfies (C2). 

Condition (C3): We know that a0 E E (eo) since CH, satisfied condition 
(C3). Since a0 E @O G @i, by Lemma A.5(i), LUO E r,+r(eo) as well, so 
CHi+ 1 satisfies (C3). 

Condition (C4): TO verify that CHi+, satisfies (C4) requires more effort. 
We have to show the following: 

vek,em E Ei+l: VR E (<, >, #, co}: 

ek # em iI@eS (ek Ri+ 1 em iff Bk R B, ). 

There are two cases to consider-either {ek, em} C E, or one of the two 
events is ei+r. 

Case I: ek and em both belong to E;. 
From the definition of ES,+ I it is clear that <i = <,+ 1 n (Ei x E,) 

and #i = #l+t n (Ei x E, ). From this it also follows at once that coI = 
COi+ 1 n (Ei x Ei). Hence, we can conclude that ek R,, 1 em iff ek Ri em, for 
R E {<, >,#,co}. Since CH, satisfies (C4) by the induction hypothesis, we 
know that ek Ri em iff Ak r? A, for R E { <, >, #, co}. Thus, we only have 
to verify that Ak a A, iff Bk w B,. 

We first show that Ak k A, implies Bk R B,, for R E { <, >, #, co}. 
In case ek = ej or t?, = e,, the result follows from Lemma A.5 (ii). Hence 

assume that ek # e, and e, # ej. 
Suppose that Ak r? A, for some R E {<, >, #, co}. We shall deal with the 

case where Ak c?o A,. The other cases can be handled similarly. 
First, since CHi satisfies (C4), we know that ek co; em. Since ES, is 

an event structure, the pairs (ek, e, ) and (e,, e, ) must each belong to 
one of the relations {<i, >r, #I, Cdi}. Thus, we have to consider all possible 
“triangles” involving these three events which fix ek coI em. Once again, we 
shall consider only one representative case. 

Consider the case where ek COi e, and em coI ej. From the induction 
hypothesis (C4) and Lemma A.S(ii) it follows that Bk c”o B, and B, &I Bj. 
Note that Bk # B,n because dk E Bk and dk $ B,. Hence, we can appeal 
to Lemma A.2 and conclude that (Bk, B,) belongs to at least one relation 
from the set {?, 5,*, cb}. However, by Lemma A.4 Bk and B, cannot 
be related by more that one of these four relations. Hence Bk and Bm 
must be related by exactly one of these four relations. Since A& E Am 
and (A& )’ = n@k, we know that A&. E Ah C B, as well. Then by 
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(Tdiv), we have q ~pk E B, and q lpk E B, and v Tpk E B, and hence, 
by Proposition 5.2, (Bk, B,) +! (2, 5, s}. Thus, it must be the case that 
Bk Co B,. 

Next, we must show that Bk a B, implies Ak a A, for R E {<, >, #, co}. 
,%ppOSe that (Bk, B,) E i?, for some R E {<, >, #, co} and (Ak,&) $ r?. 
Since ESi is an event structure, we know that (ek, e, ) E RT for some 
R' E { <, >, #, co}. Then, since Ti satisfies condition (C4), it must be the 
case that (Ak, A,) E i?* and so R* # R. But, by the preceding argument, we 
must have (Bk, B,) E r?* as well. This is a contradiction, because bk E Bk 
and thus, by Lemma A.4, ( Bk, B, ) can belong to at most one semantic 
relation from {<, 5,3, cb}. 

Assume without loss of generality that e, = ei+i. We first show that 
(Bk, Bi+ I ) is contained in exactly one of the semantic relations { <:,s, *, co}. 

By Lemma A.4, (Bk, Bi+ 1) can belong to at most one of the four semantic 
relations because dk E Bk. Hence it suffices to show that (Bk, Bi+ 1) is 
contained in at least one of the four relations. 

If ek = ej, we know that Bj &p B,, 1, which implies that B/ 3 B,, 1 since 
$ c %. 

On the other hand, suppose ek E Ei - {e,}. Since ESi is an event structure, 
we know that (ek,e,) E R, for some R E {<, >, #, co}. Since ESi satisfies 
(C4), Ak I? Aj_. So, by Lemma A.5 (ii) we know that Bk I? Bj. Since we also 
know that Bj # B, + 1, we can appeal to Lemma A.2 to show that (Bk, Bi+ 1) 

must belong to at least one semantic relation. 
Returning to the main proof, we know that ( Bk, B,, , ) belongs to ex- 

actly one semantic relation from the set {2:,5,8, cb}. By the definition of 

<i+l and gl+l, the result follows at once for the case where (ek, ej+ 1 ) E 

{<i+l,>i+l,#r+l}. Therefore, consider the case where ek COi+l ej+l. This 
implies that (Bk , Bi+ I ) $i { ?,s, %I) and so it must be the case that Bk cb 

Bi+l* 

Having verified that (C4) holds, we can show that ESi+l is well defined. 

Claim: ESi+l is a well branching event structure. 
It suffices to show that ES'i+l is an event structure. Since Ei+l is a finite 

set it will then follow that ES,-+, is in fact well branching. 
We know that ESi is an event structure and that <i = <i+i n (Ei x Ei) 

and #i = #i+i n (Ei x E, ). By the definition of cI+ I and #i+ 1, it then 
follows that <i+i and #1+1 are irreflexive and that #i+t is symmetric. Thus, 
all we have to establish is that <i+i is transitive and that #i+i is inherited 
via <i+l. 

NOW suppose that ek <i+i el <i+i e,. Since Ti+l satisfies (C4), we know 
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that Bk ?: Bj 2 B,. Hence, by Lemma A.2 it follows that Bk 2 B,. Thus, 
by (C4), we have ek <;+, em and so <j+, is transitive. 

Next, suppose that ek #r+, ej cl+ I em. Once again, by (C4) we have 
Bk & Bi ?: B,, and thus Bk 8 B, by Lemma A.2. So, by (C4), ek #i+, e,. 
Hence #,+ I is inherited via <i+ 1. This establishes the claim. 

Now all that remains to be shown is that CH,+, satisfies (C5) and that 

#4+1 !L #&+I. 

Condition (C5): We have to verify the following: 

vek,ern E &+l: (ek, em ) E pi+ I implies c+ I (ek ) BP q+ I (em ). 

Suppose both ek and em belong to E,. Then (ek, em ) E pu,. Since CNi was 
a chronicle structure, in ESi we must have had ek #fi(I e,. Hence ek #i e, 
as well. So ek #I+ I em, since #I = #;+ 1 n (E, x Ei ). Therefore, since 

T+, satisfies (C4), Bk +i B,,. We also know that Ak *P A, in CHi by 

the inductive aSSUmptiOn ((3). Hence, oP $k E A,. Since ( vp dk )’ = VP &, 

TJ~ & E Ah C B, as well. But, by Lemma A. 1, from Bk * B, and vP dk E B, 
we get Bk &,, B,,. 

On the other hand, suppose that ek = ei+l or e, = Pi+ ,. Without 10~s of 

generality, assume that em = Pi+ 1. Then ek = e, and by the construction of 

B, and &+, we are assured that B, *, B, + ,. 

Claim: ,uj+, C #P,+,. 
Since Ti+, satisfies (CS), we know that (ek, e, ) E ,u,+ 1 implies that 

Bk *P B,, and so Bk & B,,. Thus, since 7;+, satisfies (C4), ek#l+ le,. Now 
suppose that el E Ei+, such that el <i+, ek. Then, by (C4), we know that 
B, 2 Bk. Hence, by Lemma A.3, either BI 7 B,, or B, cb B,, which implies, 
again by (C4), el <;+, em or el co,+, e,. Symmetrically, for any el <i+l e, 
we can argue that e/ cr+, ek or e/ COj+l ek. Hence ek elLI+, em. 0 

Finally, we prove Lemma 5.15. Recall that our inductive construction 
yielded a chronicle structure CH = (ES, T, p ), where: 
l ES = (E, <,#), with E = lJIgOEi, < = U120 cl, and # = IJ,>o#i. 
l T : E + 2@ is given by: 

Vei E E: T(ei) = U{T,(ei) n @, 1 j 3 i}. 

Lemma 5.15. CH = (ES, T, p) is a perfect chronicle structure in which 

QO E T(eo). 

Proof. We establish this result by proving a series of claims. As usual, let 
co= (EXE)-(<u>u#Uid). 
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Claim 1. T assigns an MCS to each element of E. 

Proof of Claim 1. First, we show that for every e E E, T(e) is a consistent 
set. Consider ek E E. Suppose that CE, p E T(ek). Let cy E @, and p E @,. Let 
y1 = max(i,j,k). Then, by Lemma A.5(i), it follows that Q A p E Tn(ek). 
Since T, (ek ) is an MCS, a A /3 is consistent and so T (ek ) must be consistent. 

Next, we show that T (ek ) is an MCS. Suppose that T (ek ) U {p} is 
consistent and p $! T (ek ). Let p E @i and II = max (i, k ). Then, since 
Tn(ek) is an MCS, we must have p E Tn(ek) or -p E Tn(ek). If p E T,(ek), 
then jI E T(ek) by the definition of T, which is a contradiction. On the 
other hand, if -/3 E T,, (ek) then -p E T (ek), again by the definition 
of T, which implies that T (ek ) u {/3} is not consistent, which is again a 
contradiction. 0 

Claim 2. (i) VR E {<, >,#,co}: Ri = R n (Ei x E;). 
(ii) \dej,ek E E: VR E {<, >, #, co}: eJ R ek iff e; R, ek, where n = 

max(j, k). 
(iii) ES is an event structure. 
(iv) Vej E E: ij E T(e;). 

Proof of Claim 2. (i) follows at once from the fact that at every stage i, 
in passing from CHi to CH,+ 1 we ensured that <I = <r+ I n (Ei x E, ) and 
#I = #i+ 1 n (Ei x Ei), which also implies that COG = COG+ 1 n (E, x Ei). (ii) 
and (iii) follow immediately from (i). (iv) follows from Lemma A.5 (i) 
and the definition of T. 0 

Claim 3. vej,ek E E: VR E {<,>,#,co}: e, Rek iffT(e,) i? T(ek). 

PrOOf of Claim 3. Let ej R ek-say eJ co ek. Consider A LY E T (ej ). We 
have to verify that u: E T (ek ). Let B (Y E @; and let n = max (i, j, k). Then 
B cy E T,, (ej). We know by Claim 2 that ej co,, ek and, since T,, satisfied 
the inductive condition (Cd), T,, (e, ) cb T, (ek ). Hence (Y E T,, (ek ) and so 
a E T (ek ). Hence T (ej) Lo T (ek). The other cases can be proved in a 
similar manner. 

Next, suppose that T(ej) 81 T(ek) for some RI E {<,>,#,co} and that 
(ej,ek) $! RI. fihX ES iS an event StrUCtUre, (eJ,ek) belongs to some rehtiOn 

R2 E {<, >, #, co} such that R, # RZ_ By the first part of the argument, 
we must have (T(e,),T(ek)) E I?, as well. But, by Claim 2, & E T(ek). 
Hence, by Lemma A.4, (T (e;), T (ek ) ) belongs to at most one semantic 
relation and so we have a contradiction. 0 

Henceforth, we let #P denote the minimal conflict relation in ES. 

Claim 4. (i) v'ej,ek E E: (e],ek) E j,f implies T(e,) *P T(ek). 
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Proof of Claim 4. (i) Let e,, ek E E, such that (e,, ek ) E ,u. Then it must 
be the case that for some n, (e,, ek ) E pn. But then, since CH, satisfied 
(0) we know that T,, (e, ) sp T,, (ek ). From this, we can conclude that 
T,, (e, ) $ T,, (ek ) and hence e, #n ek since CH,, satisfied (Cd). Hence 
ej # ek as well, and so, by Claim 3, T (ej ) 3 T (ek ). Also, since we must 
have had oP dk E T, (ej), we must have vP J$ E T (e, ) as well. Hence, by 
Lemma A. 1, it must be the case that T(e, ) ?$‘/I T(ek). 

(ii) By part (i), if (e,,ek) E y then T(e,) gp T(ek). This implies that 
T(e, ) & T(ek) and so we must have e, # ek by Claim 3. Suppose that 
e, < ej in ES. Then, by Claim 3, we know that T(e,) < T (ej) and 
hence, by Lemma A.3, T(e,) 2 T(ek) or T(e,) & T(ek). From this, using 
Claim 3 again, we can conclude that em < ek or em co ek. Similarly, for any 
ej < ek, we can verify that el < ej or e, co e,. Thus ej #P ek. Cl 

Claim 5. T kills all requirements in CH. 

Proof of Claim 5. Suppose that ek E E and p E T (ek) where p is of the form 
Ocu, @a, v Q, n Q or oP Q. Then, we must show that there exists e, E E such 
that a E T (ej) and e, > ek, e, < ek, ej # ek, e, co ek or e, fi ek respectively. 

Once again, we establish this for only one concrete case. Suppose that 
/? = YJ~Q. Let vPa E @, and m = max(i,k). Then ~/‘a E Tm(ek). Let n be 
the index of (ek, v/I a) in the enumeration we have fixed for J!? x @ . Then 
for some f, m d / d m + (~1 - 1) , (ek , ofi a) must be the live requirement 
chosen to be killed in CH, and hence in CHI+~ we have e, E El,, such that 
(ej, ek ) E ,LQ+ 1 and a: E T,, i (e, ) . Clearly a E Qrn and since I + 1 > m, we 
must have u: E T (e, ) and (e,, ek ) E ,u as required. 0 

Claim 6. p = #p. 

Proof of Claim 6. By Claim 4(ii), we know that ,D C_ #P. Hence it suffices 
to show that #P(c ,u. 

Suppose ej #P ek. Then ej # ek and so, by Claim 3, T (e, ) 3 T(ek ). We 

know that fij E T (ej) and thus v aj E T (ek ). From the axiom (A7) we can 
conclude that { vP cj, 0 v, iJ, Q Ob, , 0 vp Odj} I- T (ek ) # 8. 

Suppose that 0 vp @j E T (ek ). By Claim 5, there exists e, such that 
e, < ek and vP dj E T (e, ). Once again, by Claim 5, there exists el such 
that (e,, el ) E p and dj E T (er ) . If e, and e, are distinct events, T (el ) 
and T(e, ) must belong to some semantic relation from the set (2, 3, *, Co}. 
However, for any p E P, from the definition of j it follows that no semantic 
relation can exist between two MC% which both contain 6. Hence we 
must have el = e, and thus (e,, e, ) E p. Since ,u C #/1, em #P e,, which 
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contradicts ej #@ ek. In a similar fashion, we can show that vP Oi, and 
0 oP Oj, cannot be in T (ek ). 

Hence we must have vP Pj E T (ek ). Again applying Claim 5 and the 
reasoning above, we must in fact have (ej, ek ) E ,u and we are done. 0 

Claim 7. ES is a well branching event structure. 

Proof of Claim 7. From Claim 2(iii) we already know that ES is an event 
structure, so all we have to verify is that ES is well branching. 

Suppose ej,C?k E E such that ej # ek. Then, by Claim 3, T(ej) * T(ek) 
and, since $j E T (ej), oj, E T (ek ). Once again, from (A7) we can conclude 

that {~~dj,oo,dj,o~Odj,oo,Odj}nT(ek) # 8. 
If vfl Pj E T (ek ), then clearly (ej, ek ) E p by previous XgUIIUXttS and 

hence e, #fi ek by Claim 4 (ii). On the other hand, if 0 vP dj E T (ek ), then 
we have shown in the proof of Claim 6 that there exists e, < ek such that 
e, #fl ej. Using a similar argument, we can show that if 0’ Oaj E T (ek ), 
then there exists el < ej such that ej #P ek and, finally, if 0 v@ Oa, E T (ek) 
then there exist el < ej and em < ek such that el #P e,. 

Hence, given e, # ek in ES, there must exist ej d e, and e, G ek such 
that el #u e, and so ES is well branching. 0 

Proof of Lemma 5.15 (conclusion). From Claims l-4 and Claim 7, we can 
conclude that CH is a coherent chronicle structure. Claims 5 and 6 then 
show that CH is in fact perfect. 

The fact that (~0 E T (eo) follows immediately from the fact that a0 E @o, 
by definition, and that a0 E To (eo) by construction. 0 
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