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Abstract

Adomian decomposition method has been employed to obtain solutions of a system of nonlinear fractional differential equations:

D�i yi (x) = Ni(x, y1, . . . , yn), y
(k)
i

(0) = ci
k, 0�k� [�i ], 1� i�n and D�i

denotes Caputo fractional derivative.
Some examples are solved as illustrations, using symbolic computation.
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1. Introduction

Various methods, for example, Laplace and Fourier transforms, have been utilized to solve linear Fractional Differ-
ential Equations [FDE] [11–13]. In contrast for solving the nonlinear FDE, one has to depend upon numerical solutions
solely [8,9]. Recently developed technique of Adomian decomposition [2] has proven to be a powerful method, and
has successfully been applied in a variety of problems. Biazar et al. [4] have employed the Adomian decomposition to
solve a system of ordinary differential equations and system of Volterra integral equations [3] as well. Wazwaz [15] has
explored this method to obtain solutions of wave equation. Shawagfeh [14] has employed Adomian decomposition in
case of the nonlinear fractional differential equation: D�y(x)=f (x, y), y(k)(0)=ck, 0�k�[�]. Adomian decompo-
sition offers certain advantages over routine numerical methods. Numerical methods use discretization which gives rise
to rounding off errors causing loss of accuracy, and requires large computer power and time. Adomian decomposition
method is better since it does not involve discretization of the variables hence is free from rounding off errors and does
not require large computer memory or time.

Daftardar-Gejji and Babakhani [6] have presented analysis of system of FDE, wherein existence and uniqueness
theorems for the initial value problem for the system of FDE have been proved. Following this Daftardar-Gejji and
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Jafari [7] have taken up the problem of finding explicit solutions for system of FDE and have developed decomposition
method for the following system of linear FDE:

D�i yi(x) =
n∑

j=1

(�ij (x) + �ijD
�ij )yj + gi(x), y

(k)
i (0) = ci

k, 0�k�[�i], 1� i�n,

where �i , �ij ∈ R+.
The present paper is a sequel to this work [7] and here Adomian method has been applied to a more general case

incorporating nonlinearities as well, namely

D�i yi(x) = Ni(x, y1, . . . , yn), y
(k)
i (0) = ci

k, 0�k�[�i], 1� i�n,

where Ni’s are linear/nonlinear functions of x, y1, . . . , yn.
The paper has been organized as follows. Section 2 gives notations and basic definitions. Section 3 consists of

main results of the paper, in which Adomian decomposition of the system of fractional differential equations has been
developed. Some illustrative examples are given in Section 4 followed by the discussion and conclusions presented in
Section 5. Mathematica commands used to compute Adomian polynomials and terms of the decomposition series, are
given explicitly in Appendix.

2. Basic definitions

Definition 2.1. A real function f (x), x > 0 is said to be in the space C�, � ∈ R if there exists a real number p(> �),
such that f (x) = xpf1(x) where f1(x) ∈ C[0, ∞). Clearly C� ⊂ C� if ���.

Definition 2.2. A function f (x), x > 0 is said to be in the space Cm
� , m ∈ N ∪ {0}, if f (m) ∈ C�.

Definition 2.3. The left sided Riemann–Liouville fractional integral of order ��0, [10–13] of a function f ∈ C�, ��−
1 is defined as

I�f (x) = 1

�(�)

∫ x

0

f (t)

(x − t)1−� dt, � > 0, x > 0, I 0f (x) = f (x). (1)

Definition 2.4. Let f ∈ Cm−1, m ∈ N ∪{0}. Then the (left sided) Caputo fractional derivative of f is defined as [10,12]

D�f (x) =
{ [Im−�f (m)(x)] m − 1 < ��m, m ∈ N,

dmf (x)

dxm
� = m.

(2)

Note that [10,12]

I�I �f = I�+�f, �, ��0, f ∈ C�, �� − 1,

I�x� = �(� + 1)

�(� + � + 1)
x�+�, � > 0, � > − 1, x > 0,

I�D�f (x) = f (x) −
m−1∑
k=0

f (k)(0+)
xk

k! , m − 1 < ��m. (3)

3. System of fractional differential equations and Adomian decomposition

In the present paper we consider the following system of fractional differential equations:

D�i yi(x) = Ni(x, y1, . . . , yn), y
(k)
i (0) = ci

k, 0�k�[�i], (4)

where 1� i�n, and �i ∈ R+.
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Applying I �i to both the sides of (4), we get

yi =
[�i ]∑
k=0

ci
k

xk

k! + I �i Ni(x, y1, . . . , yn), 1� i�n. (5)

We employ Adomian decomposition method to solve the system of equations (4). Let

yi =
∞∑

m=0

yim (6)

and

Ni(x, y1, . . . , yn) =
∞∑

m=0

Aim, (7)

where Aim are Adomian polynomials which depend upon y10, . . . , y1m, y20, . . . , y2m, . . . , yn0, . . . , ynm. In view of
Eqs. (6) and (7), (5) takes the form

∞∑
m=0

yim =
[�i ]∑
k=0

ci
k

xk

k! + I �i

∞∑
m=0

Aim(y10, . . . , y1m, . . . , yn0, . . . , ynm), 1� i�n. (8)

We set

yi0(x) =
[�i ]∑
k=0

ci
k

xk

k! ;

yi,m+1(x) = I �i Aim(y10, . . . , y1m, . . . , yn0, . . . , ynm), 1� i�n, m = 0, 1, . . . . (9)

In order to determine the Adomian polynomials, we introduce a parameter � and (7) becomes

Ni

(
x,

∞∑
m=0

y1m�m, . . . ,

∞∑
m=0

ynm�m

)
=

∞∑
m=0

Aim�m. (10)

Let yi�(x) =
∞∑

m=0
yim(x)�m, then

Aim = 1

m!
[

dm

d�m Ni�(y1, . . . , yn)

]
�=0

, (11)

where

Ni�(y1, . . . , yn) = Ni(x, y1�, . . . , yn�). (12)

In view of (11), and (12) we get

Aim = 1

m!
dm

d�m [Ni(x, y1�, . . . , yn�)]�=0 = 1

m!
dm

d�m

[
Ni

(
x,

∞∑
m=0

y1m�m, . . . ,

∞∑
m=0

ynm�m

)]
�=0

=
[

1

m!
dm

d�m Ni

(
x,

∞∑
m=0

y1m�m, . . . ,

∞∑
m=0

ynm�m

)]
�=0

. (13)

Hence (9) and (13) lead to the following recurrence relations:

yi0(x) =
[�i ]∑
k=0

ci
k

xk

k! , yi,m+1(x) = I �i

[
1

m!
dm

d�m Ni

(
x,

∞∑
m=0

y1m�m, . . . ,

∞∑
m=0

ynm�m

)]
�=0

, m = 0, 1, . . . . (14)
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We can approximate the solution yi by the truncated series

fik =
k−1∑
m=0

yim, lim
k→∞ fik = yi(x).

For the convergence of the above method we refer the reader to the work of Abboui and Cherruault [1]. If system
(4) admits unique solution, then this method will produce the unique solution. If system (4) does not possess unique
solution, the decomposition method will give a solution among many (possible) other solutions.

4. Illustrative examples

To demonstrate the effectiveness of the method we consider here some systems of nonlinear fractional differential
equations. Daftardar-Gejji and Babakhani [6] have presented analysis of such a system.

I. Consider the system of nonlinear fractional differential equations{
D�y1 = y2

1 + y2,

D�y2 = y2 cos y1,
y1(0) = 0, y2(0) = 1,

where �, � ∈ (0, 1). In view of the results obtained by Daftardar-Gejji and Babakhani [6], this system has unique
solution. In order to solve the above system, we define the nonlinear terms by

N1(ȳ) = y2
1 + y2 =

∞∑
j=0

A1j , N2(ȳ) = y2 cos y1 =
∞∑

j=0

A2j .

In view of (13) and using Mathematica software, we evaluate the Adomian polynomials. They are as follows:

A10 = y2
10 + y20,

A11 = 2y10y11 + y21,

A12 = y2
11 + 2y10y12 + y22,

A13 = 2y11y12 + 2y10y13 + y23,

A14 = y2
12 + 2y11y13 + 2y10y14 + y24,

...

and

A20 = y20 cos y10,

A21 = − y11y20 sin y10 + y21 cos y10,

A22 = 1
2y2

11y20 cos y10 − y12y20 sin y10 − y11y21 sin y10 + y21 cos y10,

A23 = 1
6 ((y3

11y20 sin y10 − 6y11y12 sin y10 − 6y13 sin y10)y20

−3(y2
11 cos y10 + y12 sin y10)y21 − 6y11y22 sin y10 + 6y23 cos y10),

A24 = 1
24 ((y4

11 cos y10 + 12y2
11y12 sin y10 − 24y11y13 cos y10 − 12(y2

12 cos y10

+2y14 sin y10))y20 + 4(y3
11 sin y10 − 6y11y12 cos y10 − 6y13 sin y10)y21

−12(y2
11 cos y10 + y12 sin y10)y22 − 24y11y23 sin y10 + 24y24 cos y10),

...

The Adomian decomposition series (9) leads to the following scheme:

y10 = 0, y1,m+1 = I �A1m,

y20 = 1, y2,m+1 = I�A2m, m = 0, 1, . . . .
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Fig. 1.

In the first iteration we have

y11 = I �A10 = x�

�(� + 1)
and y21 = −I�A20 = x�

�(� + 1)
.

The subsequent terms are

y12 = I �A11 = I � x�

�(� + 1)
= x�+�

�(� + � + 1)
,

y22 = I�A21 = I� x�

�(� + 1)
= x2�

�(2� + 1)
,

y13 = I �A12 = I �

(
x2�

[�(� + 1)]2 + x2�

�(2� + 1)

)
= �(2� + 1)x3�

[�(� + 1)]2�(3� + 1)
+ x�+2�

�(� + 2� + 1)
,

y23 = I�A22 = I�

(
− x2�

2[�(� + 1)]2 + x2�

�(2� + 1)

)
= − �(2� + 1)x2�+�

[�(� + 1)]2�(2� + � + 1)
+ x3�

�(3� + 1)
.

Using the above terms

y1 = x�

�(� + 1)
+ x�+�

�(� + � + 1)
+ �(2� + 1)x3�

[�(� + 1)]2�(3� + 1)
+ x�+2�

�(� + 2� + 1)
+ · · · ,

y2 = 1 + x�

�(� + 1)
+ x2�

�(2� + 1)
− �(2� + 1)x2�+�

[�(� + 1)]2�(2� + � + 1)
+ x3�

�(3� + 1)
+ · · · .

In Fig. 1 we draw y1 and y2 for � = 0.5, � = 0.3.
II. Consider the system of nonlinear fractional differential equations⎧⎪⎨

⎪⎩
D�y1 = 2y2

2 ,

D�y2 = xy1,

D�y3 = y2y3,

y1(0) = 0, y2(0) = 1, y3(0) = 1,

where �, �, � ∈ (0, 1). In order to solve the above system, we define the nonlinear terms by

N1(ȳ) = 2y2
2 =

∞∑
j=0

A1j , N2(ȳ) = xy1 =
∞∑

j=0

A2j , N3(ȳ) = y2y3 =
∞∑

j=0

A3j .
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In view of (13) and using Mathematica software, we evaluate the corresponding Adomian polynomials Aij , i =
1, 2, 3 and j = 0, 1, . . .

A10 = 2y2
20, A20 = xy10,

A11 = 4y20y21, A21 = xy11,

A12 = 2y2
21 + 4y20y22, A22 = xy12,

A13 = 4y21y22 + 4y20y23, A23 = xy13,

A14 = 2y2
22 + 4y21y23 + 4y20y24, A24 = xy14,

...
...

A30 = y20y30,

A31 = y21y30 + y20y31,

A32 = y22y30 + y21y31 + y20y32,

A33 = y23y30 + y22y31 + y21y32 + y20y33,

A34 = y24y30 + y23y31 + y22y32 + y21y33 + y20y34,
...

The Adomian decomposition series (9) has the following terms:{
y10 = 0,

y1,m+1 = I �A1m,

{
y20 = 1,

y2,m+1 = I�A2m,

{
y30 = 1,

y3,m+1 = I �A3m,
m = 0, 1, . . . .
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In the first iteration we have

y11 = I �A10 = 2x�

�(� + 1)
, y21 = I�A20 = 0 and y31 = I �A30 = x�

�(� + 1)
.

In Fig. 2, y1, y2 and y3 are drawn for �=0.5, �=0.4, �=0.3, and in Fig. 3, y1, y2 and y3 are drawn for �=�= �=1,
respectively.

5. Discussion and conclusion

Adomian decomposition is a powerful tool which enables one to handle even nonlinear equations. Unlike in numerical
methods, Adomian decomposition method is free from rounding off errors and does not require large computer memory
or time. The real hard part of this method is computation of Adomian polynomials. It is demonstrated that using
capabilities of Mathematica, Adomian polynomials and terms of Adomian decomposition series can be evaluated. By
increasing the number of iterations one can reach desired accuracy. In the present work the method has successfully
been applied to system of nonlinear fractional differential equations.
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Appendix

We give Mathematica commands, using which theAdomian polynomials can be evaluated. For the sake of illustration,
we consider the illustrative example II. We would like to comment here that, these commands are much easier in contrast
to the lengthy algorithm given in [5].

(*Define the number of iterations by specifying explicit number in place of n.*)

Itr := n;

(* Define the functions Y1, Y2 and Y3*)

Y1[�_] =
Itr∑

i=0

y1,i; Y2[�_] =
Itr∑

i=0

y2,i; Y3[�_] =
Itr∑

i=0

y3,i ;

(* Define the functions N1, N2 and N3*)

N1[�_] = 2y2[�]∧2; N2[�_] = y1[�] ∗ t; N3[�_] = y2[�] ∗ y3[�];
B1,0 = N1[0]; A1,0 = B1,0; B2,0 = N2[0]; A2,0 = B2,0; B3,0 = N3[0]; A3,0 = B3,0;

(*Calculation of Adomian polynomials*)

For [i = 0, i < Itr, B1,i = Simplify

([
1

i! ∗ Derivative [i][N1][�]
)]

;

B2,i = Simplify

[
1

i! ∗ (Derivative [i][N2][�])
]

; B3,i = Simplify

[
1

i! ∗ (Derivative [i][N3][�])
]

,

� = 0; A1,i = B1,i/.� → 0; A2,i = B2,i/.� → 0; A3,i = B3,i/.� → 0; � = .; i + +]
(* Specifying the initial conditions *)

y1,0 = 0; y2,0 = 1; y3,0 = 1; � = 0.5; � = 0.4; � = 0.3;

Y1,0 = y1,0; Y2,0 = y2,0; Y3,0 = y3,0;
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(*Calculating the terms of the series*)

Do

[
n = k + 1; y1,n+1 = 1

�(�)
Integrate [(x − t)∧(� − 1) ∗ A1,n, (t, 0, x), Assumption → x > 0];

y2,n+1 = 1

�(�)
Integrate [(x − t)∧(� − 1) ∗ A2,n, (t, 0, x), Assumption → x > 0];

y3,n+1 = 1

�(�)
Integrate [(x − t)∧(� − 1) ∗ A3,n, (t, 0, x), Assumption → x > 0];

y1,n+1 = y1,n+1/.x −→ t; y2,n+1 = y2,n+1/.x −→ t; y3,n+1 = y3,n+1/.x −→ t ;

Y1,n+1 = Y1,n + y1,n+1; Y2,n+1 = Y1,n + y1,n+1; Y3,n+1 = Y1,n + y1,n+1;

If [n > Itr, Break[ ] ], k, −1, Itr

]
Print [“ Y1” , n + 1, “ = ” , Y1,n+1, “ Y2” , n + 1, “ = ” , Y2,n+1, “ Y3” , n + 1, “ = ” , Y3,n+1].
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