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David Preiss proved that every locally Lipschitz function on an open subset of
a Banach space which has an equivalent norm Gateaux (Fréchet) differentiable
away from the origin is Gateaux (Fréchet) differentiable on a dense subset of its
domain. It is known that every continuous convex function on an open convex
subset of such a space is Gateaux (Fréchet) differentiable on a residual subset of
its domain. We show that for a locally Lipschitz function on a separable Banach
space (with separable dual) there are residual subsets which if the function were
convex would coincide with its set of points of differentiability. These are the
sets where the function is fully intermediately differentiable (fully and uniformly
intermediately differentiable) and sets where the subdifferential mapping is weak*
(norm) lower semi-continuous. We discuss the role of these sets in generating the
subdifferential and present a refinement of Preiss’ result. © 1994 Academic Press. Inc.

0. INTRODUCTION

In generalising differentiability theory from convex to locally Lipschitz
functions on real Banach spaces the principal task is to discern particular
differentiability properties for locally Lipschitz functions which have long
been considered equivalent for convex functions.

A real valued function ¢ on an open convex subset A of a normed linear
space X is convex if

d(Ax + (1 — Ny) = Ad(x) + (1 — Md(y)
forallx,y€EAand0=A=<1.
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A real valued function { on an open subset A of a normed linear space
X is locally Lipschitz if for each x, € A there exists a K, > 0 and a §, >
0 such that

[W(x) — w(y) = Kgllx — y|  forall x, y € B(xq; &).

A continuous convex function is locally Lipschitz.
For a continuous convex function ¢, the right-hand derivative

dlx + Ay) — d(x)
A

¢’ (x}(y) = lim
A—0+

always exists at every x € A forally € X, and at each x € A, ¢’ (x)(y)
is a continuous sublinear function in y. For a locally Lipschitz function
y, the generalised Clarke derivative is

Yz + Ay) — P(2)
A

$(x)(y) = lim sup

A0+

and at each x € A, ¥%x)(y) is a continuous sublinear function in y.

For a continuous convex function ¢, ¢ (x)}(y) = ¢%x)(y) at every x €
Aforally € X.

When studying the differentiability of a continuous convex function ¢
we consider the subdifferential

dp(x)={feEX* fly)= ¢’ (x)(y)forally € X}

which for each x € A is a non-empty, weak* compact convex set. For a
locally Lipschitz function ¢ we consider the generalised Clarke subdiffer-
ential

WO(x) ={fe X*: f(y) = y°x)(y)forally € X}

which for each x € A is a non-empty, weak* compact convex set. Clearly,
for a continuous convex function ¢, d¢(x) = 3¢%x) at every x € A.

A real valued function ¥ on an open subset A of a normed linear space
X is said to be Gdteaux differentiable at x € A if

Ylx + Ay) — Y(x)
A

P (x)(y) =lim
A—0
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exists for all y € X where ¢’(x) is a continuous linear functional on X,
and is said to be Fréchet differentiable at x if this limit is approached
uniformly for all y € X where ||y|| = 1.

Further, ¢ is said to be strictly differentiable at x € A if  is Giteaux
differentiable at x and

A—Q+

= ¢'(x)(y)

for all y € X, and is said to be uniformly strictly differentiable at x if this
limit is approached uniformly for all y € X where ||y} = 1.

For convex functions, Gateaux differentiability and strict differentiabil-
ity are equivalent and Fréchet differentiability and uniformly strict differ-
entiability are equivalent but for locally Lipschitz functions they are dis-
tinct properties.

There are two major theorems on the differentiability of continuous
convex functions.

THEOREM 0.1. (Preiss et al. [11]). A continuous convex function on
an open convex subset of a Banach space which has an equivalent norm
Gateaux differentiable away from the origin is Gdteaux differentiable on
a dense Gg subset of its domain.

THEOREM 0.2. [9, p. 24]. A continuous convex function on an open
convex subset of a Banach space where every separable subspace has
separable dual is Fréchet differentiable on a dense Gg subset of its domain.

Banach spaces where every continuous convex function on an open
subset is Fréchet differentiable on a dense G, subset of its domain are
called Asplund spaces and are characteristed by the property that every
separable subspace has separable dual.

Corresponding deep results have been established for locally
Lipschitz functions.

THEOREM 0.3. (Preiss, [10]). A locally Lipschitz function on an open
subset of

(1) aBanachspace which has an equivalent norm Gateaux differenti-
able away from the origin is Gdteaux differentiable on a dense subset of
its domain,

(il) an Asplund space is Fréchet differentiable on a dense subset of
its domain.

When we compare the locally Lipschitz function theorem with the con-
tinuous convex function theorems we notice that we have lost the residual
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property of the set of points of differentiability. We show that for each
locally Lipschitz function on a separable Banach space there is a dense
G, subset of its domain which if the function were convex would coincide
with its set of points of differentiability.

1. FULLY INTERMEDIATE DIFFERENTIABILITY

Appropriate generalisations of the derivative for locally Lipschitz func-
tions are defined by means of the Dini derivative.

For a locally Lipschitz function ¢ on an open subset A of a normed
linear space X, the upper Dini derivative at x € A in the direction y € X is

Ylx + Ay) — dlx)
A

Y (x)(y) = lim sup
A—0+

and the lower Dini derivative at x € A in the direction y € X is

o ()(y) = lim inf PE T AY) = Y00

Ao + A

Clearly, ¢~ (x)}(y) = —(—¢)"(x)(y) and ¢ has a right-hand derivative
', (0)(y)if and only if * (x)(y) = ¢~ (x)( ¥). We notice that for a continuous
convex function the Dini derivatives coincide with the right-hand deriv-
ative.

We say that ¢ is pseudo-regular at x € A if Y+ (x)(y) = *x)(y) for all
y € X. Again a continuous convex function is pseudo-regular on its
domain.

We say that s is intermediately differentiable at x € A if there exists
a continuous linear functional f on X such that

Yy = fly) =Y (x(y) forally € X.

But further, we say that ¢ is fully intermediately differentiable at x €
A if both y and (—) are pseudo-regular at x. At such a point x € A,
3y’(x) is the set of all the intermediate derivatives of ¢ at x.

We can characterise various differentiability conditions by continuity
properties of the Dini derivatives.

THEOREM 1.1. Given a locally Lipschitz function  on an open subset
A of a normed linear space X

(1) i is pseudo-regular at x € A if and only if * (x)(y) is upper semi-
continuous at x for ally € X,



DIFFERENTIABILITY PROPERTIES 837

(i) @ is fully intermediately differentiable at x € A if and only if
U (x)(y) is upper semi-continuous and ¢~ (x)(y) is lower semi-continuous
at x for all y € X,

(ili) @ is strictly differentiable at x € A if and only if ¥~ (x)(y) is
continuous at x for all y € X,

(iv) W is uniformly strictly differentiable at x € A if and only if
Y (x)(y) is continuous at x uniformly for all y € X, ||y| = 1.

Proof. (i) For any given y € X, it is clear that

Px)(y) = lim sup Ut ().

Given £ > 0, in any neighborhood of x there exists z; € A and z; + Ay
where Ay > 0 such that

P(zo + Ayy) — P(zy)
Ao ‘

Py —e<

Consider  restricted to the interval [zy, z5 + Agy]. Since ¥ 1s locally
Lipschitz it follows from Lebesgue’s Differentiation Theorem that there
exists a 0 = A = Ay such that

P(zo + Agy) — W(zg)

Uz + MYNY) = Y
0

So

lim sup ¢ (2)y) = o) (y)

—X
and

Yx)(y) = lim sup ¥ (2)(y).

XX

It follows that ¢ is pseudo-regular at x if and only if ¢*(x)(y) is upper
semi-continuous at x for all y € X.

(ii) follows from (i) and from the fact that forallx € Aandy € X

PNy = — (=) (xNy)

(iii) If ¢ is strictly differentiable at x € A, given ¢ > 0and y € X
there exists a (g, y) > 0 such that
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Pz + Ay) — (2)
A

-y <e forfz—xf<8and0<A<3.

Then |y*(z)(y) — ¢’ (x)(y)| = e for ||z — x|| < 8.
Conversely, if ¢*(x)(y) is continuous at x for all y € X then from (i),

YY) = $Po(y)  forally € X.

Consider s restricted to a one-dimenstional affine subspace M through x
generated by y. Now 1|, is locally Lipschitz and by Lebesgue’s Differenti-
ation Theorem is Gateaux differentiable almost everywhere in M. How-
ever, since Y7 (x)(y) is continuous at x, then ¥*(x,)(y) is convergent to
P (x)(y) as x, — x in M for points x, where ¢ is Gateaux differentiable
on M. As the pointwise limit of linear functionals, ¢ (x)(y) is also linear
in y on M. Since Y (x)(y) = $%x)(y) for all y € X, which is sublinear in
y, we deduce that ¢°(x)(y) is linear in y and so ¢ is strictly differentiable
at x.

(iv) If ¢ is uniformly strictly differentiable at x € A, then we can
uniformise the agrument in (iii) for all y € X, ||y|| = 1 to give the continuity
property for the Dini derivative.

Conversely, suppose that ¢ is strictly differentiable at x € A but not
uniformly strictly differentiable at x. Then there exists anr > 0, z, — x,
A,— 0+, and y, € X, |y,Jl = [ such that

ll‘(ln + )‘nyn) - l!‘(Zn)
A

— Y y)| >

n

But then by Lebesgue’s Differentiation Theorem there exists a v, in the
interval [z,, z, + A,»,) such that p* (v, y,) — ¥'(x)(y,)| = r. That is,
Y (x)(y) even though continuous at x is not uniformly so for all y € X,

I =11

If ¢ is Gateaux differentiable at x € A then it is intermediately differenti-
able at x but it is not necessarily fully intermediately differentiable at x.
If s is strictly differentiable at x € A then it is fully intermediately differenti-
able at x.

A continuous convex function is Gateaux differentiable if and only if
it is intermediately differentiable.

For a locally Lipschitz function ¢ on an open subset A of a normed
linear space X we define approximate upper Dini derivatives which possess
desirable continuity properties. Given x € A and y € X and p € N we write
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Ylx + Ay) — dix)
A

Y, (x)(y)= sup
O<A<l/p

and observe that ¢ " (x)(y) = lim,_. ¢, (x)(y).

We note that, given p € N, for x € A, ¥, (x)(y) and ¢ (x)(y) are
continuous functions in y and given y € X, as the supremum of continuous
functions, ¥, (x)(y) is lower semi-continuous in x.

The following theorem identifies, for a locally Lipschitz function on a
separable Banach space, significant residual subsets of its domain.

THEOREM 1.2. A locally Lipschitz function \ on an open subset A of
a separable Banach space is

(i) pseudo-regular on a dense Gy subset of A,
(ii) fully intermediately differentiable on a dense Gy subset of A.

Proof. (i) Giveny € X and p € N, we have that §; (x)(y) is lower
semi-continuous on A. So there exists a dense G, subset of D, of A where
¥, (x)(y) is continuous at each x € D, for every p € N. Given £ > 0 and
x € D, there exists a p € N such that

Uy () — ¥ ) <3
and there exists a 8 > 0 such that
Py (x)(y) + g >y (z)(y) forallz€ Aand|z — x| < 8.

Then

YY) + >y, (DY)
=y*(z)(y) forallz€ Aandlz — x| <38.

As is Theorem L.1(1), ¢ (x)(y) = $°(x)(y).
Since X is separable there exists a countable dense set {y,} in X and
therefore a dense G5 subset D = ﬂny" of A where for each x € D,

Yy, = )y, forall n € N.

But as both ¥* (x)(y) and ¢°(x)(y) are continuous in y we conclude that
for every x € D,

409:188:3-9
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YOy = $(y) forally € X.
(it follows from (i). |

The proof of (i) is somewhat simpler than that given in [7, Theorem].
The following is an obvious equivalent formulation of intermediate dif-
ferentiability.

LEMMA 1.3. A locally Lipschitz function y on an open subset A of a
normed linear space X is intermediately differentiable at x € A if and
only if there exists a continuous linear functional f on X and for every
vy € X there exists a sequence A, — 0+ such that

l Pl + A, y) — dlx)
m

n—rx A”

= f(y).

We now consider a generalisation of Fréchet differentiability for locally
Lipschitz functions.

A locally Lipschitz function ¢ on an open subset A of a normed linear
space X is said to be uniformly intermediately differentiable at x € A if

there exists a continuous linear functional f on X and a sequence \, —
0+ such that

I Plx + A, y) — dlx)
im

n—x A n

=fly)y forallyeX,|y|=1.

The same sequence is used for all y € X, ||y|| = 1, but the rate of conver-
gence to the limit f(y) need not be uniform.

If ¢ is Fréchet differentiable at x € A then it is uniformly intermediately
differentiable but it is not necessarily fully intermediately differentiable
at x. If  is Fréchet differentiable and strictly differentiable at x € A, then
it is fully intermediately differentiable at x, but as the example given in
(6, p. 373] shows it is not necessarily uniformly strictly differentiable at
x. If ¢ is uniformly strictly differentiable at x € A then it is fully and
uniformly intermediately differentiabie at x.

A continuous convex function is Fréchet differentiable if and only if it
is uniformly intermediately differentiable.

We now work towards a generic extension of Preiss’ Theorem 0.3(ii).

THEOREM 1.4. A locally Lipschitz function ¥ on an open subset A of
an Asplund space X is uniformly intermediately differentiable on a dense
G, subset of A.

Proof. Given g > 0 consider the set
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0, = U {open sets G: there exists an f € X* and a > 0 such that

Yl + Ay) — dlx)
A

sup f y)\ < gforall

8/2<A<8

xEGandforally € X, |y = l}.

Now O, is open. We show that O, contains the set of points where  is
Fréchet differentiable. Suppose ¢ is Fréchet differentiable at x € A. Now
there exists a K > 0 and a 8, > 0 such that [¢(z;) — ¥(zy)| = K|z, — z
for all z,, z; < B(x; 8y). There exists a 0 < § < §,/2 such that

sup Plx + Ay) — Plx) Y| < forallye X, |y =1
0<A<d A 2
sO

Yx + Ay) — ¥(x)

sup - tb'(x)(y)’ <§

812<A<B A
and

— 4K
8/2<A<$ A 2 5

<e for|z — x| < min (52— b‘),

So B(x; min(e8/8K, 8)) C O, . Since X is Asplund, we have from Preiss’
Theorem 0.3(ii) that O, is dense and so M, O, is a dense G, subset of A.
Now if x € M, O, then x € O,,, for all n € N. Then for each n € N
there exists an f, € X* and §,, > 0 and we can choose 8,/2 < r, < 8, such that

Ylx + r,y) — $(x)

, -y <% forally e X, |yl = 1..

n

Since {f,} is bounded and X is an Asplund space, {f,} has a subsequence
{ f,,‘} weak* convergent to some f € X*. Then
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P+, y) Pl
lim = fly) forally€X,|y|=I;

k—x n,

that is, ¥ is uniformly intermediately differentiable at x. |

We have a result which follows directly from Theorem 1.4 and which
corresponds to Theorem 1.2(ii) for Banach spaces with separable dual.

THEOREM 1.5. A locally Lipschitz function s on an open subset A of
a Banach space with separable dual is fully and uniformly intermediately
differentiable on a dense Gy subset of A.

M. Fabian and D. Preiss [5] actually showed that for a large class of
Banach spaces which includes the Asplund spaces, a locally Lipschitz
function on an open subset of such a space is intermediately differentiable
on a residual subset of its domain. For fully intermediate differentiability,
our proof in Theorem 1.2 applies only for the class of separable Banach
spaces.

We note that on a finite-dimensional normed linear space although a
locally Lipschitz function is Fréchet differentiable wherever it is Giteaux
differentiable and uniformly strictly differentiable whenever it is strictly
differentiable [6, p. 379], nevertheless the associated uniformity conditions
do not hold automatically for intermediate differentiability.

ExaMPLES 1.6. (i) Consider the locally Lipschitz function ¢ on R
defined by

Now 3y°0) = [—1, 1] and ¢ is fully intermediately differentiable at 0,
but it has a unique uniformly intermediate derivative of zero at 0.
(ii) The locally Lipschitz function ¢, on R defined by

x sin(In|x]), x>0
ll;l(x) =40 x=0
x cos(In|x]), x<0

also has ay0) = [—1, 1] and is fully intermediately differentiable at 0,
but is not uniformly intermediately differentiable at 0. |
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The following example of a Lipschitz function given by R. T. Rockafellar
[12, p. 97] illustrates the complexity of the relations between the various
sets of points of differentiability.

ExaMPLE 1.7. There exists a measurable set S in R with the property
that, for every non-empty open interval I, the sets I 10 S and I N (R\S)
are both of positive measure. Define a function 6 on R by

+1 forxe s

bx) = {—1 forx € R\S

and a function ¥y on R by
W) = [ 6w ar

Then  is globally Lipschitz and nowhere strictly differentiable. The set
of points where ¢ is differentiable is first category but of full measure.
The set of points where ¢ is pseudo-regular is residual but is disjoint from
the set of points where ¢ is differentiable and so is of measure zero. Now
the set of points where i is intermediately differentiable is residual and
of full measure since it contains the points where ¢ is differentiable.
However, the set of points where ¢ is fully intermediately differentiable
is residual but of measure zero since it is disjoint from the set of points
where ¢ is differentiable. |

2. LOWER SEMI-CONTINUITY OF THE SUBDIFFERENTIAL MAPPING

The differentiability of a continuous convex function ¢ is associated
with continuity properties of its subdifferential mapping x — ad(x) and
there is an extension of this association for a locally Lipschitz function
¢ and its Clarke subdifferential mapping x — a°(x).

Given a topological space A and a normed linear space X, a set-valued
mapping ® from A into subsets of the dual X* is said to be weak* (norm)
upper semi-continuous at t, € A if for each weak* (norm) open subset W
of X* where ®(t,) C W, there exists an open neighbourhood U of ¢, such
that (U) C W. If ® is weak* upper semi-continuous on A and ®(7) is
weak* compact and convex in X* for each t € A then & is called a weak*
cusco on A and & is said to be a minimal weak* cusco on A if its graph
does not contain the graph of any other weak* cusco on A.

For a continuous convex function ¢ on an open convex subset A of a
normed linear space X, the subdifferential mapping x — dd(x) is a minimal
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weak* cusco on A [9, p. 100). For a locally Lipschitz function y an open
subset A of a normed linear space X the subdifferential mapping x —
O(x) is a weak* cusco on A but is not necessarily minimal.

The following characterisations of differentiability are well known.

ProposITION 2.1. (i} A continuous convex function ¢ on an open
convex subset A of a normed linear space X is Gateaux (Fréchet) differen-
tiable at x € A if and only if d¢(x) is a singleton (and the subdifferential
mapping x —dd(x) is norm upper semi-continuous at x) [9, p. 18].

(ii) A locally Lipschitz function ¢ on an open subset A of a normed
linear space X is strictly (uniformly strictly) differentiable at x € A if and
only if 9(x) is singleton (and the subdifferential mapping x — 8¢°(x) is
norm upper semi-continuous at x) [6, p. 374].

Given a topological space A and a normed linear space X a set-valued
mapping @ from A into subsets of the dual X* is said to be weak* (norm)
lower semi-continuous at t, € A if for each f € ®(1;) and weak* (norm)
open subset W of X* where f € W there exists an open neighbourhood
U of t, such that ®(1) N W # J for each t € U.

Now if @ is single-valued and weak* (norm) upper semi-continuous at
t, € A then clearly @ is weak* (norm) lower semi-continuous at . Further,
in the special case when @ is single-valued on a dense subset of A, if ®
is weak* lower semi-continuous at 1, € A then @ is single-valued at #,. But
in general, the two continuity conditions are independent of each other.

Nevertheless, they are related for minimal weak* cuscos. This relation
is a consequence of the following property of minimal weak* cuscos.

LEMMA 2.2 Given a minimal weak* cusco ® from a topological space
A into subsets of the dual X* of a normed linear space X, if for an open
set U in A and a weak* closed convex subset K in X* we have (1) N
K # & for each t € U, then d(U) C K.

Proof. The set-valued mapping of &' from A into subsets of X* de-
fined by

P()N K forte U

o'(r) =
2 {tb(t) fort g U

is a weak* cusco whose graph is contained in that of ®. But since ® is
minimal we conclude that ®(r) C K forallt € U. |

PROPOSITION 2.3. A minimal weak* cusco ® from a topological space
A into subsets of the dual X* of a normed linear space X is single-valued
and weak* (norm) upper semi-continuous at t, € A if and only if it is
weak* (norm) lower semi-continuous at t,.
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Proof. Consider f € ®(1y). Given a weak* (norm) open convex set W
wherefg W, there exists a weak* (norm) open convex set V such that
SEV C VY C W. Since & is weak* (norm) lower semi-continuous at t,
there exists an open neighbourhood U of ¢, such that

PN V=Y for each r € U.
So

(1) NV # P foreachr € U.

Since ¢ is minimal we have by Lemma 2.2 that
dU)C vV

and so
DUy W

This implies that @ is singie-valued and weak* (norm) upper semi-continu-
ous at f,.
The converse is obvious. |

So then for a continuous convex function ¢, Gateaux (Fréchet) differ-
entiability of ¢ at x € A is characterised by the weak* (norm) lower semi-
continuity of the subdifferential mapping x — d¢(x) at x. Now for a locally
Lipschitz function ¢ the set of points where ¢ is strictly differentiable
(uniformly strictly differentiable) is contained in the set of points where
the subdifferential mapping x — dy%(x) is weak* (norm) lower semi-contin-
uous but the converse does not hold generally. So for a locally Lipschitz
function ¢ we are led to consider the set of points where the subdifferential
mapping x — d’(x) is weak* (norm) lower semi-continuous as a set which
generalises the set of points of differentiability.

We consider first locally Lipschitz functions which are pseudo-regular
on their domain and show that they possess properties close to those
which generate a minimal subdifferential mapping.

We need the following general property which should be compared with
Theorem 1.1 (iii).

LEMMA 2.4. Given a locally Lipschitz function y on an open subset
A of a normed linear space X, the subdifferential mapping x — a°(x) is
weak™* lower semi-continuous at x € A if and only if Y*(x) y) is continuous
at x forally € X.
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Proof. Itis known that given y € X, ¢°(x)(y) is upper semi-continuous

in x [4, p. 26] so it is sufficient to consider lower semi-continuity. Given
y € X and ¢ > 0 there exists an open neighbourhood U of x such that

W) N{fEX* f(y) > Py —e}#*F forallz € U.
Since
W@)(y) = sup{f(y):f € a2}
then
Py > P x)(y) — ¢ forallz € U,
that is, Y°(x)(y) is lower semi-continuous at x.

Conversely, suppose that the subdifferential mapping x — ay%(x) is not
weak* lower semi-continuous at x € A. Then there exists a weak* open set
W={feX*:fly)>qforallje{l,2, .., n}}
such that W N a¢%x) # &, but there exists a sequence {z,} in A where

7, — x such that W N ay’(z,) = & for each k € N. Now for each k € N,
W and dy°(z,) can be separated by a weak* closed hyperplane of the form

{fex*. fiw) = B} where w, € co{y,, ¥2, ---» Yu}-
Since co{y;, ¥», ..., ¥, is compact, the sequence {w,} has a subsequence
{w,} convergent to some w € X. Since for a given x € A, PP(x)(y) is
continuous in y, for each | € N,
WUz ) (w) = lin{l sup By,
But given f € W N 3y%x) there exists an r > 0 such that

limsup B, <f(w) —r
|—x

and 50 $(z,)(w) < $°(x)(w) — rforall/ € N and we conclude that $°(x)(w)
is not lower semi-comtinuous at x. |

THEOREM 2.5.  Consider a locally Lipschitz function  pseudo-regular
on an open subset A of a Banach space X. If the subdifferential mapping
x = WOx) is weak* (norm) lower semi-continuous on a residual subset
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D of A then ¥ is strictly differentiable (uniformly strictly differentiable)
onD.

Proof. From Lemma 2.4, y°(x)(y) is continuous in x on D for all y €
X. Since s is pseudo-regular on A, ¢ (x)(y) is continuous in x on D for
all y € X. From Theorem 1.1(iii) we deduce that i is strictly differentiable
on D. It follows from {2, Theorem 4.7, p. 474] that the subdifferential
mapping x —> d¢%x) is a minimal weak* cusco and the result for norm
lower semi-continuity follows immediately from Propositions 2.1 and
23. 1

Now weak* cuscos associated with separable Banach spaces possess
the following lower semi-continuity properties.

THEOREM 2.6. Consider a Baire space A and a normed linear space X.

(1) If X is separable, every locally bounded weak* cusco ® from A
into subsets of X* is weak* lower semi-continuous on a residual subset
of A.

(it) If X* is separable, every weak* cusco ® from A into subsets of
X* is norm lower semi-continuous on a residual subset of A.

Proof. (i) Since X* is separable it has a countable base {B,} of open
balls. If ® is not norm lower semi-continuous at ¢, € A then there exists
a B, such that ®(z)) N B, # & but in any neighbourhood U of ¢, there
exists a ¢ such that ®(¢) N B, = 5. Now there exists_B,ll C B, such that
(1) N B, # @. Then &(1) N'B,, = B Now (1) C C(B,.) which is weak*
open and since @ is weak* upper semi-continuous at ¢ there exists an
open neighbourhood U’ of t where U’ C U such that ®(U') N E,,I = .

Then ®(U’') N B, = (J. Now given n € N, the set

{t € A : ®(r) N B, # I but for every open neighbourhood
U of ¢ there exists an open set U’ C U such that ®(U') N B, = <}

is nowhere dense in A. So the subset of A where ® is not norm lower
semi-continuous is first category in A.

(i) Since ® is locally bounded on A, for some n, € N there exists
a non-empty open subset U, of A such that <I>(U,,0) C noB(X*). Since X
is separable the weak* topology on nyB(X*) is separable and metrisable.
So there exists a countable base for the weak* topology on nyB(X*). So
by an argument similar to that given in (ii) above and using the regularity
of the weak* topology we show that the subset D, of U, where @ is not
weak* lower semi-continuous is first category in U, . Now for each n >
ny, we may choose an open subset U, of A such that U, C U, C U,,,
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and ®(U,) C nB(X*); but then D, C D, C D, . But since @ is locally
bounded on A we may choose U, so that A = Us.,, U, and then D =

U5, D, is the subset of A where ® is not weak* lower semi-continuous
on A and is first category in A. |

From Proposition 2.3 we have the following well-known result.

CoroLLARY 2.7. Consider a Baire space A and a normed linear
space X.

(i) If X is separable, every locally bounded minimal weak* cusco
® from A into subsets of X* is single-valued on a residual subset of A.

(i) If X* is separable, every minimal weak* cusco ® from A into
subsets of X* is single-valued and norm upper semi-continuous on a
residual subset of A.

From Corollary 2.7 we deduce differentiability properties for continuous
convex functions given originally by S. Mazur [8] for separable Banach
spaces and E. Asplund [1] for Banach spaces with separable dual.

1t follows from Theorems 2.5 and 2.6(i) that a pseudo-regular locally
Lipschitz function on a separable Banach space generates a subdifferential
mapping which is a minimal weak* cusco.

We should note that the continuity property given in Theorem 2.6 does
not hold generally for locally bounded weak* cuscos from a Baire space
into subsets of the dual of a non-separable Asplund space.

ExaMPLE 2.8. Consider the non-separable Hilbert space L,(R) and the
set-valued mapping ® from ,(R) into subsets of ,(R) defined by

q)(x) - {)\8”‘“0 =A< ]},
where 8, € L(R) is defined by

0, a # ||«
1, a = Hx”

pyla) = {

Clearly, ®(x) is weakly compact and convex. Consider x € L(R) and
sequence {x,} in [,(R) convergent to x. If ||x,]| = ||| for all n € N, then
®(x,) = ®(x) for all n € N.If ||x,|| # ||x|| for each n € N, given y € I(R)
and 0 = A, = | we have (A8, , ¥) — 0 s0 A3, , is weakly convergent to
0 € ®(x). Therefore, @ is a weak cusco on /,(K). However, if |x,]| # ||
for each n € N, we have |8, ; — 8/l = 1, and we conclude that & is
not norm lower semi-continuous at any point of L(R).

Nevertheless, we do have the following norm lower semi-continuity prop-
erty for certain weak* cuscos which map into subsets of the dual of an
Asplund space.
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THEOREM 2.9. Given a locally bounded weak* cusco ® from a Baire
space A into subsets of the dual X* of an Asplund space X, if ® is single-
valued on a residual subset D of A then ® is single-valued and norm lower
semi-continuous on a residual subset of A.

Proof. Consider a minimal weak* cusco ® contained in ®. Since X is
an Asplund space, @ is single-valued and norm upper semi-continuous on
a residual subset D' of A. Now D N D' is a residual subset of A and for
t € DN D', &) = B(r) and since P is norm upper semi-continuous at
¢ then @ is norm lower semi-continuous at 7. |

3. THE RESIDUAL SET GENERALISING THE SET OF
PoINTS OF DIFFERENTIABILITY

We now turn to our general problem of determining for a locally
Lipschitz function on a separable Banach space the appropriate residual
subset of the domain which if the function were convex would coincide
with its set of points of differentiability.

For a separable Banach space (with separable dual), in Section 1 we
identified the set of points where the function is fully intermediately differ-
entiable (full and uniformly intermediately differentiable) as a residual
subset of the domain which could be regarded as a set generalising the
set of points of Gateaux (Fréchet) differentiability. In Section 2 we identi-
fied the set of points where the subdifferential mapping is weak* (norm)
lower semi-continuous as a residual subset of the domain which could be
regarded in the same way.

Now in general the set of points where the locally Lipschitz function
is fully intermediately differentiable (fully and uniformly intermediately
differentiable) is not related by set containment to the set of points where
the subdifferential mapping is weak* (norm) lower semi-continuous. In
Example 1.7 on R, the locally Lipschitz function  is lower semi-continu-
ous at every point of R but is fully intermediately differentiable on a
residual set of measure zero. Examples 1.6 are of locally Lipschitz func-
tions where the subdifferential mapping is a minimal cusco but by Proposi-
tion 2.3 is not lower semi-continuous at 0. However, both examples are
fully intermediately differentiable at 0 and Example 1.6(i) is also uniformly
intermediately differentiable at 0.

An important component of Preiss’ Theorem [10] is his showing that
for a locally Lipschitz function ¢ on an open subset A

(i) ofaBanach space with an equivalent norm Géateaux differentiable
away from the origin,

(ii) of an Asplund space,
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at any point x € A, the Clarke subdifferential ¢%x) is generated by the

(i) Gateaux derivatives of ¢
(i) Fréchet derivatives of .

By this we mean that 9y°(x) is the weak* closed convex hull of the cluster
points of ¢'(x,) for sequences {x,} where ¢ is (i) Gateaux, (ii) Fréchet
differentiable and as {x,} converges to x. This generalises the result from
finite-dimensional spaces [4, p. 63].

We could ask whether either of our two types of residual subsets of A
which could be regarded as generalisations of the set of points of Giteaux
(Fréchet) differentiability generate the Clarke subdifferential in the
same way.

For a locally Lipschitz function s on an open subset A of a separable
Banach space (with separable dual) we could consider as our subset gen-
eralising the set of points of Gateaux (Fréchet) differentiability, the sets
of points where both ¢ is fully intermediately differentiable (fully and
uniformly intermediately differentiable) and the subdifferential mapping
of x — ay%x) is weak* (norm) lower semi-continuous. This is a smaller
residual set which coincides with the points of Gateaux (Fréchet) differ-
entiability for a continuous convex function. In the particular case where
the subdifferential mapping x +— 9¢"(x) is a minimal weak* cusco, the set
of points where s is fully intermediately differentiable (fully and uniformly
intermediately differentiable) and the subdifferential mapping x ~> 3y°(x)
is weak* (norm) lower semi-continuous is a residual set where  is single-
valued and so this set generates the subdifferential [3, Corollary 4.2, p.
472]. In this case the set of points where the subdifferential mapping x —
oP’(x) is weak* (norm) lower semi-continuous is included in the set of
points where i is fully intermediately differentiable (fully and uniformly
intermediately differentiable) but as Examples 1.6 show, the two sets are
not necessarily equal. ‘

The following example given by Borwein {2, Example 6.4(b), p. 77]
shows that in general the set of points where the subdifferential mapping
is lower semi-continuous does not generate the subdifferential.

ExaMpLE 3.1. Consider £ a dense open set in R not of full mea-
sure. Then

Plx) = JOX XceD dt,

where i is the characteristic function on C(E). Then

B0() = {0 forxe E
VO =011 forxe CE)
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Now the subdifferential mapping x — 9¢%x) is lower semi-continuous
only on E and it is clear that such a set does not generate the subdifferential
at points of C(E).

The problem of determining whether the subdifferential is generated by
the set of points where the locally Lipschitz function is fully intermediately
differentiable (fully and uniformly intermediately differentiable) is much
more difficult. It is clear from Lemma 2.4 that for a locally Lipschitz
function ¢ on an open subset A of a separable Banach space X (with
separable dual), at points x € A where the subdifferential mapping x
ay’(x) is weak* lower semi-continuous then for each y € X,

Y(y) = lianup P (),

zEb

where D is the residual set where ¥ is fully intermediately differentiable
(fully and uniformly intermediately differentiable). Consequently, at such
points x € A, °x) is generated by the fully intermediate (fully and
uniformly intermediate) derivatives of . This implies that Example 1.7
which in so many ways exemplifies pathological behaviour, does have its
subdifferential at each point generated by its fully and uniformly intermedi-
ate derivatives. However, weak* lower semi-continuity is in general a
stronger condition than necessary to guarantee such a generation of the
subdifferential.

Nevertheless, we can show that pseudo-regularity in a direction is of
significance in generating the subdifferential and this produces a refine-
ment of Preiss’ characterisation.

THEOREM 3.2. For a locally Lipschitz function ¥ on an open subset
A of a Banach space X, givenx € Aandy € X

YO(x)(y) = limsup ¢*(2)(y),

g S

:ED)‘
where
D, ={z € A" ()(y) = ¥y}

Proof. Given & > 0, consider the sets
F,={z€ A:°2)(y) > ¥’x)Ny) — &
and for p € N,

RE={zE Ay, (DY) > Px)(y) — &}
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It follows from the definition of the generalised Clarke derivative that F,
and R? are non-empty. Since ¥, (z)(y) is lower semi-continuous in z,

R, = m RP isa Gysubset of A.

PEN

We show that R, is dense in F,. Suppose not. Then there exists a z, €
F_and an r > 0 such that R, N F, N B(zy; r) = &. Then for all each z €
B(z,; r) N F, there exists a p € N such that

Y, () = W(y) —

SO
PHRY) =) y) — e.

But for all z € B(zy; r)\F,,

YY) = PUD(y) = POx)y) — e.

This would imply that

Wzo)(y) = lim sup Y7 (2)(y) < ¢x)(y) — e

contradicting the fact that z, € F,. So we conclude that R_is dense in F,
and is a dense G, subset of the Baire space F,.

Now ¢"(z)(y) on the Baire space F, is upper semi-continuous in z on
a residual subset P of F, [7, Theorem]. So P N R, is a residual subset of
F, where y*(z)(y) is upper semi-continuous in z relative to F, and

b y) = Py - e
However, at z; € P N R,, Y (z)(y) is also upper semi-continuous in z

relative to A, because if not there exists an r > 0 and a sequence {z,}
where z, — z, and

PHE)Y) =P (g y) + r
> yYx)(y) — &

and then z, € F, for all » € N and we have contradicted the property we
established on F,. We conclude from Theorem 1.1(i) that

Py = zN(y) forallze PNR,. |
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We note that D, is a dense G, subset of A [7, Theorem].

Preiss’ Theorem provides spaces where the subdifferential is generated
by the derivatives. On such spaces the proof of Theorem 3.2 will extend
to the subset of A where the locally Lipschitz function is differentiable.
We define the subsets F, and R? on the subset of A where the locally
Lipschitz function is differentiable and the upper semi-continuity of
Ut (z)y) at z; € P N F, relative to A follows because the derivatives
generate the subdifferential. So we deduce the following refined version
of Preiss’ result.

COROLLARY 3.3 For a locally Lipschitz function ¢ on an open subset
A of
(i) a Banach space X with equivalent norm Gdteaux differentiable
away from the origin,
(i) an Asplund space X,

givenxe€ Aandy € X

P(2)(y) = lim sup ¢'(2)(y),

=X

€E
where
(i) E=GND, ={z€G:¢'Dy = )},
(i) E=FND, ={z€Fy@y = @0}
and G(F) is the subset of A where s is Gdteaux (Fréchet) differentiable.
It is clear from Example 1.7 that this result cannot be extended to have

the subdifferential generated by the strict derivatives, since in that example
there are none. However, in that example at each x € R,

YP)y) = +1 and (= P)°0(y) = YO -y) = — 1.

Further, ¢ is differentiable almost everywhere in § with derivative + 1
and almost everywhere in R\S with derivative — 1.,
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