
An Incremental Algorithm to Check

Satisfiability for Bounded Model Checking 1

HoonSang Jin2 Fabio Somenzi3

University of Colorado at Boulder

Abstract

In Bounded Model Checking (BMC), the search for counterexamples of increasing lengths is trans-
lated into a sequence of satisfiability (SAT) checks. It is natural to try to exploit the similarity
of these SAT instances by forwarding clauses learned during conflict analysis from one instance
to the next. The methods proposed to identify clauses that remain valid fall into two categories:
Those that are oblivious to the mechanism that generates the sequence of SAT instances and those
that rely on it. In the case of a BMC run, it was observed by Strichman [20] that those clauses
learned during one SAT check that only depend on the structure of the model remain valid when
checking for longer counterexamples. Eén and Sörensson [9] pointed out that all learned clauses
can be forwarded if the translation into SAT obeys commonly followed rules. Many clauses that
are forwarded this way, however, are of little usefulness and may degrade performance. This paper
presents an extension to Strichman’s approach in the form of a more general criterion to filter
conflict clauses that can be profitably forwarded to successive instances. This criterion, in par-
ticular, is still syntactic and quite efficient, but accounts for the presence of both primary and
auxiliary objectives in the SAT instance. This paper also introduces a technique to distill clauses
to be forwarded even though they fail the syntactic check. Distillation is a semantic approach that
can be applied in general to incremental SAT, and often produces clauses that are independent of
the primary objective, and hence remain valid for the remainder of the sequence of instances. In
addition, distillation often improves the quality of the clauses, that is, their ability to prevent the
examination of large regions of the search space. Experimental results obtained with the CirCUs
SAT solver confirm the efficacy of the proposed techniques, especially for large, hard problems.

Keywords: bounded model checking, propositional satisfiability, conflict-learned clauses,
incremental algorithms.

1 This work was supported in part by SRC contract 2003-TJ-920.
2 Email: Jinh@Colorado.EDU
3 Email: Fabio@Colorado.EDU

Electronic Notes in Theoretical Computer Science 119 (2005) 51–65

1571-0661 © 2005 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.06.062
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82765854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Jinh@Colorado.EDU
mailto:Fabio@Colorado.EDU
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

1 Introduction

Bounded Model Checking (BMC) [3] determines whether for model K there
exists a counterexample to property ϕ of length less than or equal to k. If
such a counterexample is found, or if k is large enough [19,18,6,1], then BMC
effectively answers the question K |= ϕ; otherwise, it increases the user’s
confidence in the correctness of K.

BMC converts the search for a counterexample of a certain maximum
length into a sequence of propositional satisfiability (SAT) checks. In its sim-
plest form, the length starts from 0 and is incremented by 1 for each instance.
At the i-th step of this iteration, a propositional formula is built from K and
ϕ that is satisfiable if and only if there exists a counterexample to ϕ in K of
length k = i − 1. Though variations on this scheme are easy to envisage, and
can be accommodated by the techniques discussed in this paper, we shall limit
our discussion to this case. Each formula checked for satisfiability consists of
three parts, corresponding to the initial state constraint, the unrolled tran-
sition relation, and the property to be satisfied. In the last part, one often
distinguishes a primary objective (e.g., the last state of the counterexample
violates an invariant) from auxiliary objectives (e.g., no state except the last
one violates that invariant). Auxiliary objectives express information about
the problem gathered from failed attempts to find shorter counterexamples.
They may help in directing the search process.

The emergence of efficient SAT solvers over the last decade [21,25,26,11]
has greatly contributed to the success of BMC. The new generation of SAT
solvers improves over the classical DPLL procedure [8,7] in several ways. Of
interest to us are conflict analysis and clause recording: When a conflicting
assignment is found, it is analyzed to identify a subset that is still conflicting.
The disjunction of the negation of the literals in the subset is a conflict-learned
clause (or, more concisely, a conflict clause) that can be added to the given
SAT instance to prevent the examination of regions of the search space that are
guaranteed to contain no solutions. Not all conflict clauses are worth keeping;
many SAT solvers periodically discard those that have proved ineffective.

Incremental SAT solvers [24,20,9] try to leverage the similarity between the
elements of a sequence of SAT instances; most do so by re-utilizing conflict
clauses, though when many closely related instances must be solved, caching
solutions [15] and incremental translation [2] can also be effective. If a SAT
instance is obtained from another by adding some clauses (as in [12]), then
all conflict clauses of the first can be forwarded to the second. This is cor-
rect because the second instance implies the first, which in turn implies all
its (conflict) clauses. Therefore, when clauses are only added through the se-
quence of instances, there is no need to screen conflict clauses to determine

H. Jin, F. Somenzi / Electronic Notes in Theoretical Computer Science 119 (2005) 51–6552

which ones can be forwarded. This, on the other hand, is necessary when
arbitrary clauses are both added and subtracted to create a new instance. A
common approach to such general case is to have the incremental SAT solver
keep track of whether a conflict clause depends on some removed clauses. The
approach of [24] is to record, for each conflict clause, the clauses that made up
the corresponding implication graph. This approach does not require any fore-
knowledge of the subsequent SAT instances to be solved incrementally, and
does not restrict the changes possible from one instance to the next; however,
keeping track of dependencies may be expensive.

Strichman [20] was the first to observe that in BMC some clauses are
known to survive through all instances in the sequence. A formula passed by
BMC to the SAT solver contains clauses that describe the transition relation
of the model unrolled a number of times. These clauses are not discarded
when the length of the counterexample is increased. Hence, a conflict clause
that depends only on them can be forwarded. The advantage of this approach
is that complete dependence information is no longer needed; one-bit marker
per clause is sufficient. Such a marker is derived from the structure of the
implication graph that produces the clause. Therefore, we speak of a syntactic
criterion in this case.

The authors of [9] remarked that tracking dependencies is not required if
only unit clauses are removed. Such clauses can be regarded as assumptions
by the SAT solver. As a result, a conflict clause incorporates its assumptions
or some of their implied literals, and is not invalidated when the assumptions
are repealed. It was further observed in [9] that the standard encoding of
objectives into SAT guarantees that the clauses that must be removed when
the counterexample length is incremented are unit clauses. Hence, all conflict
clauses can be forwarded. The approach of [9] exemplifies those incremen-
tal satisfiability algorithms that are aware of the mechanism generating the
sequence of SAT instances. On the other hand, when one of its unit clause
assumptions is reversed, a conflict clause becomes satisfied and therefore inert.

Having many inert clauses in the solver may significantly affect perfor-
mance. Therefore we want to forward only clauses that have a good chance of
remaining active in successive instances. To this purpose, we propose a syn-
tactic criterion that improves on the one of [20] in two ways. First, it accounts
for auxiliary objectives, and hence can forward more clauses. Second, it does
not require the examination of the entire implication graph when marking a
conflict clause.

We also present a semantic forwarding criterion, which distills the clauses
that cannot be forwarded according to the syntactic check into clauses implied
by the new instance. These distilled clauses are sometimes independent of the

H. Jin, F. Somenzi / Electronic Notes in Theoretical Computer Science 119 (2005) 51–65 53

objective of the new instance and usually more effective than the raw clauses
from which they are derived in preventing exploration of fruitless regions of
the search space.

The rest of this paper is organized as follows. Section 2 reviews background
material. Section 3 describes the incremental SAT algorithm, while Section 4
discusses the experiments conducted to assess its effectiveness. Section 5 con-
cludes.

2 Preliminaries

Let V = {v1, . . . , vn} and W = {w1, . . . , wm} be sets of Boolean variables. We
designate by V ′ the set {v′

1, . . . , v
′
n} consisting of the primed version of the

elements of V , and by V i the set {vi
1, . . . , v

i
n}. Likewise, W i = {wi

1, . . . , w
i
m}.

An open system is a 4-tuple

Ω = 〈V, W, I, T 〉 ,

where V is the set of (current) state variables, W is the set of combinational
variables, I(V) is the initial state predicate, and T (V, W, V ′) is the transition
relation. The variables in V ′ are the next state variables. All sets are finite,
and all variables range over finite domains.

Bounded Model Checking (BMC) [3] reduces the search for a counterex-
ample to a linear time property to propositional satisfiability. Given an open
system Ω, an LTL [17] formula ϕ, and a bound k, BMC tries to refute Ω |= ϕ
by proving the existence of a witness of length k to the negation of the LTL
formula.

BMC generates a propositional formula [[Ω,¬ϕ]]k that is satisfiable if and
only if a counterexample to ϕ of length k exists in Ω; [[Ω,¬ϕ]]k is defined as
follows:

[[Ω,¬ϕ]]k = I(V 0) ∧
∧

0≤i<k

T (V i, W i, V i+1) ∧ [[¬ϕ]]k , (1)

where [[¬ϕ]]k expresses the satisfaction of ¬ϕ along that path. (See [3] for the
details of the translation.) It is customary to write [[¬ϕ]]k as ωk ∧ Fk, where
ωk is a literal called the primary objective. If it is known that [[Ω,¬ϕ]]j is
unsatisfiable for j < k, then one can conjoin (1) with

∧

0≤i<k

¬[[¬ϕ]]i . (2)

Each term ¬[[¬ϕ]]i is written ¬ωi ∧ Fi, where ¬ωi is an auxiliary objective.

H. Jin, F. Somenzi / Electronic Notes in Theoretical Computer Science 119 (2005) 51–6554

1 DPLL() {
2 while (ChooseNextAssignment())
3 while (Deduce() == CONFLICT) {
4 blevel = AnalyzeConflict();
5 if (blevel ≤ 0) return UNSATISFIABLE;
6 else Backtrack(blevel);
7 }
8 return SATISFIABLE;
9 }

Fig. 1. DPLL algorithm with conflict analysis

A SAT solver returns assignments to the variables of a propositional for-
mula that satisfy it, if such assignments exist. A literal is either a variable
or its complement, a clause is a disjunction of literals from distinct variables,
and a conjunctive normal form (CNF) formula is a conjunction of clauses.
An And-Inverter Graph (AIG) [16] is a Boolean circuit such that each node’s
output is the conjunction of its two inputs. The arcs of the circuit may be
complementing. A Binary Decision Diagram (BDD) [5] is a Boolean circuit
such that each node is a multiplexer controlled by an input variable. Most
SAT solvers operate on a propositional formula in CNF. Our SAT solver Cir-
CUs [14,13], on the other hand, accepts a combination of CNF clauses, AIG,
and reduced, ordered BDDs. Each result of a conflict analysis is represented as
one clause [10]. Hence, the algorithms described in this paper can be applied
to any SAT solver based on clause recording.

Figure 1 shows the pseudocode of the DPLL procedure as implemented in
most modern SAT solvers, including CirCUs. The algorithm maintains a list
of assignments that is initialized with the unit clauses from the SAT instance.
If all variables have been given a value, a satisfying set of assignments has been
found. Otherwise, an assignment is either extracted from the list, or created
by a new decision; it is added to the assignment stack, and its consequences
are deduced. Every time a new decision is made, the decision level, which is
initially 0, is incremented. If a conflict is detected, it is analyzed. The results
of the analysis are a conflict clause and a backtracking decision level. The
latter tells how much of the assignment stack should be erased (decreasing
the decision level) before continuing the search.

Conflict analysis relies on the implication graph, which is a directed acyclic
graph (DAG) whose nodes are the variables in the current set of assignments
plus a special conflict node if the assignments are conflicting. The arcs of the
DAG are such that if the predecessors of node ν are ν1, . . . , νm, then there
exists a clause, an AIG node, or a BDD, such that it implies the value of ν
given the values of ν1, . . . , νm. The predecessors of the conflict node identify a
clause, AIG node, or BDD, whose assignments are inconsistent. A root of the
graph corresponds to a decision assignment. Note that different implication
graphs may be obtained from the same set of assignments, depending on the

H. Jin, F. Somenzi / Electronic Notes in Theoretical Computer Science 119 (2005) 51–65 55

order in which their implications are propagated. A conflict clause is obtained
by disjoining the negation of the literals forming a cut in the implication graph
that separates the conflict node from the roots of the graph. The First Unique
Implication Point (UIP) approach [26] starts from the conflict node and looks
for the first cut such that it contains exactly one literal implied by the most
recent decision.

Every non-root node of the implication graph identifies an antecedent
clause: The implied value of the node contributes one literal, and the negation
of the predecessor values supplies the others. Some of these clauses correspond
to clauses in the input description or were derived from previous conflicts. Oth-
ers come from AIG nodes or BDDs. For instance, an AIG node a = b∧ c, and
assignment a = 1 implying c = 1 implicitly give the clause (¬a∨ c). The con-
flict clause is obtained by successive resolutions starting from the conflicting
clause associated to the conflict node. At each step one literal implied at the
current decision level is resolved using its antecedent clause. All the clauses
involved in the resolution are implied by the function whose satisfiability is
being checked.

3 Forwarding Clauses

We consider an incremental SAT algorithm that exploits the similarities among
SAT instances that form a sequence by using the conflict clauses generated
from the previous instances to guide the search for a solution to the current
instance. We assume that the second and successive instances of the sequence
are obtained by removing some clauses from the instances immediately pre-
ceding them, and then adding some other clauses.

In BMC the unsatisfiability of a SAT problem usually comes from the
simultaneous constraining of the initial and final state of a path because the
formula representing the unrolled transition relation and the constraint on
the initial states is normally satisfiable. However, this does not mean that the
conflicts the solver goes through in proving unsatisfiability involve variables
from most time frames. First, there may be conflicts due to inconsistent
assignments to the inputs and outputs of some circuit elements. Second, the
proof of unsatisfiability may rely on conflicts that establish non-trivial facts
about intermediate states of possible counterexamples, given the constraints
on the initial states. Figure 2 provides some intuition for how local conflicts
arise. It shows an AIG produced by unrolling a transition relation twice.
The property being checked is an invariant. The three parts of the figure are
three snapshots taken during the search. Each circle is a node of the AIG.
A circle is filled if the node is assigned a value. The three snapshots suggest

H. Jin, F. Somenzi / Electronic Notes in Theoretical Computer Science 119 (2005) 51–6556

Fig. 2. Examples of justification clouds

that the implication graph initially consists of several connected components.
If a conflict occurs when extending one of the components not including the
objective (the diamond at the far right), then the resulting conflict clause
is totally independent of the current objective and is a good candidate for
forwarding.

As recalled in Section 1, it was noted in [9] that when objectives are iden-
tified by literals, all conflict clauses can be forwarded. However, a clause that
contains the old primary objective, is trivially satisfied when that objective

H. Jin, F. Somenzi / Electronic Notes in Theoretical Computer Science 119 (2005) 51–65 57

x6@3

x9@0

¬x8@0

x1@1

x3@3 x4@2

(a) (b)

¬x2@1

¬x7@0

¬x5@3

Conflict

¬x8@0

¬x7@0

x1@1

¬x2@1

x4@2

x3@3

x6@3

¬x5@3

x9@0

Conflict

Fig. 3. Example of tracing objective

is turned into auxiliary by negating its literal. In general, the usefulness of
conflict clauses that depend on the primary objective is dubious, even when
they do not contain the objective literal. Hence, in the following, we propose
two techniques to identify objective-independent clauses.

3.1 Objective Tracing

We are interested in extending the criterion of [20] to account for auxiliary
objectives since they contribute to many conflicts, especially when looking for
looping counterexamples.

Definition 3.1 Let [[¬ϕ]]k = ωk∧Fk. A conflict clause γ is objective-dependent
if ωk is an ancestor of the conflict node in the implication graph, or at least one
objective-dependent clauses is used in its resolution. Otherwise γ is objective-
independent.

We show an AIG and an implication graph for it in Figure 3. Each hor-
izontal line in Figure 3(a) represents an AIG node; a dot stands for comple-
mentation. The objective is x9 and a conflict happens after three decisions
have been made for x1, x4, and x3. Along with the implications, we also
propagate the objective flag through the implication graph. For example, we
mark x7 and x8 because they are implied by the objective. The dotted line in
Figure 3(b) encloses the marked nodes.

In our incremental algorithm, conflict analysis has the additional goal to
check whether the conflict is related to the objective. The conflict in Fig-
ure 3 is objective-dependent, since one of the ancestors of the conflict node is
x9. A naive approach could identify objective-dependent conflicts by checking

H. Jin, F. Somenzi / Electronic Notes in Theoretical Computer Science 119 (2005) 51–6558

whether the objective is in the transitive fanin of the conflict node. However,
most modern SAT solvers, including CirCUs, use the first UIP to find con-
cise explanations of conflicts. Therefore, standard conflict analysis does not
need to traverse all the transitive fanin of the conflict node. Hence the naive
approach may incur overhead.

Since we propagate the objective flag during implication, we can check if
the conflict is related to the objective by checking the mark of the conflict node.
If the conflict node is not marked then we need to traverse the implication
graph to check whether objective-dependent conflict clauses are the reason for
the current conflict. However, we only traverse until the first UIP is found.
Even though the rest of the implication graph has objective-dependent conflict
clauses, they can be ignored. The reason of the conflict is isolated from those
clauses by the first UIP.

In [20], the author propose a method to identify conflict clauses to be
forwarded in BMC based solely on the circuit structure. First, all the clauses
created from the circuit structure are marked. Once a conflict happens, one
checks if all clauses leading to the conflict are marked. It so, the conflict is
derived from inconsistency between the current assignment and the circuit
structure. Therefore, the conflict is marked for forwarding. This method does
not account for auxiliary objectives, which, as shown in Section 4, often speed-
up BMC. Second when BMC is applied to optimized circuits, in which most
redundancies have been removed, the clauses that are solely derived from the
circuit structure tend to be few. This occurs in our experimental setup, since
we apply BDD sweeping [16] to remove redundancy.

3.2 Distillation

Although the criterion of Section 3.1 forwards more clauses than the one of
[20], it is still rather conservative and may miss many useful conflict clauses.
Therefore, in this section, we develop a semantic criterion that is applied
to small clauses that failed the syntactic check based on dependency on the
objective.

To distill a clause under the new objective, we check whether the clause is
satisfied under the assignments that are implied by the unit clauses of the new
SAT instance. If the clause is satisfied, it is discarded. Otherwise, we assert
the negations of its literals and carry out the resulting implications. If this
does not result in a conflict, the clause is discarded. (Therefore, distillation
can be applied also when not all clauses can be forwarded.) Otherwise, the
clause obtained by conflict analysis is the distilled version of the given clause
and is forwarded.

Even though we limit the number of literals in the candidate clauses, there

H. Jin, F. Somenzi / Electronic Notes in Theoretical Computer Science 119 (2005) 51–65 59

(a ∨ b ∨ ¬c)

(¬a ∨ f)

(¬a ∨ g)

(¬a ∨ h)

root

b 0 1 f 1

1

10

1

10h

0a

0 g

c 0

(a ∨ b ∨ c)

Fig. 4. Example of clause trie. Each node has two sets of children corresponding to the two literals
of each variables.

may still be many of them. Therefore, we build a trie (cf. [25]) with the set
of candidates. Figure 4 shows an example. With the trie, we can distill the
clauses with at most 7 decisions, instead of the 12 decisions required if we
process the clauses one by one. We do not explicitly optimize the trie when
clauses can be merged. In Figure 4, (a ∨ b ∨ ¬c) and (a ∨ b ∨ c) could be
merged into (a∨ b). If the new clause indeed causes a conflict, it will be found
when trying (a ∨ b ∨ ¬c). The size of the trie depends on the order of the
variables. We sort the variables according to their number of occurrences in
the candidate clauses.

Figure 5 shows the distillation algorithm. For each element in the trie, the
decision on the children ‘0’ and ‘1’ is made in DistillationAux() if there
is a non-empty suffix from them. Conflict analysis is invoked when BCP()
results in a conflict. If the resulting conflict clause has fewer literals than the
number of trie nodes on the path from the root, it is forwarded. Otherwise the
conflict clause based on the decisions that have been made is forwarded. The
former case is more frequent. Since we want to go through all the trie nodes
one by one, we use chronological backtracking based on the trie structure.

The distillation process has several advantages. First, it is a semantic
approach that may derive clauses that were not produced by previous SAT
checks. Second, some of these clauses are reusable because they do not depend
on the current objective. Since the criterion based on tracing the objective
is conservative, we often find many objective-independent clauses from the
objective-dependent clauses of the previous run. Third, the quality of conflict
clauses usually is improved by distillation. This is partly due to the different
order in which assignments are made, and which results from the traversal of
the trie. Moreover, the first UIP tends to be closer to the conflict than the
literals in the clause to be distilled that it replaces.

H. Jin, F. Somenzi / Electronic Notes in Theoretical Computer Science 119 (2005) 51–6560

1 Distillation (Trie) {
2 for each t in Trie {
3 if (Value(t.node)! = X) {
4 Distillation(t.child[Value((t.node)]);
5 continue ;
6 }
7 DistillationAux(t, 0);
8 DistillationAux(t, 1);
9 }
10 }
11
12 DistillationAux (t, value) {
13 if (t.child[value]) {
14 level = MakeDecisionBasedOnTrie(t.node, value);
15 if (BCP(level) == CONFLICT) {
16 conflictClause = ConflictAnalysis(level);
17 if (numLiterals(conflictClause) < level)
18 AddConflictClause(conflictClause) ;
19 else
20 AddConflictCaluseBasedOnTrieNode();
21 UndoImplication(level);
22 return ;
23 }
24 else {
25 Distillation(t.child[value]);
26 }
27 }
28 }

Fig. 5. Distillation algorithm

A final, important advantage of distillation is that the variable scores used
to make decisions are updated during the process. Therefore, distillation
biases the search based on information from the previous instances in the
sequence. In [23], the entire proof of unsatisfiability from one SAT run is used
to bias the variable scores of the next run. With distillation, only the part of
the proof that is still useful with the new primary objective affects the scores.

4 Experimental Results

We have implemented the clause forwarding techniques in CirCUs, which is
built on top of VIS-2.1 [4,22]. To show the effectiveness of objective tracing
and distillation, we compare non-incremental SAT to incremental SAT. The
non-incremental version of CirCUs was shown to be competitive with a popular
CNF SAT solver, Zchaff, in [14].

The experimental setup is as follows. We build BMC instances for given
LTL properties from the VIS benchmark suite [22]. We check for counterexam-
ples of length up to 20. We first expand the AIG for the prescribed number of
time frames and then apply BDD sweeping [16] to the result to remove redun-
dancy. The maximum number of literals of a clause that undergoes distillation
is 50.

H. Jin, F. Somenzi / Electronic Notes in Theoretical Computer Science 119 (2005) 51–65 61

101

102

103

104

101 102 103 104

W
ith

 A
ux

ili
ar

y
O

bj
ec

t :
 ti

m
e

(s
)

101

102

103

104

101 102 103 104

In
cr

em
en

ta
l C

ir
C

U
s

: t
im

e
(s

)

Fig. 6. Effects of auxiliary objective (left) and effects of incremental solution (right)

101

102

103

104

101 102 103 104

W
ith

 D
is

til
l a

ti o
n

: t
i m

e
(s

)

101

102

103

104

101 102 103 104

W
ith

 U
IP

 C
on

fl
ic

t A
na

ly
si

s
: t

im
e

(s
)

Fig. 7. Effects of distillation (left) and effects of UIP conflict analysis (right)

All experiments have been performed on a 1.7 GHz Pentium IV with 1
GB of RAM running Linux. We have set the time-out limit to 10000 s. Two
lines are drawn in each plot: the main diagonal, and the result of least square
fitting for y = a · xb.

The left scatter plot of Figure 6 shows that using auxiliary objectives
provides a rather consistent speed-up. The combined effect of all the new
techniques, including auxiliary objectives, objective tracing, and distillation,

H. Jin, F. Somenzi / Electronic Notes in Theoretical Computer Science 119 (2005) 51–6562

Table 1
Number of reused conflict clauses by various methods

Distillation Lit/Conflict

Design total [20] Tracing non-obj. obj. before after

simple8 19350 76 353 2014 2954 5.7 5.0

cups 38292 720 1891 5663 11222 5.7 5.1

blackjack 43852 335 619 1883 2765 4.5 4.0

gcd 54383 437 1013 4246 4446 5.2 4.8

two 68255 422 979 2890 6340 6.0 5.4

vending 106898 361 1144 5083 7720 5.2 4.6

goodbakery 118323 268 636 4053 9074 5.3 4.6

rcnum16 122263 591 1530 5567 21939 6.5 5.8

spinner32 154788 298 3205 12924 33181 5.5 5.1

all 206398 248 1458 4253 7303 5.9 5.3

is shown in the right plot of Figure 6 by comparison to non-incremental SAT.

To show the impact of distillation, we compare incremental SAT with and
without distillation in the left plot of Figure 7. To justify the claim that UIP-
based conflict analysis enhances the quality of conflict clauses we compare it
to using the clauses as they come out of the trie. As one can see in the right
plot of Figure 7, the use of UIP-based conflict analysis often generates better
results.

The number of conflict clauses forwarded by several methods is shown in
Table 1. The number of forwarded clauses by the method of [20] is shown in the
third column. It is collected from BMC runs for all timeframes. The fourth
column shows the number of forwarded clauses by the proposed objective
tracing method. This method identifies many more clauses than the method
of [20].

The fifth and sixth columns show the number of clauses forwarded by distil-
lation. The objective-independent clauses from distillation are collected from
all timeframes, but the objective-dependent clauses from distillation are gen-
erated from the last timeframe only. Only the objective-independent clauses
are forwarded to the next runs.

To support the claim that the quality of conflict clauses is improved by
distillation, we show the number of literals per conflict. We achieve a reduction
of approximately 10% in the number of literals per conflict.

5 Conclusions

We have presented two techniques for efficient incremental SAT checking in
BMC. One is a syntactic technique that identifies clauses that can be profitably

H. Jin, F. Somenzi / Electronic Notes in Theoretical Computer Science 119 (2005) 51–65 63

forwarded from one SAT instance to the next by tracing their dependence
on the primary objective of the SAT problem. The other technique distills
clauses that fail the tracing criterion into fewer, smaller clauses that can be
forwarded. Experiments indicate that the combination of these two techniques
greatly increases the number of forwarded clauses over previous methods, while
preventing many useless clause from cluttering the solver’s data structures.
This results in a significant improvement in the speed of BMC. Though we
have described our techniques for a hybrid solver used for BMC, they are
applicable in general to solvers based on clause recording, and to problems
that benefit from an incremental approach to satisfiability.

References

[1] M. Awedh and F. Somenzi. Proving more properties with bounded model checking. In
R. Alur and D. Peled, editors, Sixteenth Conference on Computer Aided Verification (CAV’04).
Springer-Verlag, Berlin, July 2004. To appear.

[2] M. Benedetti and S. Bernardini. Incremental compilation-to-SAT procedures. In International
Conference on Theory and Applications of Satisfiability Testing (SAT 2004), Vancouver,
Canada, May 2004.

[3] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs. In Fifth
International Conference on Tools and Algorithms for Construction and Analysis of Systems
(TACAS’99), pages 193–207, Amsterdam, The Netherlands, Mar. 1999. LNCS 1579.

[4] R. K. Brayton et al. VIS: A system for verification and synthesis. In T. Henzinger and
R. Alur, editors, Eighth Conference on Computer Aided Verification (CAV’96), pages 428–432.
Springer-Verlag, Rutgers University, 1996. LNCS 1102.

[5] R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transactions
on Computers, C-35(8):677–691, Aug. 1986.

[6] E. Clarke, D. Kroening, J. Ouaknine, and O. Strichman. Completeness and complexity of
bounded model checking. In Verification, Model Checking, and Abstract Interpretation, pages
85–96, Venice, Italy, Jan. 2004. Springer. LNCS 2937.

[7] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5:394–397, 1962.

[8] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of the
Association for Computing Machinery, 7(3):201–215, July 1960.

[9] N. Eén and N. Sörensson. Temporal induction by incremental SAT solving. Electronic Notes in
Theoretical Computer Science, 89(4), 2003. First International Workshop on Bounded Model
Checking. http://www.elsevier.nl/locate/entcs/.

[10] M. K. Ganai, P. Ashar, A. Gupta, L. Zhang, and S. Malik. Combining strengths of circuit-
based and CNF-based algorithms for a high-performance SAT solver. In Proceedings of the
Design Automation Conference, pages 747–750, New Orleans, LA, June 2002.

[11] E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver. In Proceedings of the
Conference on Design, Automation and Test in Europe, pages 142–149, Paris, France, Mar.
2002.

[12] J. N. Hooker. Solving the incremental satisfiability problem. Journal of Logic Programming,
15(1–2):177–186, Jan. 1993.

H. Jin, F. Somenzi / Electronic Notes in Theoretical Computer Science 119 (2005) 51–6564

[13] H. Jin, M. Awedh, and F. Somenzi. CirCUs: A satisfiability solver geared towards bounded
model checking. In R. Alur and D. Peled, editors, Sixteenth Conference on Computer Aided
Verification (CAV’04). Springer-Verlag, Berlin, July 2004. To appear.

[14] H. Jin and F. Somenzi. CirCUs: A hybrid satisfiability solver. In International Conference on
Theory and Applications of Satisfiability Testing (SAT 2004), Vancouver, Canada, May 2004.

[15] J. Kim, J. Whittemore, J. P. M. Silva, and K. A. Sakallah. On solving stack-based incremental
satisfiability problems. In Proceedings of the International Conference on Computer Design,
pages 379–382, Sept. 2000.

[16] A. Kuehlmann, M. K. Ganai, and V. Paruthi. Circuit-based Boolean reasoning. In Proceedings
of the Design Automation Conference, pages 232–237, Las Vegas, NV, June 2001.

[17] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their
linear specification. In Proceedings of the Twelfth Annual ACM Symposium on Principles of
Programming Languages, pages 97–107, New Orleans, Jan. 1985.

[18] K. L. McMillan. Interpolation and SAT-based model checking. In W. A. Hunt, Jr. and
F. Somenzi, editors, Fifteenth Conference on Computer Aided Verification (CAV’03), pages
1–13. Springer-Verlag, Berlin, July 2003. LNCS 2725.

[19] M. Sheeran, S. Singh, and G. St̊almarck. Checking safety properties using induction and a
SAT-solver. In W. A. Hunt, Jr. and S. D. Johnson, editors, Formal Methods in Computer
Aided Design, pages 108–125. Springer-Verlag, Nov. 2000. LNCS 1954.

[20] O. Shtrichman. Pruning techniques for the SAT-based bounded model checking problem. In
Correct Hardware Design and Verification Methods (CHARME 2001), pages 58–70, Livingston,
Scotland, Sept. 2001. Springer. LNCS 2144.

[21] J. P. M. Silva and K. A. Sakallah. Grasp—a new search algorithm for satisfiability. In
Proceedings of the International Conference on Computer-Aided Design, pages 220–227, San
Jose, CA, Nov. 1996.

[22] URL: http://vlsi.colorado.edu/∼vis.

[23] C. Wang, H. Jin, G. D. Hachtel, and F. Somenzi. Refining the SAT decision ordering for
bounded model checking. In Proceedings of the Design Automation Conference, pages 535–
538, San Diego, CA, June 2004.

[24] J. Whittemore, J. Kim, and K. Sakallah. SATIRE: A new incremental satisfiability engine. In
Proceedings of the Design Automation Conference, pages 542–545, Las Vegas, NV, June 2001.

[25] H. Zhang. SATO: An efficient propositional prover. In Proceedings of the International
Conference on Automated Deduction, pages 272–275, July 1997. LNAI 1249.

[26] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven learning in
Boolean satisfiability solver. In Proceedings of the International Conference on Computer-
Aided Design, pages 279–285, San Jose, CA, Nov. 2001.

H. Jin, F. Somenzi / Electronic Notes in Theoretical Computer Science 119 (2005) 51–65 65

	Introduction
	Preliminaries
	Forwarding Clauses
	Objective Tracing
	Distillation

	Experimental Results
	Conclusions
	References

