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The mechanical response and fracture of metal sandwich panels subjected to multiple impulsive pressure
loads (shocks) were investigated for panels with honeycomb and folded plate core constructions. The
structural performance of panels with specific core configurations under multiple impulsive pressure
loads is quantified by the maximum transverse deflection of the face sheets and the core crushing strain
at mid-span of the panels. A limited set of simulations was carried out to find the optimum core density
of a square honeycomb core sandwich panels under two shocks. The panels with a relative core density of
4%-5% are shown to have minimum face sheet deflection for the loading conditions considered here. This
was consistent with the findings related to the sandwich panel response subjected to a single intense
shock. Comparison of these results showed that optimized sandwich panels outperform solid plates
under shock loading. An empirical method for prediction of the deflection and fracture of sandwich pan-
els under two consecutive shocks - based on finding an effective peak over-pressure — was provided.
Moreover, a limited number of simulations related to response and fracture of sandwich panels under
multiple shocks with different material properties were performed to highlight the role of metal strength
and ductility. In this set of simulations, square honeycomb sandwich panels made of four steels repre-
senting a relatively wide range of strength, strain hardening and ductility values were studied. For panels
clamped at their edge, the observed failure mechanisms are core failure, top face failure and tearing at or
close to the clamped edge. Failure diagrams for sandwich panels were constructed which reveal the frac-
ture and failure mechanisms under various shock intensities for panels subjected to up to three consec-
utive shocks. The results complement previous studies on the behavior and fracture of these panels under
high intensity dynamic loading and further highlights the potential of these panels for development of
threat-resistant structural systems.
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1. Introduction

Threat-resistant structures that can withstand extreme loading
conditions (e.g. impact, blast, thermal shock) and sustain their
functionality are critical in both military and industrial settings.
Development of such systems requires innovative design and man-
ufacturing approaches to create high performance multifunctional
materials and structural systems (Ajdari et al., 2012; Chen and
Pugno, 2012; Fan et al., 2008; Latourte et al., 2012; Xiong et al.,
2012b; Qiao et al., 2008). Examples of such developments are cel-
lular structures with functionally graded and hierarchical struc-
tural organization, which are shown to have superior mechanical
behavior compared to engineered cellular structures at the same
overall mass (Ajdari et al., 2012; Ajdari et al., 2011). Another exam-
ple is the ongoing efforts in development of sandwich panels with
low density core constructions (Evans et al., 2010; Kishimoto and
Shinya, 2001; Wadley et al., 2010, 2003; Xiong et al., 2011a,
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2010). These panels are considered as promising candidates for
development of impact- and explosion resistant structures (Cui
et al., 2012; Dharmasena et al., 2008; Mori et al., 2007; Qin and
Wang, 2009; Qiu et al., 2004; Rathbun et al., 2006; Xue and Hutch-
inson, 2004b). In fact, well-designed sandwich panels generally un-
dergo smaller deflection under shock loading and also sustain
higher intensity of shock prior to failure compared to solid plates
of the same mass (Dharmasena et al., 2011; Hutchinson and Xue,
2005; Rabczuk et al.,, 2004; Vaziri and Hutchinson, 2007). The
desirable mechanical performance of metal sandwich panels, com-
bined with their multifunctional advantages (Evans et al., 2001;
Wadley, 2006), makes them a unique candidate for development
of low weight multifunctional structural systems.

The current studies related to impact mechanics and blast resis-
tant sandwich panels all consider a single impulsive pressure load-
ing (shock) or single projectile loading impinged on the panel.
However, the application of sandwich panels in critical structures
requires consideration of other possible events and loading scenar-
ios. Examples of such scenarios are: (i) impingement of multiple
shocks, (ii) shock loading followed by projectile impact (for
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example due to debris that becomes airborne as the shock wave
travels towards the structure),(iii) multiple impacts by non-explo-
sive projectiles (Gomez and Shukla, 2001; Yang and Bifeng, 2006;
Yang et al., 2009), (iv) shock or projectile loading followed by an
internal fire (e.g. World Trade Center Collapse in 2011 (Bazant
and Zhou, 2002; Eagar and Musso, 2001)) and (v) shock or projec-
tile loading followed by internal explosion (e.g. in pipeline net-
works and fuel tanks). Here we focus on the first scenario
mentioned above which can occur due to multiple explosions in
a combat zone (i.e. improvised explosive devices, bombs), under-
water mine explosions, where one explosion could lead to a conse-
quential explosion of nearby mines, or due to subsequent
explosions resulting from an initial explosion in factories and
industrial settings. One specific example related to this latter sce-
nario is progressive failure and escalation in gas and oil pipelines
or petrochemical facilities, where an initial explosion results in
subsequent explosions, resulting in transmission of a complex
loading scenario to surrounding structures (Makhutov et al.,
1992; Roodselaar and Ward, 2004; Thomas, 2008).

The current work specifically studies the performance and fail-
ure of all metal sandwich panels impinged by multiple shocks and
compares the results with the performance of the counterpart solid
plate of same mass. To model shock loading, two different methods
have been previously explored. The first method is based on apply-
ing uniform pressure history, P(t) = Pye~/% for t > 0, to the surface
of the top face of the panel, where Py and ty denote the peak over-
pressure and decay time associated with shock. The second meth-
od assigns an initial momentum/area, I, to the face of the sandwich
towards the shock. In the first method, the momentum/area trans-
ferred to the panel is approximately equal to the impulse/area
associated with the applied pressure history, I = ;° Pdt = Poto, as
the momentum associated with the reaction forces at the support
are negligible over the period shocks act on the panels (Vaziri and
Hutchinson, 2007). In the present work, shocks are modeled by
applying time-dependent pressure pulses in all the simulations
(first method), which gives more realistic predictions, especially
for core crushing since the crushing occurs early in the deforma-
tion history (Vaziri et al., 2007). to=10"%s=0.1 ms was selected,
which is a typical time duration for shock waves generated due
to blast and is short compared to the overall response time of
the plates (generally 1-10 ms). We have also neglected the fluid-
structure interaction (e.g. air or water medium was not included
in the numerical models) and carried out finite element simula-
tions to predict the structural response and performance of sand-
wich panels after the shock is transferred to the panel face sheet.
The simulations, in effect, model the behavior of panels in stage
II and stage III of the response as defined by Fleck and Deshpande
(2004). It should be noted that the provided results can be linked to
air or water blast scenarios, at least approximately, according to
the approach originally proposed for water blasts by Taylor
(1963) and developed more fully for sandwich plates by Liang
et al. (2007) and as extended by Kambouchev et al. (2006) to air
blasts.

Fig. 1 shows two sandwich panel configurations considered in
the present work, one panel has a square honeycomb core and
the other has a folded plate core running perpendicular to the
edges. Following several earlier studies (Vaziri and Hutchinson,
2007; Vaziri et al., 2006; Xue and Hutchinson, 2004a), panels are
considered that are infinite in one direction and of width 2L in
the other direction with fully clamped conditions along the two
infinite edges. Sandwich panel geometry, material, and the bound-
ary conditions of the panels are discussed in Section 2. In Section 3,
we present detailed numerical simulations to study the response of
square honeycomb and folded sandwich panels subject to multiple
shocks. In Section 4, we present a parametric study on the response
of square honeycomb panels with different core relative densities.
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Fig. 1. Schematic diagrams of metal sandwich panel configurations and the
corresponding computational models of the sandwich panel cells. The width of
the panels is 2L and only half of the panels unit cell were modeled, while symmetry
conditions were applied in both in-plane directions.

In this set of calculations, the total mass of the panel was constant,
so the trade-off of increasing the core relative density was to thin
the face sheets.

In Section 5, we studied the failure of honeycomb sandwich
panels under multiple shock impingements. Finally, in Section 6,
following the work of Vaziri et al. (2007), we performed a limited
number of calculations to study the role of material behavior on
the deformation and fracture response of panels against shock
loading. The behavior of sandwich panels made from four steels
- that represent a relatively wide range of strength, hardening
and ductility values - were simulated and analyzed. The materials
studied in this section are: AH36 with low ductility, HY80 high
strength steel with low strain hardening, AL6XN stainless steel
with intermediate yield strength, high strain hardening and high
ductility, and DH36 intermediate strength steels with high ductil-
ity. The material properties for the four steels considered are
briefly discussed in Section 2. The conclusions are drawn in
Section 7.

2. Plate geometries and material specifications

Both core topologies are of height, H, web thickness, t, and have
top and bottom face sheets of equal thickness, h. The square hon-
eycomb core has web spacing B in both in-plane directions. The
folded plate core has an inclination angle, o, such that the spacing
of the folds in the y-direction is B = t/sin o + H/ tan o.. Core relative
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density is defined as the volume fraction of the core that is occu-
pied by the webs and is denoted by p., where

2
P = Zé - (é) for the square honeycomb core (1)
t
Pe= T Heosw for the folded plate core (2)

The mass/area of the sandwich panel is M = p(2h + p.H). By
specifying L, M and p, the geometry of honeycomb sandwich pan-
els is fully determined by p., H/L, B/H and L and the geometry of the
folded plate core sandwich panels is fully determined by p, H/L, o
and L. In our simulations, all panels have half-width, L =1 m, and
mass/area, M = 156 kg m~2, which is the same mass/area of solid
plate with thickness equal to 20 mm. The core thickness of both
types of sandwich plates is fixed at H/L = 0.1, and the web spacing
of the square honeycomb is fixed at B/H = 1 while the folded plate
cores have o =45° such that B/H =~ 1. Because of symmetry,
numerical simulations of the response are based on models of
one unit cell of the sandwich panel with periodic boundary condi-
tion (as depicted in Fig. 1). Full three-dimensional models were
constructed with detailed meshing of the core as reported in Xue
and Hutchinson (2004a) and Vaziri et al. (2006). At least four 8-
node brick elements were employed through the thickness of each
face sheet, which captures early stages of necking with acceptable
fidelity (Vaziri et al., 2006).

In Section 3, we studied the mechanical response of square hon-
eycomb and folded plate core sandwich panels made of HY80 steel
- which is a high strength steel with low strain hardening with
Young’s modulus, E = 200 GPa, Poisson’s ratio v =0.3 and density
p=7800kg m—> under multiple shocks. The true stress-plastic
strain response displayed in Fig. 2A for HY80 is representative of
the material response at a tensile strain rate of 100/s as adopted
from Meyer et al. (2000). Material strain rate dependence is not in-
cluded for metal sandwich panels made of HY80, since sufficient
data does not exist in the literature. In Section 4, we studied the
role of core density on the response of square honeycomb made
of HY80 steel to obtain the optimized configuration of sandwich
panels. In Section 5, we studied failure mechanisms of sandwich
panels under multiple shocks. Panels with square honeycomb
cores are known to have higher damage tolerance under high
intensity dynamic loading than those with folded plate cores in
that they can withstand loads much larger than those at which
the first signs of fracture appear. Here, we study the failure of
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square honeycomb panels under multiple shock loading made
from four steels (AH36, HY80, AL6XN, DH36) that represent a rel-
atively wide range strength, hardening and ductility behavior.
Young’s modulus, Poisson’s ratio and the density of all the steel
materials are the same and have the value as stated above.
Fig. 2A presents tensile true stress-logarithmic strain curves of
the four materials. Fig. 2B presents the effective plastic strain at
failure, e’e’ﬁ , plotted as a function of the triaxiality ratio, o,n/0e,
where 0, = Gi/3 is the mean stress, ¢, = 3s;s/2 is the effective
stress and s; is the stress deviator for all materials other than
HY80, since to our best knowledge data for HY80's ductility is
not available in the open literature. In Section 5, a parametric study
will be presented for sandwich panels made of HY80 using the
fracture strain as a variable to investigate the role of material duc-
tility on the fracture of sandwich panels made of this material.
For AH36, the true stress-plastic strain response and the frac-
ture locus are taken from Lee and Wierzbicki (2005). The tensile
data for AL6XN is provided by Nahshon et al. (2007) and is similar
to data given by Nemat-Nasser et al. (2001). For DH36, the (John-
son and Cook, 1983) plasticity model is employed for representing
the stress-strain response of the material, as provided by Nemat-
Nasser and Guo (2003). Temperature variations are neglected and
room temperature properties are used yielding the following rela-
tion between the effective stress and effective plastic strain:

0.4
e = 470(1 +15 (s’e’,f) )(1 +0.015In (égﬁ/u-l))(in MPa),  at

the effective strain rate of &J;. The plot shown in Fig. 2A for
DH36 is at the effective strain rate &, = 100 s~'. Material strain
rate dependence is accounted in calculations for DH36, if not men-
tioned otherwise. The failure locus data for both DH36 and AL6XN
are based on fitting experimental data to the Johnson-Cook shear
failure model (Vaziri et al., 2007). As will be discussed in the fol-
lowing sections, no failure was observed in the sandwich panels
made of AL6XN and DH36, for the range of shock intensities con-
sidered in this study.

3. Numerical analysis of sandwich panels subjected to multiple
intense shocks

In this section, detailed results on the deformation of honey-
comb and folded plate core sandwich panels are presented for
plates made of HY80 steel. The panel geometry was constructed di-
rectly in the graphical user interface of the software and the
boundary conditions were applied. To model loading of multiple
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Fig. 2. (A) True stress-plastic strain response of the four steels considered in this study. (B) Failure locus for three of the four steels. The failure data for HY80 is not available in

the literature.
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shocks, we need to also define the separation time between the
loading from different shocks (e.g. time between two peak pres-
sures). Fig. 3A shows the schematic diagram of half of a sandwich
panel subjected to two consecutive shocks with peak over-pres-
sures for the first and second shocks denoted by P; and P,, respec-
tively. The separation time between the two peak over-pressure is
denoted by t;. In the numerical model, the pressure loading for dif-
ferent values of Py, P, and t; was then added manually to the input
file prior to the analysis. The material failure and panel fracture
were not considered here and will be studied in Section 5. All re-
sults have been determined with fully clamped boundary condi-
tions and the panel geometry as discussed in Section 2. The
simulations were carried out using ABAQUS/Explicit 6.10.

3.1. Role of separation time between consecutive shock events

As the first step, we carried out a systematic study on the role of
ts (the separation time between two consecutive shocks) on the re-
sponse and deformation of solid and sandwich panels. In the calcu-
lations presented in this section, P; = 50 MPa, t; = 10~* s, while ¢,
and P, were systematically varied. In each calculation, we mea-
sured the time history of the deflection of the bottom face sheet
of the sandwich panels under two shock impingements. Fig. 3B
shows the maximum normalized deflections of the bottom face
sheet, ;5 /L, of the honeycomb sandwich panel with p.=0.04
made of HY80 versus the normalized time between the two shocks,
t; = t;/(L/\/(0y/p)) (Vaziri and Hutchinson, 2007; Xue and
Hutchinson, 2004a). The results for the maximum deflection of
the counterpart solid panel are also plotted for comparison. In this

A P(t)=p e 0

P Ry I

TI t Ovot )

B 025 P1=50 MPa

Lo o
ts

Fig. 3. (A) Schematic diagram of a square honeycomb sandwich panel subjected to
two shocks with peak over pressures of P; and P,. (B) Normalized maximum
deflection of the bottom face of the square honeycomb sandwich panel with p. =
0.04 made of HY80 (dashed lines) and the counterpart solid plate of same mass/area
(solid lines) versus normalized shock time subjected to two shocks. No failure
criterion is incorporated and the square honeycomb core panel has M = 156 kg/m?,
L=1m and p. =0.04.

relation gy and p are yield strength and density of the panel mate-
rial, respectively. For a panel made from HY80 with
L=1m,L/\/Gy/p = 3.4 ms.

The results show that for loading with t; > 1, the response of
both sandwich and solid panels is approximately independent of
the value of t;. In this case, the response of the panel to two shocks
is effectively uncoupled and the two shocks can be treated as two
isolated loadings or events (i.e. the second shock impinges the pa-
nel after it has come nearly to rest after the first shock impinge-
ment). It should be noted that this finding appears to be
independent of the panel configuration, and only depends on the
material behavior, namely the yield strength and density of the pa-
nel material.

For t; < 1, the maximum deflection of the panel increases as the
duration between two shocks becomes shorter. When t; ap-
proaches zero, the maximum deflection of the panel under two
shocks becomes equal to the maximum deflection of a panel sub-
jected to one shock with over-pressure equal to P; + P,, as ex-
pected. It should be noted that for all loading conditions, the
honeycomb panel undergoes smaller deformation compared to
its solid panel counterpart.

3.2. Time-response of sandwich panels impinged by two shocks

In the calculations presented in this section, we chose t; = 8 ms
which corresponds to t; = 2.3. While t; =8 ms is a short time lag
between the two shocks, based on the results presented in
Fig. 3B and discussed in Section 3.1, this insures that panels are
at rest (except for low amplitude elastic vibrations) before the sec-
ond shock impinges on the structure. It should be noted that hav-
ing very short time difference between two shocks with t; < 1 is
perhaps not a common scenario and thus is not considered further
in this work.

Fig. 4 shows normalized deflection of the bottom face (denoted
by Jpee/L), of both honeycomb and folded sandwich panels with
pc=0.04 and made from HY80 subjected to two shocks as a func-
tion of dimensionless time, t/(L//(ay/p)). Here, t was measured
from the time that the first shock impinges the panel (i.e. t=0 at
the occurrence of the first over-peak pressure, P;). Also shown is
the time history of core crushing strain at the mid-span of the
sandwich panels, defined as the ratio of core height in the de-
formed configuration to the original height, and denoted by e&..
By eliminating the local bending of the top and bottom face sheet,
core crushing strain can be estimated from €. = (Jp — dpor)/H,
where dp is the top face displacement.

For each core type, the figure presents results for three sets of
loadings. For honeycomb panels, P; = 100 MPa and constant in all
calculations, and P, was selected as 80,100, and 130 MPa in the
three simulations. For folded panels, P; = 80 MPa and P, was se-
lected as 60, 80, and 100 MPa. In our simulations, we generally
used lower intensity of loading for folded panels compared to their
honeycomb panel counterpart. The reason is that folded panels in
general sustain lower loading intensity prior to failure compared
to their honeycomb panel counterpart, as discussed in details in
our previous publication (Vaziri et al., 2007). For example, for the
folded panel considered here, the loading of P; =100 MPa and
P, =100 MPa, leads to significant necking at the clamped edges
of the panels, thus, making the simulation results inaccurate.

The deflection induced by the second shock is considerably
smaller than the deflection due to the first shock with the same
over-pressure intensity for both core types. For instance, the nor-
malized maximum deflection of bottom face of honeycomb sand-
w1ch panel in the first shock subjected to load with P; = 100 MPa
is '"” =~ (0.16, whereas the second shock with P, =100 MPa adds
only 0.04 to the maximum deflection value. The folded core
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Fig. 4. Normalized bottom face deflection and core crushing strain at the center of the panel versus normalized time for (A) a square honeycomb sandwich panel and (B) a
folded plate sandwich panel. In each plot, the peak over-pressure of the first shock is the same for all panels, but varies for the second. (C) Deformed configuration of the
sandwich panels after the first and second shock. The deformed configurations are shown for a square honeycomb subjected to P; = 100 and P, = 130 MPa and for a folded
plate sandwich panel subjected to P; = 80 and P, = 100 MPa. The panels made of HY80 and have p, = 0.04, M = 156 kg/m? and L =1 m.
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sandwich panel subjected to P; = P, =80 MPa, has d;, /L of 0.12
and 0.18 after the first and second shock impingement, respec-
tively. One reason is that the maximum deflection plotted here is
larger than the residual displacement of the sandwich panels, as
can be seen in Fig. 4A for a honeycomb sandwich panel and in
Fig. 4B for a folded plate sandwich panel. The deformed configura-
tion of sandwich panels after the first and second shock, as well as
the distribution of the effective plastic strain in face sheets and
cores are shown in Fig. 4C. For both sandwich panels, local necking
of the top face sheet is observed after the second shock - for fur-
ther discussion on dynamic necking, see Xue et al. (2008). Note
that for the folded sandwich panel, the final core crushing strain
for all three sets of loading is close to 1 as the core undergoes
near-total crushing after the impingement of the second shock.

We carried out an additional set of simulations to study the role
of shock impingement order on the sandwich panel response. The
calculations were performed for the same sandwich panel configu-
ration as Fig. 4. For the honeycomb, the calculations were carried
out for the following loading conditions: (i) P;=80MPa and
P, =130 MPa and, (ii) P, =130 MPa and P, =80 MPa. This meant
that shocks with the same peak over-pressures but in different or-
ders were impinged on the structure. Note that the magnitude of
the total momentum imparted to panels in two loading cases is
similar. The first shock applies a momentum normal to the unde-
formed configuration of panel. The second shock is applied normal
to the deformed configuration of the panel and generates momen-
tum in both normal and tangential direction compared to the
original undeformed configuration of the panel. The component
of the momentum in the normal direction results in larger defor-
mations. However, the contribution of the tangential component
of the momentum is not negligible.

The response curves of the sandwich panels, as obtained from
the detailed numerical simulations, are plotted in Fig. 5A. Loading
(i) - where the second shock is more intense compared to the first
shock - induces somewhat larger values of deflection and core
crushing strain compared to loading (ii). Similar results are ob-
tained for the deflection of folded panels, Fig. 5B. In both simula-
tions, the folded plate core crushes almost completely. In the
following section, we define an empirical effective peak pressure, P
for two consecutive shocks, which can be used to interpret the re-
sults presented in this section. As will be discussed later, loading (i)
has a larger Pgy so it undergoes more deflection than loading (ii).
Also the total crushing strain of honeycomb core in loading (i) is
slightly higher than in loading (ii).

3.3. Panel deflection and crushing strain versus peak pressures

We carried out a parametric study on the effect of shock inten-
sities on the maximum deflection and core crushing strain of sand-
wich panels. The simulations were carried out for honeycomb
panels made of HY80 with core density p. = 0.04 impinged by
two consecutive shocks with t;=8 ms (t; = 2.3). The over-peak
pressures of two shocks denoted by P, and P, were varied between
0 and 130 MPa. As discussed by Xue and Hutchinson (2004a), the
normalized maximum deflection of the sandwich panel impinged
by a shock with peak over-pressure P; can be estimated from,

Oy _ 4 Pilo 3)
L " M/aY/p

assuming the material is sufficiently ductile to survive an intense
blast. The dimensionless prefactor of the above equation, A, can be
estimated from the numerical simulations of panel deformation un-
der various shock intensities. For a honeycomb sandwich panel with
core relative density 4%, L=1m, M =156 kg2, oy = 690 MPA,
p = 7800 kgm > and A ~ 0.705. For the counterpart solid plate of
equal mass, A~ 0.895 kg~ m2, which shows that the solid plate

undergoes higher deformation compared to the honeycomb sand-
wich panel. It should be emphasized that the value of P; used in
calculating the above prefactors correspond to the shock intensity
transmitted to the panels. Fluid-structure interaction results in low-
er intensity of imparted shock to sandwich panels compared to its so-
lid plate counterpart for the same far field shock wave, especially
when the shock is transmitted through water, as discussed in details
in the current literature (Espinosa et al., 2006; Fleck and Deshpande,
2004; Jones, 1989; Latourte et al., 2012; Liang et al., 2007).

For panels subjected to two consecutive shocks with t; > 1, our
numerical simulations show that the second shock loading with peak
over-pressure, P, < %1 does not result in considerable elevation of
sandwich panel maximum deflection. Based on our parametric
numerical simulations for P, < %1 only a part of the momentum of
second shock equal to (P, —"7‘)t0 results in significant additional
deformation of the sandwich panels. In this case, the maximum
deflection of the sandwich panel can be estimated by adding the
deflection associated with the first shock, P; and a part of the second
shock momentum (Pz — %1) to. Here, we define an empirical effective
peak pressure denoted by Py = P1+ {Pz — "7‘} so that

P] 0 if Pz <P71
{mff}: P, < if P
h <5 if P <3
Thus,
Pl} Py if P2<P71
Per=P1 + P, — =7 = 4
repi e {5+@ it Pyt @

By this definition, deflection of the honeycomb sandwich panel
or solid plate under two consecutive shock loading can be esti-
mated from,

5max

%o _ 4 Perto (5)

L M,\/cY/p

Fig. 6A and B shows the maximum deflection of bottom face of
solid and honeycomb panels made of HY80 versus effective peak
pressure, respectively. In each plot, the numerical results are pre-
sented for fifteen loading conditions with P, < % and for over forty
loading conditions with P, < ”71 The numerical results for loading
conditions with P, < %1 are shown by red markers. Each red marker
corresponds to the results from several simulations, since in this
case the intensity of second shock has no significant effect on the
final deformation of the panels, as predicted by Eq. (5) above. In
each plot, the empirical predictions from Eq. (5) is also plotted as
a solid line. Overall, the results show acceptable agreement for
both panels, while the difference between the numerical results
and empirical predictions is more pronounced in the case of solid
panels. This empirical relationship can be used to predict the
behavior of sandwich panels subjected to two shocks, if the results
for the response under single shock loading are available.

A limited set of numerical simulations were performed to explore
whether the above approach could be extended to estimate the re-
sponse of panels subjected to three and four consecutive shocks. We
could not determine a simple empirical relationship that could pres-
ent the response of panels under such loading conditions.

We carried out an additional set of simulations to decipher the
role of material hardening on the behavior of sandwich panels un-
der shock loading. In this set of calculations, we assumed the mate-
rial to be elastic perfectly plastic with the same elastic properties
and yield strength as HY80. This set of calculations eliminates
the role of material hardening on the response of the panels. The
results show that the material hardening has negligible effect on
the response of the panels prior to any significant fracture. How-
ever, the maximum shock intensity that the panel can withstand
noticeably depends on the hardening behavior of the metal. For
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panels with no hardening, necking of the face sheets at low shock
intensities was observed, which results in premature failure of the
panels.

4. Optimized sandwich configuration

In this section, we carried out a parametric study of the effect of
panel geometrical configuration on its response under two consec-
utive shocks. More specifically, we systematically varied the rela-
tive distribution of the face sheet’s mass and core relative
density and explored the role of core relative density on the overall
response of the sandwich panels. The total mass of the panels was
kept constant. This means that, for example, the trade-off in
increasing the thickness of the face sheets is thinning of the core
webs and thus, lowering the core relative density. The response
of the panels under one high intensity shock and two consecutive
shocks was obtained using detailed numerical simulations and
compared to the response of the counterpart solid plate of equal
mass. Previous optimization studies on the performance of metal
sandwich panels with a similar configuration as the current study
showed that honeycomb and folded plate sandwich panels with a
core relative density of 4%-5% generally undergo minimum face
sheet deflections under high intensity dynamic loading (Hutchin-
son and Xue, 2005; Xue and Hutchinson, 2004a). In this case,
20%-25% of the overall mass of the panel is distributed in the core.
Core crushing, face sheet stretching and deformation, and local
bending of the face sheets are the main deformation mechanisms
of the sandwich panels which contribute to their overall deforma-
tion and response. For sandwich panels with very low core relative
density (1%-2%), core crushing is significant. For sandwich panels
with high core relative density (>6%), the face sheets undergo
significant bending and stretching, while the core crushing is min-
imal. For panels with core relative density of 4%-5%, the contribu-
tion of all the mechanisms is relatively moderate, resulting in
lower overall deformation of the panels (Vaziri et al., 2006). This
panels are also shown to have maximum failure tolerance under
high intensity dynamic loading (Vaziri et al., 2007).

In this section, we extend these investigations to sandwich pan-
els subjected to two consecutive intense shocks. In our simulations,
we consider square honeycomb sandwich panels with relative core
density of 1%-8% made from HY80 steel. Similar to the previous
section, material failure and fluid-structure interaction were not
considered in the simulations and the calculations were carried
out by keeping the total mass/area of the panels constant,
M =156 kg m~2. Fig. 7A displays the normalized maximum deflec-
tion of the top face of the square honeycomb sandwich panels as a
function of core relative density, p.. The first shock over-pressure
was set at P; =100 MPa, and the simulations were carried out for
P, =0,80,100 and 130 MPa. The set denoted by P, =0 refers to
sandwich panels subjected to a single shock with P; = 100 MPa.
The maximum deflections of counterpart solid panels are also
shown by a straight solid lines under each loading other than the
highest shock intensity, P, = 130 MPa. A solid plate subjected to
P, = 130 MPa undergoes significant necking close to their bound-
ary, which makes the numerical results inaccurate.

Honeycomb sandwich panels with core relative density of 4%-
5% have the minimum top face deflection under all loading condi-
tions. When the panels are subjected to two shocks, the influence
of core relative density becomes somewhat more significant. For
instance, the maximum top face deflection of a panel with core
relative density 4% is approximately 15% less than the maximum
deflection of a panel with core relative density 1%, under single
shock with P; = 100 MPa. This difference is 25%, when the panels
are subjected to two consecutive shocks, P;=100MPa and
P, =130 MPa. It is noteworthy that the panels with moderate core
relative density of 4%-5% noticeably outperform their counterpart

solid panels. However, sandwich panels with very low or very high
core relative densities undergo slightly larger deformations com-
pared to their solid panel counterpart. Fig. 7B shows the core
crushing strain at the mid span of the honeycomb sandwich panels
as a function of core relative density for the same loading condition
discussed above. As expected, for panels with a low core relative
density, the core crushes significantly. Panels with core relative
density above 4% have almost identical core crushing strain for
all loadings.

Final deformed configurations of the square honeycomb sand-
wich panels with three core relative densities under two consecu-
tive shocks, P; = 100 and P, = 80 MPa, are shown in Fig. 7C. For the
panel with core relative density 1%, the core webs undergo signif-
icant crushing. For panels with the thinnest face sheets (p. = 8%),
top face undergoes extensive plastic bending into the core while
the core webs undergo very little deformation. For the optimized
configuration with p. = 4% the panel undergoes modest amount
of face sheet bending and core crushing, leading to superior perfor-
mance of the panels under shock loading. This is discussed in more
detail in Vaziri et al. (2006).

5. Fracture and overall failure of honeycomb sandwich panels
under multiple shocks

Vaziri et al. (2007) studied the failure mechanisms of all-metal
folded and honeycomb sandwich panels subjected to an intense
shock and provided fracture-shock intensity maps for clamped
sandwich panels. The analogous study for composite sandwich
panels was presented by Andrews and Moussa (2009), Latourte
et al. (2011). Here, we expand these results to the case of all-metal
honeycomb sandwich panels subjected to multiple consecutive
shocks. As the first step, we studied the fracture behavior of honey-
combs panels with p. = 0.04 made of HY80 subjected to up to
three intense shocks. As discussed before the failure criterion for
this steel alloy is not available and was modeled in this study by
assuming that the local failure occurs if the effective plastic strain
reaches a critical value, (&f;),. This is the simplest form of fracture
criterion for the purpose of numerical analysis. In the calculations,
failed elements were removed using the approach available in
ABAQUS/Explicit 6.10 (SIMULIA, Providence, RI). Additional sets
of simulations were carried out for sandwich panels made of
AH36, AI6XN and DH36, which represent a range of ductility and
material properties, as described in Section 2. The failure criteria
as presented in Section 2 for these steel alloys was used in these
set of calculations.

It should be emphasized that as HY80 is a high-strength steel,
its fracture strain is likely to be dependent on stress triaxiality
(as for AH36, where fracture strain and mode strongly depends
on the triaxiality - see Fig. 2), which is not considered here. An-
other limitation of this study is ignoring the failure of joints and
connections (e.g. welding for metal panels), which was not mod-
eled in the simulations. Joint strength is known to be a limiting fac-
tor for performance and strength of sandwich panels (Wadley
et al,, in press; Mori et al., 2009; Xiong et al., 2012a; Xiong et al.,
2011b) and thus, further studies are required to address the role
of connection and joint failure on the overall performance of panels
under shock loading.

Fig. 8A shows the deformed configuration of the sandwich panel
impinged by three consecutive shocks of equal peak over-pressure,
80 MPa, after it comes to rest following each shock event. In this
set of simulations, (sg’ff)c= 0.4, representing relatively moderate
ductility. The contour map displays the effective plastic strain dis-
tribution in the panel. After the first shock, the panel undergoes
relatively little core crushing and no apparent failure and cracking.
The second shock results in cracking of the core webs close to the
clamped boundary condition. Impingement of the third shock



1172
0.35 4
A N P+=100MPa
\\
03 B \x\ ’/J
\\‘ ”x’
Y. __P=130MPa s -~
AN "X-.____h = e
o2 | i
g a [ ] N ‘) T
£ 8 . . - _ ok
- £ 5y e P:=100MPa .
~ [ -
02 Pu_ ‘w---m>P=80MPa _ .-~
. e
b -
-~ «=>P=0MPa )
e -+~
0‘15 L L L 1 1 1
001 002 003 004 005 006 007 008
Pe
B g T P:1=100MPa
07 |\
- \
06 [
®'. P:=130MPa
« 05 fN N
gu \‘\\ x\
04 \“\ Y P2=100MPa
\ L
\ \/
03 f \¢7N
\ = \
02 F N vy
A X P=80MPa
0.1 . ‘..\‘\‘ i
o [P=0Mpa B bt LLLL LLLL LELE
0.01 0.02 003 0.04 0.05 0.06 0.07 0.08

Pe

H. Ebrahimi, A. Vaziri/ International Journal of Solids and Structures 50 (2013) 1164-1176

Cc

Fig. 7. (A) Normalized maximum deflection of the top face of the square honeycomb sandwich panel (dashed lines) and counterpart solid plate (solid lines) made of HY80
subjected to two shocks versus core relative density. (B) Maximum core crushing strain at the center of the square honeycomb sandwich plate versus the relative density of
the core. (C) Deformed configuration of square honeycomb sandwich panels with three different core densities subjected to two consecutive shocks loading with peak over-
pressures 100 and 80 MPA, respectively. In all diagrams, no failure criterion is incorporated for HY80, and sandwich panel has M = 156 kg/m? and L =1 m.

causes excessive core failure close to the clamped boundary condi-
tion, as well as necking failure of top and bottom face fracture. The
panel fully detaches from its support and becomes airborne (total
failure).

To understand the role of material ductility and failure on the
performance and fracture of sandwich panels, we studied the re-
sponse and failure mechanisms of honeycomb sandwich panels
made of HY80 with different hypothetical values of (). Fig. 8B
shows the normalized maximum deflection of the bottom face of
the sandwich panel versus effective peak pressure of shocks for
(sgﬁ)c =0.2, 04 and 0.6, representing a relatively large range of
ductility. The results are presented for panels subjected to a single
shock with peak over-pressure, P and panels subjected to two con-
secutive shocks with equal over-pressures, P. Considering many
different possible loading conditions and shock intensities, we lim-
ited our study to panels subjected to two equi-peak shocks. Based
on the empirical effective peak pressure defined in Section 3.2, for
the first case Pyy= P and for the second case P,y =3 P. As predicted
by Eq. (5), the panel deformation increases approximately linearly
by increasing the effective peak pressure prior to fracture. In

Fig. 8B, for Py < 90 MPa the final deformation of the sandwich pa-
nel for all three sandwich panels are equal (i.e. for different values
of (&), considered here). In this range, no significant failure occurs
in any of the panels. For more intense shocks, the core webs of the
panel with (gf;). = 0.2 start to crack, leading to an increase in the
overall deformation of the panel. This sandwich panel fails under a
single shock with Pey=110 MPa or as it gets impinged with two
shocks of P.;=95 MPa. Overall, the panel shows minimal ductility
and tolerance to fracture, especially when it is subjected to two
consecutive shocks. For a higher value of critical effective plastic
strain, the sandwich panel fails at higher values of peak pressure
and can sustain larger deflections prior total failure for both single
shock and two shocks, as quantified in Fig. 8B.

In Fig. 9, we constructed a failure diagram for honeycomb sand-
wich panels with relative density p. = 0.04 subjected to one shock
or two or three equi-peak shocks. Again for the case of multiple
shocks, we limited our study to the shocks with the same value
of peak pressure. Sandwich panels made of AH36 and HY80 with
three critical effective plastic strains, s’gff =0.2, 04, and 0.6
were modeled. The diagram shows the ovérall mechanisms of
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fracture of the panel following each shock loading condition. The
mechanisms identified are core failure and top face failure. Here,
onset of core failure is identified when the total length of one
continuous crack in the core becomes equal to the core height.
The top face failure is defined as complete separation from the sup-
port. The bottom face failure results in detachment of the panel
and its overall failure and is not considered as a separate failure
mechanism in constructing this diagram. In all simulations, core
failure precedes top face failure or occurs concurrently. For panels

with low ductility (e.g. made of HY80 with (sgﬁ) =0.2), core fail-

ure is observed at much lower shock intensities compared to the
top face failure. For panels with high ductility (e.g. made of HY80

with (s’;jf> = 0.6), the core and top face failure are concurrent.
c

Moreover, for panels made of low ductility materials, the overall
failure occurs at shock intensities that are slightly higher than

the shock associated with the onset of top face failure. As the mate-
rial becomes more ductile, the panel can tolerate a larger range of
shock intensities in the presence of top face failure.

As an example, the first column of Fig. 9 presents the results for

honeycomb sandwich panels made of HY80 with (sgﬁ) =0.2 and
C

subjected to one shock loading. For shock with peak pressure,
P, <75 MPa, no apparent failure occurs in the sandwich panel (blue
part of the bar, denoted by ‘no failure’). For P; >75 MPa, core
failure was observed in the sandwich panels, denoted by the or-
ange color in the column bar. For P; > 110 MPa, top face failure
was observed (in addition to the core failure), shown by the red
color in the column bar. Increasing P; to ~120 MPa, results in total
failure of the panel, as the bottom face fails and the panel com-
pletely detaches from the supports. For sandwich panels with

(sgﬁ) = 0.4 and 0.6 subjected to one shock (i.e. the second and
c
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third columns), the onset of failure occurs at P; =105 MPa and
135 MPa, respectively. For the sandwich panel with (sgﬁ) =04,
c

the top face fails at P; = 115 MPa, which is slightly higher than
the peak over-pressure corresponding to the onset of core failure.
However, the bottom face fails at a considerably higher peak
over-pressure that is out of the range of pressure shown in this dia-

gram. For the sandwich panel with (ngf) = 0.6, core failure and
c
top face failure occur almost simultaneously at P; = 135 MPa. Sim-
ilar to sandwich panel with (s’e’ff) = 0.4, the total failure occurs at
C

peak pressure out of the range shown here. We have also presented
the results for the counterpart sandwich panel made of AH36. As
discussed in Section 2, AH36 has smaller yield strength and lower
ductility compared to HY80 and approximately similar hardening
behavior. In the simulations, AH36 fracture strain was dependent
on the stress triaxility following the curve shown in Fig. 2. For
the sandwich panel made of AH36, onset of core failure occurs at
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P; =90 MPa, and total failure occurs at P; = 130 MPa. In general,
panels made of AH36 can withstand more intensive shock loading

than those made of HY80 with (8%) = 0.2 before the first sign of

failure. The calculations were repeated for sandwich panels sub-
jected to two or three equi-peak shocks and the results are summa-
rized in Fig. 9.

In Fig. 10, we have re-plotted the failure diagram for honey-
comb panels made of HY80 subjected to one or two shocks in
terms of effective peak pressure. When presented in terms of
effective peak pressure, the results for panels subjected to one or
two shocks are approximately identical. The results show that
the effective peak pressure defined in Section 3.3 can be used to
predict not only the deflection of square honeycomb sandwich pa-
nel subjected to two shocks but also its failure with reasonable
accuracy.

6. Comparative performance of sandwich panels made from
four different steels

In this section, the role of material properties on the overall re-
sponse and failure of metal sandwich panels subjected to two
shocks is investigated. Sandwich panels made from four steels
characterized in Section 2: AH36, DH36, AL6XN and HY80 are con-
sidered. Of the four steels, DH36 is characterized most completely,
and this is the only steel for which strain rate dependence data was
available. To elucidate the role of DH36 strain rate dependence on
the overall response of sandwich panels, we carried out two sets of
simulations for sandwich panels made of DH36. In the first set, the
DH36 behavior follows the relationship presented in Section 2 and
is strain rate dependant. In the second set, DH36 behavior was
assumed to be strain rate independent and presented by substitut-
ing (éﬁff)c =100s71, as a constant in the same relationship. The

= 0.4. Concerns
c

about the accuracy of the fracture criteria used for the individual
steels have also been noted in Section 2. With these caveats in
mind, the comparative study highlights important connections be-
tween material properties and panel performance under intense
multi blast loading, as also discussed in depth in Vaziri and Xue
(2007). Calculations were carried out for both square honeycomb
and the folded plate sandwich panels, with relative core density,
pc=0.04. The panel dimensions and loading conditions are
precisely as specified in Section 2.
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Fig. 11. Normalized maximum deflection of top face of the (A) square honeycomb and (B) folded plate core sandwich panels with p. = 0.04 made of four steels subjected to
two shocks versus peak over-pressure of the second shock. Two sets of results are presented for DH 36: with material strain rate dependence (green solid triangles) and with
material strain rate independence (orange hollow triangles). For honeycomb sandwich panels, P, = 100 MPa and for folded plate panels, P; = 80 MPa. Critical effective plastic
strain considered for failure of HY80 is equal to 0.4, and sandwich panels have M = 156 kg/m?, L =1 and p. = 0.04.
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Fig. 11 displays the dependence of the maximum bottom face
deflection of the panels on the peak pressure of second shock for
panels subjected to two shocks. The peak over pressure of the first
shock impinged to the honeycomb and folded panels was
P; =100 MPa and 80 MPa, respectively. The curves were termi-
nated at the peak pressure associated with total failure of the
panel, as described earlier. The ductility of DH36 and AL6XN (see
Fig. 2B) is sufficiently large that no failure occurs in either of the
two types of panels over the range of shock peak pressure consid-
ered. By contrast, the limited ductility of AH36 and HY80 lead to
panel failures at relatively low values of second shock peak
pressure.

In general, panels made of higher strength steels, HY80 and
DH36, undergo smaller deflections than the two lower strength
steels. The first shock with peak pressure P; = 100 MPa results in
appearance of core cracking and failure in the honeycomb panel
made of AH36, but not in other panels. The honeycomb panels
made of AH36 and AL6XN have similar deflection for
P, < 30 MPa, where significant failure and cracking in AH36 panels
occur, leading to an elevation in its overall deflection. For the
folded plate panel, the top face almost fails after the impingement
of the first shock with peak pressure P; = 80 MPa, resulting in min-
imum residual structural capacity of the panel. The deflection of
the panel made of AH36 after the second shock impingement is
significantly larger than the deflection of its counterpart panels
made of AL6XN and its total failure occurs at P, = 18 MPa. It should
be noted that AL6XN has strong strain hardening and its strength
exceeds even that of HY80 at strains above 20% (Fig. 2B). However,
in the simulations, the strains in the panels are generally limited to
few percent and thus, the strain hardening of AL6XN has little
influence in reducing the overall deflection. Considering the two
sets of results presented for DH36, the strain rate dependence
has minimal effect on the overall deflection of sandwich panels.
This is conceivable, since the strain rate term in the relationship
used to present DH36 material behavior is insignificant compared
to other terms except under very large values of strain rate, which
are not experienced by the sandwich panel material in the range of
shock intensities considered in this study.

7. Conclusions

A limited set of calculations were carried out to study the re-
sponse of sandwich panels with square honeycomb and folded
plate core constructions made of four steels under multiple intense
shocks (impulsive pressure loading). The dependence of panel
deflection and failure modes on shock intensities were studied
using detailed numerical simulations of the panel response. Com-
parisons with the counterpart solid panels were made to highlight
the potential of sandwich panels as threat-resistant structural sys-
tems. An optimization study was conducted for square honeycomb
core sandwich panels with different core relative densities but con-
stant mass/area. In optimizing the structural designs against shock
loading, it is generally desirable to achieve minimum deflection
and fracture. The results indicate that a core relative density of
4%-5%, correspond to minimum deflection when panels are sub-
jected to two shocks. This is in agreement with the results pre-
sented by Xue and Hutchinson (2004a) to minimize deflection of
panels subjected to single shock loading.

An empirical relationship for estimating the response of panels
under two consecutive, but isolated shocks were presented that al-
lows predicting deformation and fracture of solid plates and square
honeycomb panels with acceptable fidelity. However, additional
studies are required to extend the applicability of such empirical
relationship to panels made of different metallic alloys, as well as
for loading cases comprised of more than two consecutive shocks.
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