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ABSTRACT 

This note shows how a standard result about linear inequality systems can be used 
to give a simple proof of the fact that the range of a nonatomic vector measure is 
convex, a result that is due to Liapounoff. 

W e  denote  the  set of  reals by R and the set of  rationals by Q. Also, we let 
[I [IJ be the l I norm on R k, i e.., for everv~ a ~ R k, Ilalll = Ekj=laj .  A 
measurable space is a pair  (X,  E)  where  E is a subset  of  the power  set P(X) 
of  X which contains the  empty  set and is closed under  countable  unions and 
under  complements  with respect  to X. In particular,  in this case the  sets in 
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will be  called measurable. A parametr ic  family of  measurable sets whose 
index set I is a subset of  the reals, say {S t : t ~ I}, is called increasing if 
S~, D_ S t for every t, t '  ~ I with t '  >1 t. 

Throughout  the remainder  of  this note let (X,  E)  be a given measurable 
space. A fimction IX: ~ - -*  R k is called a k-vector measure on (X,  ~ )  if 
Ix(O) = 0 and for every countable eolleetion of pairwise disjoint sets 
$1, S, 2 . . . .  in £ one has IX(UT=, S~) = ET=, IX(S), where  the series con- 
verges absolutely; in particular, in this case we call the integer k the 
di~uension of the vector  measure  Ix. A scalar measure is a vector measure  
with dimension 1. For  a k-vector measure  IX and j ~ {1 . . . . .  k}, we denote 
by IXj the scalar measure  defined for S ~ ~ by IXj(S) = [ IX(S)]j. A vector  
measure  IX is called nonnegative if IX(S) >~ 0 for all measurable sets S, and 
nonatomic if every measurable set S with IX(S) # 0 has a measurable subset 
T with Ix(T) ~: 0 and Ix(T) ¢ IX(S). 

The  purpose of this note is to use a standard result about linear inequality 
systems to give a simple proof  of  the following theorem due to Liapounoff; 
see Liapounoff  (1940), Hahnos (1948) and Lindenstrauss (1966), for example. 

THEOREM 1. Let IX be a nonnegative, nonatomic vector measure. Then 
the .set { Ix(S): S ~ ~} is convex. 

The following fact will be  used in our proof. It can be established by a 
simple argument  using Zorn's  lemma.  A more  e lementary  proof  that relies 
only on countable induction is given in the Appendix for the sake of 
completeness.  

PROPOSITION 1. Let Ix be a nonnegative, nonatomic, scalar measure, 
and let S be a measurable set. Then there exists' an increasing parametric 
family  o f  measurable subsets' o f  S, {S, : t ~ ([0,/x(S)) f3 Q) u { Ix(s)}}, such 
that Ix(S t) = t f o r  every t ~ ([0, IX(S)) N Q) u {ix(s)}. 

Proof o f  Theorem 1. Suppose that S 0 and S~ are measurable  sets and 
0 < / 3  < 1. We will show that for some measurable set T, IX(T) = (1 - 
/3)IX(S 0) + /3IX(Si). We first note that it suffices to consider the case where  
S o and S, are disjoint, for otherwise let S~ - S o \ (S 0 c~ S 1) and S' 1 ~ S 1 \ 
(S 0 ~ S~), and construct a set T '  with IX(T') = (1 - /3)IX(S;) + ]3IX(S',). 
Then r = T '  U (S O A S 1) will satisfy IX(T) = (1 - /3)IX(S 0) + /3IX(S,). 

Let  k be  the dimension of Ix, and let l[ Ix[[1 be  the scalar measure  defined 
by Ilixlh - E)=, Ixj, i.e., for every measurable  set U, Ilixll,(g) = E~ . / =  1 

Ixj(u) = II Ix(g)ll,. Now, fix i ~ {0, 1} and let I~ = ([0, II Ixll~(s,)] c~ Q) u 
{llixll,(s)}. By applying Proposition 1 to IIIXlI~ and the set S i we can 
construct an increasing parametr ic  family of  measurable  subsets of  Si, say 
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{Sit: t ~ I~}, such that [I ~[ l l (S, )  = t for every t ~ I~. By taking set differ- 
ences corresponding Sit's we can define for each p = 1, 2 . . . .  f i n i t e  parti- 
tions II~ p) of  S i into measurable sets such that II~lh < 2-P for every 
U ~ l]~p); further, if p '  > p then II~ p') is a refinement of  11~P), i.e., all sets 
in I-I (p') are subsets of  sets in 11(1,). Let H (p) = I-l(01') (9 I-I~P). In particular, 
11(P) is a partition of  S 0 U S 1. 

Consider linear inequality systems with variables {x U : U ~ 11o)} given by 

Y'~ I ~ ( U ) x  U = (1 - / 3 ) t t ( S o )  + /3/z($l) ,  (1) 
U ~ H ( ' )  

0~<x  U ~< 1 for all U ~  H 0) (2) 

Let a '0) be the vector in R n(') defined by setting a~ 1) = 1 - fl for the sets 

U ~ II  (1) that are included in So, and a~ ~) = / 3  for (the distinct class of) 
sets U ~ I /0)  that are included in S 1. Evidently, the vector a '0) satisfies 
(1)-(2); hence, this system is feasible. It now follows from a standard result 
about linear inequalities (see Chavatal, 1983, Theorem 3.4, p. 42) that there 
exists a solution a (1) of  (1)-(2)  such that at most k of  the a~l,)'s are neither 0 
nor 1. 

For  p = 1, 2 . . . . .  we inductively consider linear inequality systems with 
variables {xu : U ~ H (~')} and construct special solutions a (T') ~ R n(~') of  
these systems having the property that at most k of  the a(J')'s are neither 0 
nor 1. The first system is given by (1)-(2), and its special solution a O) was 
constructed in the above paragraph. Next assume that for some p ~ {2, 3 . . . .  }, 
a ( e -  J) ~ R n ( ' -~  was constructed, and consider the p th  system consisting of  

E = (1 - + / 3 " ( s , ) ,  (3) 
U~ [I (p) 

0 <~ x U ~< 1 for all U ~ H (1'), 

x v = 0 for U ~ [I  (p) for which 

(4) 

X U 

the unique set V ~ II  (p-  l) containing U 

has aV o, (5) 

= 1 for U ~ H (p) forwhich  

the unique set V E IJ tp-  1) containing U 

has ' - ' )  = 1. (6) 
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Consider  the vector  a '(p) ~ R n~'~ where  for each set U ~ 11 (p) we let 
a~ p) = a (J ' - l ) v  for the unique set V ~ R lI~''--'~ which contains U. Evidently, 
a '(p) satisfies (3)-(6),  and therefore  this system is feasible. Another  applica- 
tion of the standard result about linear inequalities shows that there exists a 
solution a (p) of (3)-(6)  such that at most k of  the a(c~)'s are nei ther  0 nor 1, 
complet ing our inductive construction. 

For  p = 1,2 . . . .  let T (p) - -  U{U: U E II  (t') and a}, p} = 1}. Then (6) 
assures that T (]~, T (2~ . . . . .  is an increasing sequence of sets. Further ,  for 
p = 1, 2 . . . . .  from Equations (3)-(6),  the fact that at most k of  the a(tJ')'s are 
nei ther  0 nor 1, and the fact that II Ixlh(u) ~ 2-*' for every U ~ 11 (t') we see 
that 

k 2 , '  > /  - , 

= I1(1 - ~ ) ~ ( s o )  ~- ~ ( s , )  - ~ ( Z < , ' ~ ) l l , .  (7) 

Let T - Up=~ 1 T(P). Then  T is a measurable set, and (7) shows that 
(1 - /3)IX(S 0) + /3 /x(S  l) = l i m p _ , ~ / , ( r  (p~) = IX(T), complet ing the proof. 

Our  construction has some resemblance to the approach of Arstein 
(1980). But we obtain underlying extreme points from elementary  arguments  
about linear inequalities over  finite dimensional spaces, whereas he uses 
analytical arguments  over finite dimensional spaces. 

A P P E N D I X  

The purpose of this appendix is to provide a proof  of  Proposition 1 that 
relies only on countable induction. We note that a simpler proof  is available, 
establishing a stronger variant of  the asserted result, by using Zorn's lemma. 

We first establish two e lementary  lemmas.  

LEMMA 1. Let Ix be a nonnegative, nonatomic, scalar measure, and let 
S be a measurable set wi th  Ix(S) > O. Then f o r  eve~j c > 0 there exists' a 

measurable subset T o f  S wi th  0 < IX(T) < 6. 

Proof. The nonatomicity of  /z implies that S has a measurable subset 
T '  with 0 #= IX(T) and /x(T')  va /x(S). Let T~ be the set with smaller Ix mea- 
sure among T '  and S \ T ' .  Then  T 1 is a measurable subset of S with 0 < 
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IX(T 1) ~< 2-IIX(S). By recursively iterating this procedure  we can construct  a 
sequence T 1,T2, . . .  of  measurable  subsets of  S such that for each k = 
1,2 . . . .  we have 0 < IX(T k) ~< 2-1IX(Tk_ ~) ~< 2-kix(S). The  conclusion of  the 
l emma now follows by selecting T = T k for any positive integer k with 
2-kix(S) ~< ~. • 

LEMMA 2. Let tx be a nonnegative, nonatomic, scalar measure, and let 
S be a measurable set with IX(S) >1 0. Then for  each 0 ~ ~ <~ IX(S) 
there exists a measurable subset T of  S with Ix(T) = ~. 

Proof. The  conclusion of  our l emma is trivial if  a = 0 or if a = IX(S), 
by selecting T = O or T = S, respectively. Next assume that 0 < o~ < 
IX(S). Let  

a 1 -= sup( IX(U) :  U is a measurable  subset of  S a n d / x ( U )  ~< or}; (8)  

in particular, L e m m a  1 shows that ol I > 0. The  definition of  a 1 assures that 
one can select a measurable  subset U 1 of S satisfying 

2-~al ~ IX(U,) <~ a.  (9) 

We continue by inductively selecting scalars oL 2, aa . . . .  and measurable 
subsets U 2, U a . . . .  of  S such that 

and 

a k - sup ( IX(U) : U is a measurable  subset of  S, 

U n  = Q  , a n d i x ( U )  + E IX(~) ~ a  
j j= l  

ukn =0 ,  
\ j = l  

k - 1  

Ix(vk) + I2 Ix(b) " ,  
j = l  

and 

(10) 

~(uk) I> 2-~ak. (l i)  
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We note that this inductive construction is possible because the selection of 
U~ in the k th  step assures that E~=I tt(Uj) ~< ~; hence, /x(Q) = 0 is in the 
set over which the supremum in (10) in the (k + 1)st step is taken. Let  
T ~  U~=~ U 2. Then  T is a measurable subset of S and, as the Uk's are 
pairwise disjoint, i t (T)  = ~2~= 1 tt(Uj) ~ ~. 

We will next show that t t (T)  = a .  Suppose that i t (T)  g= a ,  i.e., s = a - 
i t ( T ) >  0. Then tt(S \ r ) = / x ( S ) - t t ( r ) > 1  ~ -  i t ( T ) > 0 ;  hence, by 
Lemma 1, there is a measurable subset U of S \ T with 0 < t t (U)  < v. 
Now, for each k = 1,2 . . . . .  

O = U A T D D _ U C ~  ~ and 
j =  1 

k - 1  

/x(U)  + E / x ( ~ )  ~</x(U) + tx (T)  < e +  /x (T)  = a ;  
.j = 1 

(12) 

hence, t t (U) is an element  in the set over which the supremum in (10) is 
taken, implying that a k >~ i t (U) and therefore tt(U k) > 2-1ak >~ 2-~/x(U) > 
0. Thus, we get a contradiction to the absolute convergence of F,y_ 1 tt(Uj) 
which proves that, indeed, /x(T) = ~. • 

Proof o f  Proposition 1 

We start by arbitrarily ordering the rationals in the interval [0, i t(S)),  say 
q(0), q(1) . . . . .  where q(0) = 0. Also, let S O ~ Q and S,(s) ~- S. We will use 
an inductive argument for our construction. Suppose that Sq(o), S,t(1 ), . . . ,  Sq(k) 
have been selected such that {Squ): i ~ {0, 1 . . . . .  k}} u {S~(s)} is an increas- 
ing family of measurable subsets of S and Ix(Sqo )) = q(i)  for i ~ {0, 1 . . . . .  k}. 
Let  q .  =- max{q( i ) : i  = O, 1 . . . . .  k, q(i)  < q(k  + 1)} [the set over which 
this max is taken is nonempty because it contains q(0) = 0], and let q* - 
min{{q( i ) : i  = 0,1 . . . . .  k and q(i)  > q(k + 1)} g {it(S)}}. Then  q .  < q 
(k + 1 ) < q *  and tt(Sq. \ S q . ) = q *  - q . .  Thus, 0 < q ( k  + 1 ) - q .  < 
q* - q . ,  and Lemma 2 can be applied to select a measurable subset U of 
Sq. \ Sq. such that / x ( U ) = q ( k  + 1 ) - q . .  Letting S(k + 1 ) -  S ( q . ) U  
U, we have that it(S,,, U U) = / x ( S q . )  + i t (U) = q .  + / x ( U )  = q(k + 1). 
Further,  we have that' {sq{i}: i = {0, 1 . . . . .  k + 1}} O {S,(s}} is an increasing 
family of measurable sets. The  above inductive construction establishes the 
conclusion of Proposition 1. • 
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