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Abstract In Mv1Lu cells, insulin partially reverses transform-
ing growth factor-b1 (TGF-b1) growth inhibition in the presence
of a5b1 integrin antagonists. TGF-b1 appears to induce phos-
phorylation of IRS-2 in these cells; this is inhibited by a TGF-b
antagonist known to reverse TGF-b growth inhibition. Stable
transfection of 32D myeloid cells (which lack endogenous IRS
proteins and are insensitive to growth inhibition by TGF-b1) with
IRS-1 or IRS-2 cDNA confers sensitivity to growth inhibition by
TGF-b1; this IRS-mediated growth inhibition can be partially
reversed by insulin in 32D cells stably expressing IRS-2 and the
insulin receptor (IR). These results suggest that growth inhibition
by TGF-b1 involves IRS proteins.
� 2004 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Transforming growth factor-b (TGF-b) is a family of

structurally homologous dimeric proteins (three mammalian

isoforms: TGF-b1, TGF-b2 and TGF-b3) [1,2]. TGF-b is a

bifunctional growth regulator; it inhibits growth of most cell

types, including epithelial, endothelial and hematopoietic cells,

but stimulates growth of mesenchymal cells such as fibroblasts

and osteoblasts [3]. In addition to its growth regulatory ac-

tivities, TGF-b exhibits other biological activities, including

regulation of extracellular matrix synthesis, chemotaxis, angi-

ogenesis and differentiation of several cell lineages. It has

been implicated in many pathophysiological processes in-

cluding wound repair, tissue fibrosis, immunosuppression and

morphogenesis [4].

Two of its prominent biological activities are cell growth

inhibition and transcriptional activation of extracellular matrix

synthesis-related genes. Accumulating evidence indicates that

these two activities are uncoupled in many human carcinoma

cells [5–10]. Such cells fail to respond to growth inhibition by

TGF-b but exhibit TGF-b-mediated transcriptional activation

of extracellular matrix synthesis-related genes; this is known to
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be primarily mediated by the type I/type II TGF-b receptor

(TbR-I/TbR-II) heterocomplex in the cell systems studied so

far [11,12]. The separation of these activities implies that sig-

naling pathways other than the TbR-I/TbR-II signaling cas-

cade are involved [10,13–16]. Several signaling cascades, which

are different from the TbR-I/TbR-II heterocomplex/Smad2/3/4

signaling cascade, have been shown to be involved in the

growth inhibitory response to TGF-b [10,13–16]. However, it is

not known which TGF-b receptor types mediate the activation

of these signaling cascades because most of the cell systems used

for the investigations express other TGF-b receptor types in

addition to TbR-I and TbR-II.

The type V TGF-b-receptor (TbR-V) is a high molecular

weight non-proteoglycan membrane protein and co-expresses

with TbR-I, TbR-II and TbR-III in most cell types [17–21].

Many human carcinoma cells express little or noTbR-V [19–22],

and their growth is not inhibited by TGF-b. This suggests that
TbR-V may be involved in the growth inhibitory response to

TGF-b and that its loss may contribute to the malignant phe-

notype of these human carcinoma cells. The identification of

TbR-V as the IGFBP-3 receptor, which mediates the IGF-

independent (TGF-b peptide antagonist sensitive) growth

inhibitory response to IGFBP-3, has highlighted the likely im-

portance of TbR-V in mediating the growth inhibitory response

[6,21,22]. TbR-V was also recently found to be identical to low

density lipoprotein receptor-related protein-1 (LRP-1) [23].

Several lines of evidence have revealed that TbR-V/LRP-1 is

required for growth inhibition by IGFBP-3 andTGF-b [23]. The
finding that TbR-V is identical to LRP-1 has disclosed previ-

ously unreported growth regulatory function of LRP-1. LRP-1

is best known as an endoctyic receptor [24,25]. Increasing evi-

dence indicates thatLRP-1 is also capable ofmediating signaling

[24,25]. However, the molecular mechanisms by which LRP-1

mediates signaling are not understood [24,25]. Recently, we

found that TbR-V/LRP-1-mediated growth inhibition by IG-

FBP-3 requires insulin receptor substrate proteins (IRSs) [26].

SinceTbR-V/LRP-1 alsomediates growth inhibitionbyTGF-b1
[23], we investigated the function of IRSs in TGF-b1-induced
growth inhibition. In this communication, we demonstrate that

IRSs are involved in growth inhibition by TGF-b1.
2. Materials and methods

2.1. Materials
[32P] Orthophosphate (500 mCi/ml) and [methyl-3H] thymidine (67

Ci/mmol) were purchased from ICN Biochemicals (Irvine, CA). Anti-
IRS-2 IgG was obtained from Santa Cruz Biotech (Santa Cruz, CA).
Anti-a5b1 integrin serum (rabbit) was obtained from Chemicon
blished by Elsevier B.V. All rights reserved.
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International, Inc. (Temecula, CA). Protein molecular mass standards
(250, 148, 98, 64, 50, and 36 kDa) were obtained from Invitrogen
(Carlsbad, CA). Protein A–Sepharose was obtained from Pharmacia
LKB Biotech (Piscataway, NJ). b125(41–65), a TGF-b peptide antag-
onist, was prepared as described previously [27]. Human TGF-b1 was
purchased from Austral Biologicals (Santa Clara, CA) and R&D
Systems (Minneapolis, MN). Cyclo (GRGDSPA) was obtained from
Bachem Bioscience (King of Prussia, PA). Human IGFBP-3 (expressed
in E. coli, M.W. �35 000) and anti-IRS-2 IgG were obtained from
Upstate (Charlottesville, VA). Murine 32D myeloid cells expressing
vector only and 32D/IRS-1 and 32D/IR/IRS-2 cells, which were stably
transfected with human IRS-1 cDNA and the insulin receptor (IR)/
IRS-2 cDNAs, respectively, were provided by Dr. Martin G. Myers,
Jr., Joslin Diabetes Center, Harvard University, Boston, MA. Wild-
type 32D cells did not express IRS-1 and IRS-2 as demonstrated by
RT-PCR and immunoblot analyses [28]. 32D/IRS-1 and 32D/IR/IRS-2
cells expressed comparable levels of IRS-1 and IRS-2, respectively, as
demonstrated by immunoblot analysis [29].

2.2. 32P-metabolic labeling and immunoprecipitation
32P-metabolic labeling and immunoprecipitation of IRS-2 was per-

formed as described previously [26]. Mv1Lu cells were grown in Dul-
becco’s modified Eagle’s medium (DMEM), changed to
phosphophate-free DMEM containing 0.2% of dialyzed fetal calf se-
rum for 1 h and labeled with 32P-orthophosphate (200 lC/ml) for 2 h.
They were then treated with increasing concentrations of TGF-b1 in
the presence and absence of IGFBP-3 (1 lg/ml) for 2.5 h. The cells
were lysed in RIPA buffer (1% sodium deoxycholate, 1% Nonidet P-40,
0.1% SDS, 25 mM Tris–HCl, pH 7.4, and 0.15 M NaCl). Equal
amounts of protein (200 lg) from the cell lysates of 32P-labeled cells
were immunoprecipitated with anti-IRS-2 IgG. The immunoprecipi-
tates were analyzed by 7.5% SDS–polyacrylamide gel electrophoresis
(SDS–PAGE) under reducing conditions and autoradiography
(quantitated with a PhosphoImager). The 32P-labeled IRS-2 was ex-
cised from the dried gel and subjected to phosphoamino acid analysis
as described previously [20].

2.3. [Methyl-3H] thymidine incorporation assay
[Methyl-3H] thymidine incorporation assay was performed accord-

ing to our published procedures [18–21]. Mv1Lu cells were plated on
Fig. 1. Effects of insulin on DNA synthesis in Mv1Lu cells treated with TGF-
were treated with 0.25 pM TGF-b1 in the presence of increasing concentrat
determined by measuring [methyl-3H] thymidine incorporation into cellular
nations in four independent experiments. As a positive control, Mv1Lu cells
insulin (7 nM). IGFBP-3 (0.2 lg/ml) inhibited DNA synthesis by 36% in the
treated with and without TGF-b1 (0.5 pM)� insulin (10 nM)� a cyclic RGD
3H] thymidine incorporation into cellular DNA was determined. The bars re
experiments. The DNA synthesis inhibition (�39%) in cells treated with TG
(�75%) in cells treated with TGF-b1 alone or TGF-b1 + insulin or Cyclo GR
48-well clustered dishes (cell density: 1–2� 105/well) and incubated
with TGF-b1 (0.25 pM) in the presence of increasing concentrations of
insulin in DMEM containing 0.2% fetal calf serum. After incubation at
37 �C for 18 h, [methyl-3H] thymidine incorporation into cellular DNA
was determined as described previously [6]. 32D cells were grown in
RPMI 1640 medium containing 10% fetal calf serum and 5% WEHI
conditioned medium (which contained IL-3) [26]. These cells were
treated with increasing concentrations of TGF-b1 with or without in-
sulin (10 nM) in RPMI 1640 medium containing 0.2% fetal calf serum
and 0.05% WEHI conditioned media. After incubation at 37 �C for 8
h, [methyl-3H] thymidine incorporation into cellular DNA was deter-
mined [26]. The assays were performed in quadruplicate.
3. Results

3.1. Insulin partially reverses growth inhibition by TGF-b1 in

the presence of a5b1 integrin antagonists

Since insulin had been shown to reverse TbR-V/LRP-1-

mediated growth inhibition by IGFBP-3 [26], we examined

the effect of insulin on TGF-b1-induced growth inhibition in

Mv1Lu cells. These cells were treated with 0.25 pM TGF-b1
in the presence of increasing concentrations of insulin. After

18 h at 37 �C, DNA synthesis was determined by measuring

[methyl-3H] thymidine incorporation into cellular DNA. As

shown in Fig. 1A, insulin up to 70 nM did not significantly

affect DNA synthesis inhibition induced by 0.25 pM TGF-b1.
As a positive control, Mv1Lu cells were treated with 0.2 lg/
ml of IGFBP-3 in the presence and absence of insulin (7 nM).

IGFBP-3 (0.2 lg/ml) inhibited DNA synthesis by 36% in

these cells. This IGFBP-3-induced DNA synthesis inhibition

was completely reversed in Mv1Lu cells co-treated with in-

sulin (7 nM). These results suggest that, although TbR-V

mediates growth inhibition by both IGFBP-3 and TGF-b1,
the mechanism by which TGF-b1 induces growth inhibition is

more complex than that for IGFBP-3-induced growth inhi-
b1 in the absence (A) or presence (B) of a cyclic RGD peptide. (A) Cells
ions (as indicated) of insulin. After 18 h at 37 �C, DNA synthesis was
DNA. Each data point is the mean� S.D. of quadruplicate determi-
were treated with 0.2 lg/ml of IGFBP-3 in the presence and absence of
se cells, which was completely reversed by 7 nM insulin. (B) Cells were
peptide (Cyclo GRGDSPA, 0.01 lg/ml) for 18 h at 37 �C. The [methyl-
present means� S.D. of triplicate determinations in four independent
F-b1, Cyclo GRGDSPA and insulin was significantly less than that
GDSPA (Student’s t test, P < 0:001).
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bition. The IGFBP-3-induced growth inhibition is mainly

mediated by TbR-V/LRP-1, whereas TbR-V/LRP-1 mediates

TGF-b growth inhibition in concert with TbR-I and TbR-II

[7,23,26].

Gagnon et al. [30] reported that both extracellular matrix

expression induced by TGF-b1 and fibronectin impair insu-

lin-induced signal transduction by inhibiting insulin-depen-

dent IRS tyrosine phosphorylation. Thus, the ability of

insulin to block the TbR-V-mediated growth inhibitory re-

sponse to TGF-b1 may be impaired by the extracellular

matrix induced by TGF-b1 (which is mediated by the TbR-I/

TbR-II heterocomplex). To test this possibility, we examined

the effect of insulin on growth inhibition by TGF-b1 (as

determined by measurement of DNA synthesis) in the

presence and absence of a cyclic RGD peptide (cyclo

GRGDSPA) [29] which blocks the binding of extracellular

matrix proteins (e.g., fibronectin) to their receptors, (e.g.,

a5b1 integrin) [31]. As shown in Fig. 1B, TGF-b1 (0.5 pM)

inhibited �75% of DNA synthesis in Mv1Lu cells. Neither

insulin (10 nM) alone nor the cyclic RGD peptide (0.01 lg/
ml) alone affected TGF-b1 inhibition of DNA synthesis.

However, insulin was able to partially reverse the TGF-b1
inhibition in the presence of the cyclic RGD peptide. The

combination of insulin and the cyclic RGD peptide de-

creased the TGF-b1-induced DNA synthesis inhibition from

�75% to �39%. This suggests that insulin not only is ca-

pable of blocking IGFBP-3 growth inhibition [26], but also

can block growth inhibition by TGF-b1 under certain con-

ditions, such as when a cyclic RGD peptide blocks binding

of fibronectin to a5b1 integrin. This suggestion is further

supported by the observation that insulin also partially re-

verses growth inhibition caused by TGF-b1 in the presence

of anti-a5b1 integrin serum. As shown in Table 1, the

combination of insulin plus anti-a5b1 integrin serum de-

creased the DNA synthesis inhibition induced by TGF-b1
from �40% to �15% in Mv1Lu cells. Neither insulin alone,

anti-a5b1 integrin serum alone nor non-immune serum alone
Table 1
Effect of insulin on DNA synthesis in Mv1Lu cells treated with TGF-
b1 in the presence of anti-a5b1 integrin serum

[Methyl-3H] thymidine incorporation�

cpm/well %

Control 153 811� 4415 100
+TGF-b1 89 367� 7307 58
+TGF-b1 + insulin 94 535� 3426 61
+TGF-b1 + anti-a5b1 integrin 92 454� 3943 60
+TGF-b1 + insulin+ anti-a5b1
integrin

130 493� 3616 85��

+insulin 154 844� 2436 100
+anti-a5b1 integrin 157 983� 4439 100
*Cells (�5� 104 cells/well) were treated with or without TGF-b1
(1 pM)� insulin (10 nM)� anti-a5b1 integrin serum or control non-
immune serum (400� dilution) for 18 h. DNA synthesis was deter-
mined by measuring [methyl-3H] thymidine incorporation into cellular
DNA. The [methyl-3H] thymidine incorporation in cells treated with
TGF-b1 + insulin+ non-immune serum and non-immune serum alone
were 94 483� 2398 and 156 841� 2349 cpm/well, respectively. The
assay was performed in quadruplicate.
** The DNA synthesis inhibition (15%) was significantly less when
compared with that (�40%) in cells treated with TGF-b1 alone or
TGF-b1 + insulin or anti-a5b1 integrin serum (Student’s t test,
P < 0:001).
had any significant effect on DNA synthesis in cells treated

with or without TGF-b1.

3.2. TGF-b1 induces serine-specific phosphorylation of IRS-2 in

Mv1Lu cell

Mv1Lu cells are a standard model cell system for investi-

gating growth inhibition by TGF-b and IGFBP-3 [6,21–23,32].

Since IRS proteins are required for growth inhibition by IG-

FBP-3 and since IGFBP-3 induces serine-specific dephospho-

rylation of IRS-2 [26], it would be important to observe the

effect of TGF-b1 on the phosphorylation status of IRS-2 in

these cells. As shown in Fig. 2A, TGF-b1 at 100 pM induced

phosphorylation of IRS-2 by �2-fold (lane 3 versus lane 1).

This TGF-b1-stimulated phosphorylation was inhibited by

b125(41–65), a TGF-b peptide antagonist (Fig. 2A, lane 2

versus lane 3). b125(41–65) is known to reverse TGF-b growth

inhibition by blocking TGF-b binding to TGF-b receptors

[23,26,27]. b125(41–65) alone did not influence phosphorylation

of IRS-2 (data not shown, [26]). Phosphoamino acid analysis

revealed that both TGF-b-unstimulated and -stimulated

phosphorylation occurred at serine residues as previously re-

ported [26]. Since Mv1Lu cells expressed TbR-I and TbR-II,

both of which are Ser/Thr-specific protein kinases, the TGF-

b1-induced phosphorylation may be mediated by TbR-II or

TbR-II/TbR-I complexes. To test this possibility, we examined

the effect of increasing concentrations of TGF-b1 on IRS-2

phosphorylation in DR26 cells, which are Mv1Lu mutant cells

lacking functional TbR-II. As shown in Fig. 2B, increasing

concentrations of TGF-b1 correspondingly stimulated phos-

phorylation (32P-labeling) of IRS-2 in these cells (DR26 cells)

(Fig. 2B, lanes 3, 5, 8, 10 versus lane 1). Interestingly, the

TGF-b1-induced phosphorylation of IRS-2 was overridden by

IGFBP-3-induced dephosphorylation in these cells (Fig. 2B,

lanes 4, 6, 7, 9 versus lanes 3, 5, 10, 8, respectively). These
Fig. 2. TGF-b1-induced phosphorylation of IRS-2 in Mv1Lu cells (A)
and DR26 cells (B). Mv1Lu cells (A) metabolically labeled with 32P-
orthophosphate for 2 h were treated with TGF-b1 (100 pM) in the
presence or absence of b125(41–65), a TGF-b peptide antagonist (20
lM). DR26 cells (B) metabolically labeled with 32P-orthophosphate
for 2 h were treated with or without IGFBP-3 (1 lg/ml) in the presence
of increasing concentrations (0, 10, 40, 100 and 400 pM) of TGF-b1 as
indicated. After 2 h at 37 �C, equal amounts of protein from the cell
lysates of 32P-labeled cells were immunoprecipitated with anti-LRP-1
serum. The immunoprecipitates were then analyzed by 7.5% SDS–
PAGE and autoradiography (quantitated with a PhosphoImager). The
arrow indicates the location of 32P-labeled IRS-2 (A). The brace in-
dicates the location of 32P-labeled IRS-2 (B). The closed and open
arrows indicate the locations of the slow or faster migrating forms of
32P-labeled IRS-2 (B).
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results suggest that the TGF-b1-stimulated phosphorylation of

IRS-2 may be involved in TGF-b1-induced growth inhibition

because the TGF-b1-stimulated phosphorylation of IRS-2 is

also blocked by b125(41–65), a TGF-b peptide antagonist

which is known to reverse TGF-b growth inhibition by

blocking TGF-b binding to TGF-b receptors [7,23,26,27].

3.3. IRS proteins are involved in growth inhibition by TGF-b1

Since insulin is capable of partially reversing growth inhi-

bition by TGF-b1 in the presence of a cyclic RGD peptide or

anti-a5b1 integrin serum and since IRS proteins are required

for TbR-V-mediated growth inhibition by IGFBP-3 [26], we

hypothesized that IRS proteins are also involved in TGF-b1-
induced growth inhibition. To test this hypothesis, we ex-

amined the effect of TGF-b1 on cell growth (as determined by

measurement of DNA synthesis) of 32D cells stably trans-

fected with IRS cDNAs, IR cDNA, or vector only. 32D cells

are murine myeloid cells which do not express IRS proteins

[28,33]. They express very low levels of the IR and high levels

of TbR-V ([33], unpublished results). They also respond

weakly to growth inhibition by TGF-b1 but have a functional

TbR-I/TbR-II heterocomplex-mediated signaling cascade as

determined by measurement of TGF-b1-induced transcrip-

tional activation of plasminogen activator inhibitor-1 ([26],

data not shown). For these reasons, the 32D cell system

should be appropriate for defining the roles of IRS proteins in

TGF-b1 growth inhibition. As shown in Fig. 3, TGF-b1 in-

hibited DNA synthesis of 32D cells transfected with vector

only minimally (Fig. 3A). However, 32D cells expressing ei-
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Fig. 3. Growth inhibition induced by TGF-b1 in 32D/IRS-1 and 32D/
IR/IRS-2 cells but not in 32D cells (A) and insulin reversal of growth
inhibition by TGF-b1 in 32D/IR/IRS-2 cells (B). Cells as indicated
were treated with increasing concentrations of TGF-b1 in the absence
(A) or presence (B) of insulin (10 nM). After 18 h at 37 �C, DNA
synthesis was determined by measuring [methyl-3H] thymidine incor-
poration into cellular DNA. The [methyl-3H] thymidine incorporation
in cells treated without TGF-b1 (824 100� 18 400, 384 910� 10 290
and 58 051� 3598 cpm/well for 32D, 32D/IRS-1 and 32D/IR/IRS-2
cells, respectively) was taken as 100% of DNA synthesis. Each data
point is the mean�S.D. of quadruplicate determinations.
ther IRS-1 or IRS-2 (32D/IRS-1 or 32D/IR/IRS-2 cells) ex-

hibited a robust growth inhibitory response to TGF-b1
(Fig. 3A and B). Insulin was capable of partially reversing

growth inhibition by TGF-b1 in 32D cells stably expressing

the IR and IRS-2 (32D/IR/IRS-2 cells) (Fig. 3B). These re-

sults suggest that IRS proteins are involved in growth inhi-

bition by TGF-b1.
4. Discussion

TGF-b is the most potent known growth inhibitor for epi-

thelial cells [34]. Very few growth factors antagonize the

growth inhibition activity of TGF-b [1–5]. Here, we demon-

strate that insulin partially reverses growth inhibition by TGF-

b1 in the presence of a5b1 integrin antagonists in Mv1Lu cells.

Since fibronectin, a prominent ligand of a5b1 integrin, has

been shown to attenuate tyrosine phosphorylation of IRS

proteins stimulated by insulin and since TGF-b stimulates the

expression of fibronectin in the same cells [30], this result

suggests that: (1) the TGF-b1-stimulated expression of fibro-

nectin (which is mainly mediated by the TbR-I/TbR-II/Smad2/

3/4 signaling cascade) renders Mv1Lu cells insensitive to in-

sulin-mediated reversal of TGF-b1 growth inhibition, and (2)

the TbR-I/TbR-II/Smad2/3/4 signaling cascade is capable of

regulating TbR-V-mediated signaling (which is required for

growth inhibition by TGF-b1) by positive feedback (via in-

duction of fibronectin expression). This suggestion is sup-

ported by the observation that insulin partially reverses growth

inhibition by TGF-b1 in 32D/IR/IRS-2 cells. These 32D cells

do not express detectable a5b1 integrin and do not respond to

fibronectin attenuation of insulin-stimulated tyrosine phos-

phorylation of IRS-2 as other cell types do ([30], data not

shown).

Two major signaling pathways are involved in the events

which follow insulin activation of the IR and the subsequent

activated IR-mediated tyrosine phosphorylation of IRS pro-

teins. These are the PI 3-kinase and MAP kinase pathways

[35,36]. These pathways do not appear to be involved in insulin-

mediated reversal of growth inhibition by either IGFBP-3 [26]

or TGF-b1 as evidenced by: (1) Insulin is capable of reversing

growth inhibition by IGFBP-3 in Mv1Lu cells treated with PI

3-kinase inhibitors (Wortmannin and LY-294002) [26,32]. (2)

Growth factors such as EGF and FGF do not reverse growth

inhibition by either IGFBP-3 or TGF-b1 [26,32]. These growth
factors are potent stimulators of the MAP kinase pathway in

Mv1Lu cells. IRS proteins are likely to be involved in growth

inhibition by IGFBP-3 and TGF-b1. We previously showed

that IRS proteins are required for growth inhibition by IGFBP-

3 [26]. Here, we demonstrate that IRS proteins are also required

for growth inhibition by TGF-b1. This is evidenced by: (1)

Insulin partially reverses growth inhibition by TGF-b1 in the

presence of a5b1 integrin antagonists (Cyclo GRGDPSA and

anti-a5b1 integrin serum), (2) stable transfection of 32Dmurine

myeloid cells (which lack expression of IRSs) with IRS-1 or

IRS-2 cDNA confers sensitivity to TGF-b growth inhibition,

and (3) insulin partially reverses TGF-b-induced growth inhi-

bition in 32D cells stably expressing IRS-2 and IR.

We recently found that insulin reverses IGFBP-3 growth

inhibition by inducing serine-specific dephosphorylation of

IRS proteins in Mv1Lu cells and mutant cells derived from
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Mv1Lu cells (DR26 cells) [26]. Here, we demonstrate that

TGF-b1 induces serine-specific phosphorylation of IRS-2 and

that this is not mediated by TbR-II because TGF-b1 is capable
of inducing such phosphorylation in DR26 cells which do not

express functional TbR-II but do express TbR-V and TbR-I.

TbR-I has been shown to be incapable of binding ligands in

the absence of TbR-II [11,12]. The ability of TbR-V to mediate

such distinct activities (dephosphorylation and phosphoryla-

tion) upon IGFBP-3 and TGF-b1 binding (in Mv1Lu and

DR26 cells) is intriguing. TbR-V may form different complexes

with plasma membrane proteins (e.g., co-receptors) and cyto-

plasmic proteins (e.g., protein kinases and phosphatases),

which respond differently to IGFBP-3 or TGF-b1 binding as

measured by the downstream effects on the phosphorylation

status of IRS proteins. There are three lines of evidence to

support this possibility: (1) IGFBP-3 and TGF-b1 bind to

distinct sites in the TbR-V molecules (unpublished results). (2)

LRP-1, which is identical to TbR-V, has been shown to be a

component of signaling complexes containing protein phos-

phatases or kinases [37–42]. (3) Most of the TbR-V in Mv1Lu

cells is not required for the growth inhibitory response to

IGFBP-3 and TGF-b1 [23]. Mutagenized Mv1Lu cells selected

for reduced expression (6 5%) of the TbR-V still respond to

growth inhibition by IGFBP-3 and TGF-b1 although the

growth inhibitory response in these Mv1Lu mutant cells is

attenuated [23]. This evidence supports the view that TbR-V

exists in heterogeneous populations and that only a small

fraction of cell-surface TbR-V is required to mediate the

growth inhibitory response.

The finding of cross talk (via IRS proteins) between the in-

sulin-induced signaling and TGF-b-induced (TbR-V/LRP-1-

mediated) growth inhibitory signaling cascades has potential

clinical implications. Insulin or insulin signaling defects may

up-regulate the TGF-b activity generated in wounds, resulting

in the attenuation of wound re-epithelialization and healing

[43], which is a common clinical problem observed particularly

often in diabetic patients.
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