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KEY POINTS

� Nuclear receptors (NRs) regulate ligand-activated transcription factor networks of genes
for the elimination and detoxification of potentially toxic biliary constituents accumulating
in cholestasis.

� Activation of several NRs also modulates fibrogenesis, inflammation, and carcinogenesis
as sequels of cholestasis.

� Impaired NR signaling may be involved in the pathogenesis of cholestasis and genetic
variants of NR-encoding genes are associated with susceptibility and progression of
cholestatic disorders.

� NRs represent attractive targets for pharmacotherapy of cholestatic disorders, because
their activation may orchestrate several key processes involved in the pathogenesis of
cholestatic liver diseases.

� Several already available drugs may exert their beneficial effects in cholestasis via NR
activation (eg, ursodeoxycholic acid via glucocorticoid receptor and pregnane X receptor;
rifampicin via pregnane X receptor; fibrates via PPARa; budesonide via glucocorticoid
receptor) and novel therapeutic developments target NRs (obeticholic acid - farnesoid
X receptor).
INTRODUCTION

Cholestasis may be best defined as an impairment of bile flow whereby bile reaches
the duodenum in insufficient amounts.1 The cause of different cholestatic diseases
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is quite diverse, comprising hereditary and acquired diseases caused by genetic
and environmental factors (discussed in previous articles in this volume). Indepen-
dent of their cause, the main features of cholestatic liver disorders include an accu-
mulation of cholephils such as bile acids (BAs) in the liver and systemic circulation.2

The accumulation of potentially toxic BAs leads to hepatocellular damage followed
by inflammation and fibrosis, and, finally, depending on the disease severity and
duration, may culminate in liver cirrhosis and hepatocellular or cholangiocellular
cancer. To handle potentially toxic cholephils under physiologic and pathologic
conditions, the liver possesses a complex network of nuclear receptor (NR)-
regulated pathways that coordinate BA homeostasis and bile secretion to limit their
concentrations and prevent hepatic as well as systemic accumulation. NRs are
ligand-activated transcription factors that regulate a broad range of key hepatic
processes3 in addition to hepatobiliary excretory function, such as hepatic glucose
and lipid metabolism, inflammation, regeneration, fibrosis, and tumorigenesis.4 On
activation by ligands, NRs change their conformation, which in turn facilitates the
recruitment of coactivators and dissociation of corepressors and enables DNA
binding and stimulation of gene transcription.5 The recruitment of cofactors fine
tunes the regulation of transcription by NRs.6 The most relevant BA-activated
NRs for regulation of hepatobiliary homeostasis, bile secretion, and, thereby under-
standing and treating cholestasis, include the farnesoid X receptor (FXR, NR1H4),7

pregnane X receptor (PXR, NR1I2),8,9 and vitamin D receptor (VDR, NR1I1).10 Apart
from BAs, other biliary constituents such as bilirubin can also activate NRs, such as
the constitutive androstane receptor (CAR, NR1I3). Furthermore, other nuclear
receptors such as glucocorticoid receptor (GR, NR3C1) and fatty acid-activated
peroxisome proliferator-activated receptors (PPARs), in particular PPARa (NR1C1)
and PPARg (NR1C3) as regulators of inflammation, fibrosis, and energy homeo-
stasis, may also impact on biliary homeostasis and cholestatic liver injury. Because
of their capability to control hepatic metabolism, NRs have emerged as promising
therapeutic targets in many liver diseases, including cholestatic disorders. In this
article, the principal role of NRs in the pathogenesis of various cholestatic disorders
and how they may serve as drug targets in the management of cholestatic patients
are discusssed.
NUCLEAR BA RECEPTOR FXR AND ITS BIOLOGY

FXR has been identified as a main nuclear BA receptor,7,11,12 controlling synthesis and
uptake of BAs as well as stimulating their elimination from liver. FXR is predominantly
expressed in organs involved in BA transport and/or metabolism, such as liver, ileum,
kidney, and adrenal glands.13–15 Asmany other NRs, it exerts its transcriptional activity
by heterodimer formation with another NR retinoid X receptor (RXR, NR2B1).13,16 To
initiate gene transcription, the FXR-RXR heterodimer binds to so-called inverted repeat
1 (IR-1) within the promoter sequence of target genes.17 Four FXRa isoforms coded
as FXRa1-4 have been described,18 which have identical DNA-binding domain but
may differ in gene regulation because of differences in ligand-dependent recruitment
of coactivator/corepressor proteins, heterodimer formation with RXR, or DNA
binding.15,19,20

The central role of FXR encompasses the regulation of the enterohepatic circula-
tion and intracellular load of BAs (Fig. 1). By inhibition of the basolateral uptake
transporter sodium/taurocholate cotransporting polypeptide, solute carrier family
10, member 1 (NTCP; SLC10A1) and upregulation of the canalicular export trans-
porter bile salt export pump (BSEP; ABCB11) in hepatocytes, FXR reduces
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hepatocellular BA levels by limiting their uptake from the sinusoidal blood and
promoting their biliary excretion (see Fig. 1).21–24 In addition, FXR reduces endoge-
nous BA synthesis via classical and alternative pathways through the inhibition
of rate-limiting enzymes CYP7A1, CYP8B1, and CYP27A1 (reviewed in25) (see
Fig. 1). The molecular mechanism underlying the inhibitory effects of FXR are linked
to FXR-mediated induction of an atypical NR short heterodimer partner (SHP;
NR0B2) and which acts as transcriptional repressor because of interference
with other NRs such as liver X receptor (LXR, NR1H3), liver receptor homolog
1 (LRH-1, NR5A2), and hepatocyte nuclear factor 4a (HNF4a, NR2A1).26–29 Addi-
tional important regulatory mechanisms for inhibition of BA synthesis include FXR-
mediated induction of the intestinal hormonelike peptide fibroblast growth factor
(FGF19; in rodents Fgf15), which reaches the liver via portal blood and binds to its
specific receptor fibroblast growth factor receptor 4, resulting in activation of intra-
cellular JNK pathway to inhibit CYP7A1 gene expression.30–32 As a target of FXR,
FGF19 (Fgf15) represents a hormone that signals after food intake via the gut liver
axis, suppressing the BA synthesis, inducing gallbladder relaxation and refilling,33

mediating (insulin-independent) insulin-mimetic effects such as stimulation of gly-
cogen and protein synthesis and inhibition of gluconeogenesis,34 while unlike insulin,
suppressing the lipogenesis.35 As such, FGF19 as an FXR target gene also repre-
sents an interesting target of anti-diabetic therapy.36

The role of FGF19 in cholestasis is yet to be elucidated. Although FGF19 is not
expressed in hepatocytes and systemic FGF19 under physiologic conditions originate
from the intestine, its hepatocellular expression is highly induced in cholestasis.37

Furthermore, FGF19 is highly expressed by human gallbladder epithelium and is
secreted to the bile especially after treatment with FXR ligands.38 Because BAs may
induce mucin production via FXR in gastric epithelial cells,39 it is attractive to specu-
late that BA-FXR-FGF19 signaling cascade may protect biliary epithelia against deter-
gent BAs via mucin secretion.
Apart from repression of BA synthesis, FXR is able to induce alternative basolateral

BA transport through organic solute transporter a/b (OSTa/b)40,41 and detoxification
through transcriptional induction of hydroxylation enzyme CYP3A1, sulfo-
conjugation by sulfatation enzymes 2A1 (SULT2A1), and glucuronidation by glucuro-
nidation enzyme (UGT2B4) as additional potent mechanisms protecting hepatocytes
from BA toxicity (reviewed in3,42) (see Fig. 1).
Biliary BAs are normally present in the form of mixed micelles together with phos-

pholipids and cholesterol. Importantly, hepatic FXR promotes bile secretion not only
through regulation of BA export but also via induction of canalicular phopholipid flop-
pase MDR3 (Mdr2 in rodents)43 and human canalicular bilirubin conjugate export
pump multidrug resistance protein 2 (MRP2; via a hormone response element ER-8)
(see Fig. 1).44 The regulatory role of FXR in secretion of biliary phospholipids (and
perhaps even glutathione) may be critical for the protection of hepatocytes’ canalicular
membrane as well as the apical membrane of bile duct lining cells against the deter-
gent properties of secreted BAs.
In addition to BAs as principal endogenous FXR ligands, an intermediate product of

BA synthesis oxysterol 22(R)-hydroxycholesterol and androsterone has been identified
as endogenous FXR activators.45,46 Furthermore, several other natural substances
have been recognized to exert agonistic or antagonistic effects on FXR. For example,
stigmasterol, a compound present in soy-derived lipid emulsions used for total paren-
teral nutrition, showed FXR antagonistic activity, probably contributing to the total
parenteral nutrition–induced cholestasis by inhibiting its target genes BSEP, FGF19,
and OSTa/b.47
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FXR IN CHOLESTATIC LIVER DISEASES

Because FXR is a central regulator of bile formation and BA homeostasis, one might
expect that dysregulation or dysfunction of FXR may play a key role in the pathogen-
esis of cholestasis. However, FXR variants have been identified in only a few chole-
static syndromes48–50 and FXR may rather orchestrate secondary adaptive
responses to cholestasis. Among progressive familiar intrahepatic cholestasis
(PFIC) syndromes, only PFIC1 patients showed reduced hepatic and ileal FXR
levels.49,50 Acquired cholestatic conditions, such as drug-induced liver injury and
intrahepatic cholestasis of pregnancy (ICP), have also been associated with FXR
dysfunction. In drug-induced liver injury and ICP, drug-mediated and hormone
(metabolite)-mediated inhibition of hepatobiliary transporters may contribute to the
pathogenesis.51 A common FXR genetic variant FXR1*B was associated with reduced
gene expression of hepatic target genes SHP and organic anion transporting polypep-
tide 1B3 (OATP1B3),52 a sinusoidal transporter that mediates the uptake of several
drugs and peptides such as cholecystokinin and digoxin.53,54 These findings indicate
that FXR dysfunction may largely influence the pharmacokinetics and pharmacody-
namics of various drugs, thus significantly contributing to drug response as well as
severity of potential side effects and therapeutic outcomes in affected patients.
FXR may play a role in gallstone disease because FXR knockout mice show biliary

cholesterol supersaturation, formation of cholesterol crystals, and increased bile salt
hydrophobicity, whereas synthetic FXR agonist GW4064 efficiently reduced gallstone
formation in mice.55 In contrast to these findings, no common polymorphism has been
Fig. 1. Role of nuclear receptors in maintaining hepatobiliary homeostasis. Activation of
nuclear receptors (NRs) in hepatocytes ensures the balance between BA synthesis and detox-
ification, uptake, and excretion via regulation of expression of key hepatobiliary trans-
porters. A network of negative feed-back and positive feed-forward mechanisms controls
the intracellular load of biliary constituents, which may be hepatotoxic when they accumu-
late. BA-activated FXR is a central player in this network and represses (via GR in humans)
hepatic BA uptake (NTCP) and (via SHP) BA synthesis (CYP7A1), promotes bile secretion
via induction of canalicular transporters (BSEP, MRP2, ABCG5/8, MDR3), and induces BA elim-
ination via alternative export systems at the hepatocellular basolateral (sinusoidal)
membrane (OSTa/b). Several NR pathways converge at the level of CYP7A1 as a rate-
limiting enzyme in BA synthesis. CAR and PXR facilitate adaptation to increased intracellular
BA concentrations by upregulation of alternative hepatic export routes (MRP3 and MRP4)
and induction of detoxification enzymes. PPARa regulates phospholipid secretion (via
MDR3), but is also involved in detoxification pathways. Stimulation of AE2 expression by
GR stimulates biliary bicarbonate secretion, thus reducing bile toxicity. Apart from regu-
lating BA homeostasis, NRs have additional anti-inflammatory and anti-fibrotic effects. Their
activation may result in induction of defensive mechanisms in bile duct epithelial
cells. Green arrows indicate stimulatory effects and red lines indicate suppressive effects
on target genes. AE, anion exchanger; BAs, bile acids; Bili-glu, bilirubin glucuronide; BSEP,
bile salt export pump; CAR, constitutive androstane receptor; CYP7A1, cholesterol-7a-
hydroxylase, CYPs, cytochrome P450 enzymes; FGF, fibroblast growth factor; FXR, farnesoid
X receptor; GR, glucocorticoid receptor; MDR3, multidrug resistance protein 3, phospholipid
flippase; MRP2, multidrug resistance-associated protein 2; MRP3, multidrug resistance-
associated protein 3; MRP4, multidrug resistance-associated protein 4; NTCP, sodium tauro-
cholate cotransporting polypeptide; OSTa/b, organic solute transporter a and b; PC,
phosphatidylcholine; PXR, pregnane X receptor; PPARa, peroxisome proliferator-activated
receptor a; PPARg, peroxisome proliferator-activated receptor g; SHP, small heterodimer
partner; SULTs, sulfatation enzymes; UGTs, glucuronidation enzymes; VDR, vitamin D
receptor.
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identified in patients with gallstone disease from different ethnic groups. However, an
FXR variant was associated with gallstone prevalence in Mexican patients.56 Interest-
ingly, patients with gallstones showed repressed expression of PGC1a,57 a transcrip-
tional coactivator of FXR58,59 that may additionally induce FXR gene transcription via
PPARg and HNF4a.59 Thus, it is plausible to speculate that peroxisome proliferator-
activated receptor gamma, coactivator 1 alpha (PGC1a)-associated reduction of
FXR activity could contribute to altered bile composition and gallstone formation
through inhibition of BSEP and MDR3. However, larger cohorts and more standard-
ized sample analysis are required to draw conclusive statements regarding the role
of FXR in human gallstone disease.
In chronic cholestatic liver diseases (eg, primary biliary cirrhosis [PBC] and primary

sclerosing cholangitis [PSC]) prolonged duration of cholestasis may induce adaptive,
secondary changes in transporter expression self-protective mechanisms of hepato-
cytes against retaining cholephils. For example, in PBC patients, repression of BA
uptake systems (NTCP, OATP2) together with induction of basolateral efflux systems
(MRP3, MRP4, and OSTa/b) support the elimination of retained BAs from the liver as
cholestasis progresses with advanced disease.41,60–65 Experimental studies in
rodents have uncovered a complex interplay of several regulatory pathways under
control of FXR and other NRs that are activated by accumulating biliary constituents
mediating these transporter changes.42 However, these intrinsic defense mechanisms
are not sufficient to rescue the liver from cholestatic injury, because chronic chole-
stasis induces fibrosis and ultimately cirrhosis occurs, and additional pharmacologic
activation may represent a mechanism of counteracting cholestasis by enhancing
these intrinsic adaptive mechanisms as delineated below.66

An increasing body of evidence suggests that BA and FXR signaling regulates liver
cell growth. Mice lacking FXR as well as mice lacking its downstream target SHP
develop hepatocellular cancer (HCC).67–69 Downregulation of SHP has also been
observed in human HCC.70 Notably, an increased risk for HCC has been observed
in children with PFIC resulting from deficiency of the FXR target BSEP,71 further under-
lining the carcinogenic potential of BAs in liver. A weakened defense against potential
carcinogenic BAs, subsequent hepatic inflammation, together with the absence of
direct regulatory effects on the cell cycle, may explain the carcinogenic potential
resulting from loss of FXR and SHP.69,72,73 A direct role of FXR on cell proliferation
and apoptosis is underlined by the fact that not only does FXR play a crucial role in
hepatocellular cancer, but also its alterations have also been implicated in colorectal
and breast carcinogenesis.74,75
THERAPEUTIC POTENTIAL OF FXR IN CHOLESTASIS

In the last several years, various BA-derived or non-BA-based FXR activators have
been developed as potential therapeutics against cholestasis. The protective effects
of FXR were demonstrated in several animal models. A non-BA synthetic FXR agonist
GW4064 and BA-derived 6a-ethyl derivative of chenodeoxycholic acid (6E-CDCA or
INT-747 or obeticholic acid; OCA) have beneficial effects in mouse models of chem-
ically induced liver injury (a-naphthylisothiocyanate (ANIT) and estradiol-induced) or
in bile duct-ligation (BDL).76,77

Recently 3 BA-based therapeutic compounds were compared in Mdr2 (mouse
ortholog of human phospholipid export pump MDR3) knockout mice, a model of
bile duct injury and biliary fibrosis associated with the toxic bile composition caused
by absent biliary phospholipids78: a selective FXR ligand (INT 747), a selective ligand
(INT-777) for TGR5 (another G protein coupled BA receptor located at the plasma
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membrane), and dual ligand for FXR and TGR5, with strong FXR agonistic properties
(INT-767). Only INT-767 with dual agonistic in vitro activity toward FXR and TGR5
improved serum liver tests, portal inflammation, and biliary fibrosis. This compound
induced bile flow and biliary bicarbonate output with simultaneous reduction of biliary
BA output in wild-type but not in FXR-deficient mice, emphasizing the role of FXR (but
not TGR5) in mediating these effects. The underlying mechanisms seem to include
FXR-dependent induction of carbonic anhydrase 14, a hepatocellular membrane-
bound enzyme that may promote bicarbonate transport due to formation of a func-
tional complex with bicarbonate transporter anion exchanger 2 (AE2).79 These results
uncovered an important role of FXR in regulation of biliary bicarbonate secretion
protecting against intrinsic BA toxicity. Notably, the (weaker) selective FXR agonist
INT-747 deteriorated liver injury in the Mdr2 knockout mice and the selective TGR5
agonist had no therapeutic effect, showing a minor role of biliary TGR5 for bile duct
injury in this mouse model.
In addition to hepatocytes, cholangiocytes also play an important role in bile forma-

tion. Importantly, FXR is also expressed in human biliary epithelium, where it may play
a critical role in ductular bile generation by alkalinization and fluidization through
secretory mechanisms known to be predominantly regulated by complex neuro-
endocrine as well as local mechanisms.80 The potential role of FXR in secretory func-
tion of biliary epithelium became apparent when endogenous FXR agonist CDCA
as well as non-BA FXR agonist GW4064 induced gene expression of vasoactive intes-
tinal polypeptide receptor 1 (VPAC-1),80 a receptor of vasoactive intestinal polypep-
tide in human gallbladder. Because vasoactive intestinal polypeptide acts as a very
potent secretagogue81 in cholangiocytes, FXR-mediated VPAC-1 induction indicates
a potential role for FXR in regulating the BA-independent bile flow in biliary epithelium.
In addition, CDCA (a potent endogenous FXR ligand) is able to induce expression of

cathelecidin, the major anti-microbial peptide known to counteract the LPS, in human
cholangiocytes, suggesting that BAs/FXRmight play an important role in sterility of the
biliary tree and protection against bile duct inflammation.82 In fact, the observation
that FXR-deficient mice showed increased baseline hepatic inflammation and are
more prone to LPS-induced liver injury67,83 suggests a direct anti-inflammatory role
of FXR, which has been be explained via direct interference with the nuclear factor
kappa-B (NF-kB).83 Notably, this effect is not only hepatocyte-specific but also was
reported in vascular smooth muscle cells.84 The anti-inflammatory effects of FXR
are further supported by induction of suppressor of cytokine signaling 3 that inhibits
STAT3 signaling.85 Notably the anti-inflammatory effects of FXR are not liver-
specific, but were also demonstrated in intestine, where INT-747 reduced intestinal
inflammation and permeability in experimental models of colitis.86 Because bacterial
overgrowth and increased intestinal permeability may play an important role in the
pathogenesis of ascending biliary inflammation and cholestasis, a tight control of
intestinal bacterial flora is likely to be protective in cholestasis. Bacterial overgrowth
was successfully reversed by the oral BA supplementation in a rat model of intestinal
BA depletion,87,88 findings that together with prevention of postoperative endotoxemia
by preoperative administration of sodium deoxycholate in patients with obstructive
cholestasis89 provide evidence for a role of intestinal BAs/FXR in maintaining the
normal bacterial flora and gut integrity. Indeed, bacterial overgrowth and intestinal
injury were decreased in the BDL model of obstructive cholestasis by GW4064 in
an FXR-dependent manner90 and selective intestinal FXR-overexpression reduced
liver injury by decreasing the BA pool size and hydrophobicity as well as improving
the intestinal permeability in BDL and ANIT-induced liver injury.91 Moreover, FGF19
treatment protected mice from CBDL-induced liver injury, whereas selective intestinal
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FXR overexpression decreased liver injury in the genetic Mdr2 knockout mouse model
of cholestasis, confirming the importance of intestinal FXR for liver disease.91 Taken
together, FXR ligands counteract hepatic inflammation at several levels: directly via
interaction with inflammatory pathways in hepatocytes as well as in non-parenchymal
hepatic cells and by reducing release of inflammatory mediators from the intestine via
a decrease in intestinal permeability and bacterial translocation. The latter may be of
particular interest for the treatment of obstructive cholestasis with collapse of gut
integrity and cholestatic liver disease associated with inflammatory bowel disease
such as PSC.
Although many cholestatic liver diseases progress to liver fibrosis and finally

cirrhosis, the question of whether FXR affects the fibrogenesis still remains unclear.
Interestingly, FXR was also shown to have direct anti-fibrotic effects in hepatic stellate
cells (HSCs) via activation of SHP.92,93 However, another study showed very low or no
FXR and SHP expression in human HSCs and murine periductal myofibroblasts,94

suggesting indirect anti-fibrotic effects.
Collectively, FXR activation by endogenous or synthetic agonists represents an effi-

cient mechanism to counteract cholestasis by a synchronized network of hepatopro-
tective mechanisms: (1) reducing intrahepatic BA load via repression of BA synthesis
and an increase in BA export (via BSEP on the canalicular and OSTa/b on the baso-
lateral membrane); (2) changing bile composition at the hepatocellular level (by
increasing relative phospholipid and bicarbonate secretion), ultimately resulting in
a less toxic bile protecting hepatocytes and cholangiocytes; (3) impacting on ductular
bicarbonate secretion (via induction of VPAC-1); (4) mediating direct anti-inflammatory
effects in hepatocytes (via inhibition of NF-kB and STAT3) and non-parenchymal liver
cells; (5) impacting on the gut-liver axis (by induction of FGF19, a suppressor of BA
synthesis and by reducing a bacterial overgrowth and intestinal permeability in
obstructive cholestasis).
Because targeted FXR activation has been recognized as a promising therapeutic

option for patients with cholestasis, FXR agonists have already entered the clinical
trials. Specifically, combination therapy of ursodeoxycholic acid (UDCA) with the
INT-747 in phase II clinical trials in PBC patients not responding to UDCA showed
substantial reduction of biochemical parameters of liver damage and cholestasis,
such as ALT and ALP, after short-term and long-term administration.95,96 In line with
the results obtained with combination therapy, INT-747 monotherapy in PBC patients
also achieved a significant reduction of serum markers of liver damage and chole-
stasis after 12 weeks of treatment.97 Dose-dependent itching was reported to be
the most common adverse event in patients receiving higher doses of INT-747.
Because pruritus represents a common symptom of PBC that may lead to severe
disability in suffering patients, subsequent clinical trials have excluded patients
suffering from pruritus because of the disease. The results of a multicenter,
placebo-controlled, randomized phase III clinical trial, testing INT-747 in PBC patients
who have not non-responded to standard UDCA, are eagerly awaited.
NUCLEAR XENOBIOTIC RECEPTORS PXR AND CAR AND THEIR BIOLOGY

The primary function of PXR and CAR is to regulate genes responsible for the detoxi-
fication and elimination of a broad spectrum of potentially toxic endogenous and
exogenous compounds.98–100 To achieve their detoxifying function and to protect
from various xenobiotics, both PXR and CAR act as low-affinity, broad-specificity
xenosensors, which are activated by a broad range of structurally unrelated
compounds (eg, rifampicin, clotrimazole, synthetic steroids such as 5b-pregnane-3,
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20-dione, pregnenolone 16a-carbonitrile (PCN), dexamethasone, anti-depressant St.
John’s wort).100–103 Apart from xenobiotics, also potentially toxic endogenous
compounds such as BAs8,9 and bilirubin104 can activate PXR and CAR. After their acti-
vation, PXR and CAR coordinately induce a machinery of genes responsible for detox-
ification and elimination of their activating toxic ligands.
Various enzymes involved in phase I (catalyzing hydroxylation) and phase II (cata-

lyzing glucuronidation and sulfatation) detoxification as well as many drug transporters
are target genes of PXR and CAR, converting their substrates into more hydrophilic
and therefore less toxic and easier cleared compounds (see Fig. 1).98,100,105 In chole-
static condition, the activation of PXR and CAR may be beneficial because PXR, as
a BA-activated receptor, is also responsible for basal repression of CYP7A1 as
a rate-limiting enzyme for BA synthesis,8 and both PXR and CAR are inducers of BA
detoxification enzymes such as CYP3A4 (Cyp3a11 in mice), Cyp2b10, and SULT2A1
(see Fig. 1).106 Furthermore, they activate the transcription of UGT1A1, a key enzyme
for bilirubin glucuronidation (see Fig. 1).9 Finally, PXR has been identified as an FXR
target gene,107 suggesting an evolutionary-based cross-talk between BA-activated
NRs in the protection against BA toxicity.

PXR AND CAR IN CHOLESTATIC LIVER DISEASES

Altered function of PXR and CAR is involved in both pathogenesis and adaptation to
cholestatic liver disease. Genetic variants of PXR are associated with increased
susceptibility for ICP, as well as with lower neonatal weight and Apgar score in South
American populations.108 In contrast, PXR variants were not found to be associated
with ICP in a Caucasian population, but it should be emphasized that this study consid-
ered only coding sequence and no regulatory promoter regions were examined.109

Furthermore, PXR polymorphisms have been associated with the disease course in
PSC.110

In patients with obstructive cholestasis, a pronounced increase in PXR and CAR
expression is observed, followed by an increase in their target genes (MRP3 and
MRP4),111,112 consistent with activation of self-protective pathways in cholestatic
hepatocytes (see Fig. 1). The role of PXR and CAR for limiting the progression of liver
injury in cholestasis was confirmed by reduced expression of these NRs in late-stage
cholestasis in children suffering from biliary atresia,113 and low PXR and CAR expres-
sion were associated with poor prognosis in these patients. In PBC, amoderate reduc-
tion of PXR and CAR expression levels was observed.66 The involvement of PXR and
CAR in fibrogenic processes was further underlined by their low expression in hepatitis
C patients with advanced fibrosis.114 Of note, neonates have low hepatic expression of
CAR, as the main NR coordinately regulating bilirubin clearance, thus providing a
possible explanation for their higher susceptibility to (neonatal) jaundice.104

PXR AND CAR AS THERAPEUTIC TARGETS

Because of their central role in BA detoxification and transport, PXR and CAR repre-
sent attractive targets for drug therapy of cholestasis. Ligands for both receptors have
already been used to treat cholestasis and pruritus, long before their mode of action
has been fully understood. As such, rifampicin is a classic ligand for PXR and not only
is effectively used to treat pruritus but also improves liver function tests in PBC,
compatible with a direct anti-cholestatic effect.115–117 In the otherwise healthy gall-
stone patients, rifampicin enhanced BA detoxification as well as bilirubin conjugation
and excretion through induction of CYP3A4, UGT1A1, and MRP2, thereby decreasing
bilirubin and deoxycholic acid concentrations in serum as well as lithocholic (LCA) and
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deoxycholic acid concentrations in bile.118 The potential mechanisms by which rifam-
picin improves cholestatic pruritus have recently been further expanded by linking its
action to the lysophospholipase autotaxin and its product, lysophosphatidic acid, as
potential mediators of cholestatic pruritus.119 Notably PXR inhibits autotaxin expres-
sion, which may add to the anti-pruritic action of rifampicin.120

Phenobarbital was also given to patients long before the identification of CAR as its
molecular target.115,121,122 Notably, 6,7-dimethylesculetin, a compound present in Yin
Chin used in Asia to prevent and treat neonatal jaundice, accelerates bilirubin clear-
ance by activation of CAR.123 Activation of CAR increases hepatic expression of the
bilirubin-clearance pathway, including the induction of bilirubin glucuronyl transferase,
a key enzyme of bilirubin glucuronidation and canalicular bilirubin-glucuronide export
pump MRP2.104,123 In addition to CAR as prototypic bilirubin-activated receptor, PXR
also promotes bilirubin detoxification and clearance via induction of its glucuronida-
tion and export.44,124

In a rodent model, pharmacologic stimulation of PXR counteracted LCA-induced
liver toxicity by induction of Cyp3a11 (CYP3A4 in human) and SULT2A1, both involved
in BA detoxification.8,9 Similarly, administration of PXR ligands reduced liver injury,
bilirubin, and BA levels in CA-fed mice via induction of Cyp3a11 and MRP3.125

LCA-induced hepatotoxicity was also diminished by pharmacologic activation of
CAR, mediating a shift in BA biosynthesis toward the formation of less toxic BAs, as
well as a decrease in hepatic bile acid concentrations.126 In obstructive cholestasis
(BDL) in mice, administration of PXR and CAR ligands reduced serum parameters
of cholestasis (ie, bilirubin and serum BA levels) by induction of phases I and II detox-
ification and transport systems.127 However, elevated liver enzymes in these animals
point out potential hepatotoxic side effects of the used substances and concentra-
tions, at least under conditions when bile flow is completely blocked.127 However,
pharmacologic stimulation of PXR and CAR could be therapeutically superior to acti-
vation of FXR in obstructive cholestasis, because stimulation of these xenobiotic
sensors lacks potentially negative effects associated with stimulation of bile flow.
This precaution is also underlined by the fact that FXR stimulation may lower the
induction of MRP4 by CAR ligands, thereby limiting the main alternative BA export
route from cholestatic hepatocytes.128

Apart from its anti-cholestatic effects, PXR also has anti-fibrotic and anti-
inflammatory properties that may be beneficial in complex cholestatic liver diseases
such as PSC and PBC. PXR stimulation in human HSC inhibits their transdifferentia-
tion to fibrogenic myofibroblasts, inhibits expression of the major profibrogenic cyto-
kine TGF-1b, and markedly slows proliferation.129 In mice, PCN, a potent activator of
rodent PXR, inhibited carbon tetrachloride–induced fibrosis in a PXR-dependent
manner.130 In addition, activation of PXR inhibited endotoxin-induced NF-kB activa-
tion and cytokine production, and mice lacking PXR have higher susceptibility to
inflammatory agents.131,132 Suppression of humoral and cellular immune response
by rifampicin has been recognized 40 years ago133 and may now at least in part be
explained by ligand-induced SUMOylation of PXR subsequently repressing NF-kB
target genes.134

Finally, PXR is essential for liver regeneration because mice lacking PXR have
impaired hepatocyte proliferation.135 Activation of CAR also induces a strong prolifer-
ative response in mouse liver by stimulating cyclin D1,136 which is mandatory for
cell-cycle progression in proliferating hepatocytes, suggesting that CAR agonists
could also be potentially useful to stimulate hepatocyte proliferation after liver resec-
tion. However, CAR activation also plays a key role for liver tumor promotion in
phenobarbital-treated mice.137,138



Nuclear Receptors in Cholestatic Liver Diseases 171
Collectively, pharmacologic stimulation of PXR and CAR in chronic cholestatic liver
disease may improve the disease course via at least 4 potential beneficial mecha-
nisms: (1) repression of BA synthesis and increase in BA and bilirubin detoxification
and elimination pathways, which will enhance the ability of the liver to reduce levels
of toxic cholephils; (2) suppression of inflammation and fibrosis; (3) promotion of hepa-
tocellular regeneration; and (4) amelioration of pruritus. However, it must be empha-
sized that both PXR and CAR ligands are potentially hepatotoxic and carcinogenic;
therefore, novel compounds targeting PXR and CAR with fewer side effects need to
be developed.

VDR AND ITS BIOLOGY

The main function of VDR is to mediate the effects of its natural ligand calcitriol (1a,
25-dihydroxyvitamin D3 [1,25-VitD3]) on calcium homeostasis, but VDR also regulates
cell proliferation and differentiation and has immunomodulatory as well as anti-micro-
bial functions.139 Importantly, VDR is also an intestinal sensor for secondary BAs and
as such is activated by lithocholic acid.10 In the liver, VDR is not expressed in hepato-
cytes, whereas other non-parenchymal liver cells such as Kupffer cells, endothelial
cells, biliary epithelial cells, and HSCs show considerably high levels of expression.140

In bile duct epithelial cells, activation of VDR by BAs or vitamin D induces cathelicidin
expression, which is an anti-microbial peptide known to be protective against bacte-
rial infection,82 thus contributing to innate immunity in the biliary tract. In HSCs VDR is
highly expressed in the quiescent state and its expression decreases during activa-
tion. Stimulation of VDR in activated HSCs inhibits their proliferation and suppresses
collagen production, explaining the anti-fibrotic effects of vitamin D supplementation
in the rat model for liver fibrosis.141 In the intestine, stimulation of VDR increases the
expression of human and rodent apical sodium/bile acid transporter (ASBT),142 an ileal
BA uptake transporter, and of MRP3, a basolateral BA export pump, in mouse
colon.143 In the liver, despite low expression of VDR in hepatocytes, treatment with
VDR agonists stimulate BA detoxification enzymes (such as SULT2A1 and
Cyp3a11, a mouse homolog of human CYP3A4).10,144,145 Whether VDR may have
beneficial effects on BA-induced hepatocellular injury is difficult to predict because
of reported negative interactions of VDRwith FXR and inhibition of FXR transactivation
by 1,25-VitD3 in vitro.146

VDR AND CHOLESTATIC LIVER DISEASES

Multiple polymorphisms in the coding sequence and promoter region of VDRmay alter
the immune response and specific VDR variants are associated with several immune-
mediated liver diseases. As such, VDR polymorphisms are associated with suscepti-
bility and clinical appearance of PBC147–151 and autoimmune hepatitis.147,149

Because impaired absorption of fat-soluble vitamins is a hallmark of cholestasis and
severe liver dysfunction, low serum vitamin D levels are commonly observed in
patients with cholestasis and may alter VDR activity with consequences beyond
bone metabolism. Low 1,25-VitD3 levels impair fetal outcome (inversely correlating
with meconium staining) in patients with ICP.152 VDR expression in bile duct epithelial
cells was inversely correlated with steatosis, lobular inflammation, and NAS score in
patients with non-alcoholic fatty liver disease.153 A growing body of evidence
suggests that vitamin D signaling plays a role in the progression of fibrosis in various
liver diseases, including fatty liver disease and hepatitis C,141 and development of
cancer,154,155 including HCC,156 but data for cholestatic liver diseases in this context
are still limited. VDR expression in primary rat HSCs decreases on activation of these
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cells, whereas 1,25-VitD3 inhibits proliferation, decreases expression of profibrogenic,
and increases expression of anti-fibrotic genes.141

Accumulation of LCA during cholestasis decreases the effects of vitamin D on
human osteoblasts, acting as a competitive ligand for VDR157 and thereby promoting
osteoporosis in cholestatic patients. Interestingly, vitamin D supplementation was also
associated with lower fatigue appearance in patients with PBC,158 suggesting a poten-
tial link between vitamin D deficiency and this disabling symptom in cholestasis.
Further studies will have to show whether this may be linked to muscular effects of
vitamin D.

VDR AS THERAPEUTIC TARGET

According to the predominance of VDR in non-parenchymal liver cells, activation of
VDR in the liver has mainly anti-inflammatory and anti-fibrotic effects that may be
beneficial in chronic cholestatic liver disease (such as PBC and PSC). “Classical” tar-
geting of VDR through vitamin D substitution improves bone density in patients where
cholestasis leads to chronic vitamin D deficiency and increased rates of osteoporosis.
The anti-fibrotic potential of VDR stimulation was confirmed by reduced fibrosis in a rat
model of liver fibrosis.141 Furthermore, treatment with 1,25-VitD3 suppressed the
production of pro-inflammatory cytokines in the liver of BDL mice,159 underlining the
potential of VDR ligands to prevent cholestasis-induced inflammatory response.
These anti-inflammatory and anti-fibrotic effects of vitamin D suggest that vitamin D
supplementation could have additional therapeutic effects in patients with PBC and
PSC beyond the rationale for preventing and treating hepatic osteodystrophy.
However, the rather complex role of VDR in regulation of BA uptake in intestine and
regulation of BA metabolism in liver as well as its negative effects on FXR must be
considered also. Although the use of vitamin D or synthetic VDR agonist as
disease-modifying agents represents an attractive therapeutic concept for cholestatic
liver diseases, especially when vitamin D levels are already low because of chole-
stasis, data from controlled studies are lacking.

PPARS AND THEIR BIOLOGY

PPARa, PPARg, and PPARd are 3 structurally homologous receptors and are acti-
vated by endogenous fatty acids and their derivatives to control important metabolic
pathways in lipid and energy homeostasis.160–162 PPARa is highly expressed in tissues
with active fatty acid catabolism, such as liver, heart, kidney, brown adipose tissue,
muscle, small intestine, and large intestine; PPARg is expressed mainly in adipose
tissue and in the immune system and PPARd is ubiquitously expressed.163,164 PPARa
controls energy expenditure and catabolic metabolism by inducing b-oxidation,
whereas PPARg is critical for adipocyte differentiation and energy storage by adipo-
cytes mediating anabolic energy state.165,166

Besides its role in the regulation of fatty acid metabolism, PPARa is involved in BA
homeostasis. Fibrates, which are PPARa activators, induce the expression of phase II
enzymes SULT2A1, UGT2B4, and UGT1A3 as well as ASBT, BA uptake transporter, in
cholangiocytes and enterocytes.167–170 Furthermore, PPARa represses BA synthesis
by reducing HNF4a binding to the CYP7A1 promoter (see Fig. 1).171–174 PPAR ligands
such as fibrates repress BA synthesis and promote phospholipid secretion into
bile,173,174 via induction of MDR3,175 thus counteracting the aggressive biliary BA
milieu (see Fig. 1).
In contrast to PPARa, a direct role for PPARg in the regulation of BAmetabolism has

not yet been reported, probably because of a low expression pattern in hepatocytes.
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Targeting PPARg is of particular interest for inflammatory cholestasis because of its
crucial role in attenuation of inflammation-mediated transporter and enzyme changes.
In the LPS model of inflammatory cholestasis treatment with glitazones, as synthetic
PPARg ligands and accepted anti-diabetic drugs, attenuated repression of NTCP,
BSEP, and Cyp3a11, without affecting cytokine levels via inhibition of RXRa, export
from the nucleus.176 In addition, PPARg represses transcriptional activation of inflam-
matory response genes as a negative regulator of cellular toll-like receptor signaling
in inflammatory cells as well as in cholangiocytes.177 Moreover, in HSCs, PPARg
regulates their activation and has profound anti-fibrotic effects modulating the
wound-healing process by amelioration of inflammation, oxidative stress, and matrix
remolding in the injured liver.178

PPARS AND LIVER DISEASES

PPARg is involved in inhibition of inflammation and production of pro-inflammatory
cytokines. Because bile duct destruction in PBC is Th1 cytokine mediated, it may
not be surprising that PPARg expression, which is high in normal bile ducts, is reduced
in damaged bile ducts and may be associated with the Th1-predominant milieu and
favor the development of chronic cholangitis in PBC.179 Immune modulation using
PPARg ligands may be of therapeutic benefit to attenuate biliary inflammation in
PBC. In HSCs from BDL mice developing biliary cirrhosis, PPARg expression and
DNA binding was dramatically reduced, demonstrating that HSC activation is associ-
ated with the reductions in PPARg expression.180

PPARS AS THERAPEUTIC TARGETS

The effects of PPARa on biliary phospholipid secretion, BA metabolism, and synthesis
make PPARa an interesting therapeutic target in the treatment of cholestasis. One
of the key rationales for a beneficial role of fibrates in cholangiopathies may be upre-
gulation of MDR3181 and its subcellular redistribution toward the canalicular
membrane,182 thereby increasing the biliary content of phosphatidylcholine and
reducing the aggressive potential of BAs in bile, subsequently protecting the biliary
tree. This concept is supported by findings in patients undergoing percutaneous trans-
hepatic biliary drainage, who showed increased biliary phospholipid secretion after
treatment with bezafibarte,183 although the same study reported that patients with
PBC had already increased MDR3 expression that was not further upregulated by
bezafibrate treatment. Moreover, treatment with bezafibrate may have additional anti-
cholestatic effects as supported by repression of BA synthesis (CYP7A1 and
CYP27A1) and BA uptake (NTCP) and increased BA detoxification enzyme CYP3A4
in human hepatoma cell lines.184 Repression of BA synthesis and increased detoxifi-
cation of BA by fibrates were confirmed in early-stage PBC patients measuring reduc-
tion of 7a-hydroxy-4-cholesten-3-one (C4), a marker of BA synthesis, and an increase
of 4b-hydroxycholesterol, a marker of CYP3A4/5 activity after bezafibrate and UDCA
combination therapy in comparison to UDCA monotherapy.184 Finally, the anti-
inflammatory effects of PPARa could also add to potential beneficial effects in
cholestasis.
Clinically the beneficial effects of PPAR ligands in cholestasis were recognized for

more than a decade and multiple pilot studies have evaluated their therapeutic effec-
tiveness in patients with PBC. More than a dozen uncontrolled pilot trials using beza-
fibrate and fenofibrate showed beneficial effects on biochemical parameters and in
part also on histologic findings in patients with PBC.184–200 Some of these studies
have tested the fibrates as monotherapy in comparison to UDCA monotherapy, but
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most were designed to test their effects in patients with partial or absent UDCA
response by add-on therapy with either fenofibrate or bezafibrate. All these pilot
studies showed the benefit of combination therapy. However, no placebo-controlled
randomized studies have been performed so far and such studies are urgently needed
before implementing UDCA/fibrate combination therapy as standard for PBC patients
with suboptimal response to UDCA. However, one should be aware that fibrates
increase the risk for gallstone formation,201 a side effect that could be linked to
suppression of BA synthesis and that may represent a potential limitation for treatment
in patients with biliary damage and an already increased susceptibility to gallstone
formation such as PBC.
Moreover, PPARa ligands may also be beneficial in patients with chronic hepatic

graft-versus-host disease of the liver. A combination of UDCA and bezafibrate therapy
in this patient population significantly improved liver biochemistry after 1 month of
treatment.202 Long-term clinical trials are also needed.
Other hypolipidemic drugs, such as inhibitors of 3-hydroxy-3-methylglutaryl-

coenzyme A reductase (statins), are indirect activators of PPAR, also have pleiotropic
anti-inflammatory effects,203 and stimulate phospholipid secretion by induction of
Mdr2.204,205 Statins have also been tested in the treatment of PBC. Although initial
smaller studies suggested improvement of cholestasis under statin treatment,206–208

a recent dose finding study was unable to demonstrate improvement of cholestasis
in PBC patients with an incomplete response to UDCA.209

In addition to PPARa, PPARg activation may also be effective in cholestatic
diseases, in particular by ameliorating fibrosis and inflammation, thus limiting disease
progression. The inhibitory effects of PPARg ligands on collagen synthesis in HSCs180

were also observed in a model of obstructive cholestasis (BDL) where treatment with
troglitazone inhibited ductular reaction and fibrosis.210 However, troglitazone, a
PPARg ligand, was meanwhile withdrawn from the market because of hepatotoxicity
and no experimental or clinical data on other glitazones are available.211,212 The plant
extract curcumin, the yellow pigment of the spice turmeric, also targets PPARg.
Notably, natural compounds such as curcumin inhibited inflammatory activation of
cholangiocytes and activation of portal myofibroblasts in a PPARg-dependent
manner, ameliorating biliary fibrosis in various animal models.213,214
GR AND ITS BIOLOGY

Glucocorticoids are natural ligands of GR. GR is expressed in most human cells and
plays a role in numerous metabolic pathways including carbohydrate and protein
homeostasis, mediates negative feedback on the hypothalamic–pituitary–adrenal
axis, and has strong anti-inflammatory and immunosuppressive effects.215 Apart
from regulating systemic response to stress, GR and glucocorticoids also regulate
BA homeostasis because GR regulates the expression of biliary transport systems
including the human BA transporters NTCP, ASBT, and OSTa/b (see Fig. 1).216–218 In
addition, GR ligands may also modulate the function of other NRs including CAR,
a primary GR response gene,219 as well as PXR and RXRa.219,220 On the other hand,
GR activation promotes cholestasis in mice by repressing the beneficial transcriptional
activity of FXR,221 although such potentially negative effects have never been reported
clinically in cholestatic patients. Nevertheless, serum BA levels are elevated in patients
with increased serum glucocorticoid levels, such as Cushing disease or obesity, in
comparison with healthy individuals, and correlate with elevated glucocorticoid levels.
This induction of BA levels by GR ligands can also be explained by recruiting core-
pressor complexes to FXR and thereby blocking its transcriptional activity.221
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GR AS THERAPEUTIC TARGET

Activation of GR by glucocorticoids is widely used to treat inflammatory and autoim-
mune diseases222 and have also been tested for treatment of various cholestatic
disorders including PBC.223 Notably, in addition to their classic anti-inflammatory
and immunomodulatory effects, GR ligands may also have anti-cholestatic effects
through modulation of transporters. One of the most notable mechanisms of GR
activation in chronic inflammatory bile duct disorders such as PBC may include
stimulatory effects on AE2 expression, thus increasing cholangiocyte bicarbonate
secretion224,225 and stimulation/restoration of the biliary bicarbonate umbrella (see
Fig. 1). This effect is especially interesting in the context of reduced AE2 expression
and function in the liver and inflammatory cells of PBC patients,226,227 which may
be responsible for vulnerable cholangiocytes favoring an auto-immune hit on the
bile ducts. Increased AE2 expression resulting in an increase of biliary bicarbonate
secretion by UDCA and dexamethasone combination but not by UDCA or dexameth-
asone alone225 could provide a potential explanation for the observed beneficial
effects of the combination of glucocorticoids and UDCA. Of note, UDCA also activates
GR228,229 and promotes GR translocation in the nucleus in a ligand-independent
manner,230 favoring a combination therapy of glucocorticoids and UDCA in PBC
patients from a mechanistic point of view.
Although (combination) therapy with steroids may be clinically beneficial, their use is

limited by classic side effects including bone loss,231 which outweigh the potential
benefits. Moreover, it has been shown that patients receiving glucocorticoids have
increased BA synthesis (see earlier discussion) and are prone to gallstone diseases.232

Use of glucocorticoids is considered an independent risk factor for cholelithiasis.233

Budesonide, a non-halogenated corticosteroid with a high GR-binding affinity and
extensive hepatic first-pass metabolism-limiting (extrahepatic) side effects, may be
an attractive alternative. Apart from GR-mediated effects, the induction of CYP3A4
via a PXR-dependent mechanism and thereby induction of BA detoxification, may
also be an argument for the use of budesonide in inflammation-driven cholestatic
diseases. Two randomized control trials have reported an additional benefit of bude-
sonide and UDCA combination therapy on serum parameters of cholestasis and liver
histology in PBC patients (stage I to III) in comparison to UDCA monotherapy.234,235

However, in a study focusing on a subgroup of patients who did not respond to
UDCA monotherapy (including patients with end-stage disease), significant increases
in Mayo Risk Score were reported, despite beneficial effects on bilirubin and alkaline
phosphatase levels with additional budesonide treatment.236 The summary of re-
ported data allows the conclusion that budesonide in combination with UDCA has
favorable results on biochemical and histologic parameters in early-stage PBC, but
not late-stage disease, where budesonide is contra-indicated (reports of severe
side effects including portal vein thrombosis and death).237

URSODEOXYCHOLIC ACID –– CURRENT ANTI-CHOLESTATIC DRUG STANDARD AND ITS
EFFECTS ON NRS

UDCA is currently used as a therapeutic standard in cholestasis and has multiple
beneficial mechanisms,238 which may be mediated to at least in part by NRs. Although
these various mechanisms of action of UDCA have been studied in detail in the last
decades, the complete picture underlying the beneficial effects of UDCA remains to
be determined. Notably, UDCA does not activate FXR7,11,239 and has low affinity to
GR,228 but may activate PXR indirectly after its conversion to LCA by intestinal flora.8,9

In addition, UDCA induced expression of protective cathelicidin via activation of VDR



Halilbasic et al176
in cultured biliary epithelial cells and induced both VDR and cathelicidin gene expres-
sion in livers of PBC patients.82 Furthermore, UDCA partially corrected calciummalab-
sorption in patients with PBC, who display low bone mass density and reduced
fractional calcium malabsorption.240 Of note, UDCA may indirectly even counteract
FXR activation by decreasing the relative concentrations of endogenous BA as
more efficient FXR ligands. These examples indicate that direct or potentially indirect
interactions with several NRs or transcriptional factors may be responsible for bene-
ficial effects of UDCA. Importantly, several UDCA derivatives have been synthesized
to potentiate the UDCA actions. As such, a 24-norursodeoxycholic acid (norUDCA)
showed beneficial effects in the Mdr2 knockout mouse model of biliary fibrosis.241–243

Anti-cholestatic, anti-fibrotic, and anti-inflammatory effects of norUDCA were associ-
ated with induction of phase I and phase II detoxification enzymes with simultaneous
induction of basolateral efflux systems, resulting in alternative renal BA excre-
tion.241,242 In addition, norUDCA induced induction of bicarbonate-rich bile flow.
However, similar to its parent drug UDCA, no NR has been identified as a potential
target for norUDCA and generation of bicarbonate-rich bile flow by norUDCA is
thought to be mediated by the cholehepatic shunting of the compound.242,244

Although no NRs have been identified so far as a target for norUDCA, a characteristic
pattern of induction of CAR-regulated genes was observed in the gene expression
array study, suggesting CAR involvement in the anti-cholestatic effect of this
compound.243 Furthermore, norUDCA has profound beneficial effects on lipoprotein
composition, and hepatic lipid metabolism.243,245 These properties make norUDCA
a very attractive therapeutic candidate for cholestatic and metabolic liver diseases.

SUMMARY AND FUTURE PERSPECTIVES

NRs control several important hepatic functions involved in the pathophysiology of
cholestatic liver disease such as BA homeostasis and enterohepatic circulation of
BAs as well as hepatic inflammation and fibrosis. Novel concepts on NR (patho)phys-
iology have successfully been integrated in the understanding of the development of
cholestasis. At present, many drugs used as standard treatments for cholestasis act
via NRs and stimulation of their target genes. A revolution of expanding use of NR tar-
geting in the therapy for cholestatic diseases is being witnessed. The translation of
expanding knowledge on NRs should result in optimizing the current standard therapy
with careful selection of patients’ subgroups benefiting from such novel NR-directed
approaches.
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