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dispersion equations utt − �u − �utt + �2u = � f (u), where f (u) = a|u|p . By potential
well method we prove the existence and nonexistence of global weak solution without
establishing the local existence theory. And we derive some sharp conditions for global
existence and lack of global existence solution.
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1. Introduction

In this paper we study the Cauchy problem of multidimensional generalized double dispersion equations

utt − �u − �utt + �2u = � f (u), x ∈ R
n, t > 0, (1.1)

u(x,0) = u0(x), ut(x,0) = u1(x), x ∈ R
n, (1.2)

where f (u) satisfies

(H)

{
f (u) = a|u|p, a > 0, n+2

n � p < n+2
n−2 for n � 3;

1 � p < ∞ for n = 1,2.

Considering the possibility of energy exchange through lateral surfaces of the waveguide in the physical study of nonlin-
ear wave propagation in waveguide, the longitudinal displacement u(x, t) of the rod satisfies the following double dispersion
equation (DDE) [14,1,2]

utt − uxx = 1

4

(
6u2 + autt − buxx

)
xx (1.3)

and the general cubic DDE (CDDE)

utt − uxx = 1

4

(
cu3 + 6u2 + autt − buxx + dut

)
xx, (1.4)
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where a, b and c are positive constants. In [3,15] Chen and Wang studied the initial–boundary value problem and the
Cauchy problem of the following generalized double dispersion equation which includes above Eq. (1.4) as special cases

utt − uxx − auxxtt + buxxxx − duxxt = f (u)xx, (1.5)

where a > 0, b > 0 and d are constants. For the case f ′(s) � C (bounded below) they proved the existence of global
solutions. And they also shown the nonexistence of the global solution under some other conditions to deal with the global
well-posedness of (1.4). Recently in [11,12] for the nonlinear term f (u) satisfying more general conditions than both convex
function and f (u) = |u|p , the Cauchy problem and the initial–boundary value problem for a class of generalized double
dispersion equations

utt − uxx − uxxtt + uxxxx = f (u)xx,

were studied respectively. For both of above problems the authors obtained the invariant sets and sharp conditions of global
existence of solution by introducing a family of potential wells. However, for the multidimensional cases it is still open to
give the local and global well-posedness for the Cauchy problem (1.1), (1.2). Most recently, in [13] the authors considered
the Cauchy problem of the multidimensional nonlinear evolution equation

utt − �u − �utt + �2u − k�ut = � f (u), x ∈ R
n, t > 0, (1.6)

u(x,0) = u0(x), ut(x,0) = u1(x), x ∈ R
n, (1.7)

where k is an arbitrary real constant. They first gave the existence of local solution. Then by some estimates of local solution
they attempted to obtained the existence of global solution. Also they showed the lack of global existence. Note that in [13]
in order to obtain the global existence of solution for problem (1.6), (1.7) the authors requested

(A)

{
(i) F (u) � 0, ∀u ∈ R; or

(ii) f ′(u) is bounded below, ∀u ∈ R.

So the global existence of solution for Cauchy problem of Eq. (1.4) and its multidimensional generalization were solved.
However for Eq. (1.3) we have f (u) = 3

2 u2, F (u) = 1
2 u3 and f ′(u) = 3u, which do not satisfy (A). In general, for f (u) = a|u|p ,

a > 0, p > 1 we have F (u) = a
p+1 |u|pu and f ′(u) = ap|u|p−2u, which do not satisfy (A) too. Therefore the results of [13] are

not applicable for Eqs. (1.3) and (1.1) with f (u) = a|u|p .
In this paper we study the Cauchy problem (1.1), (1.2), where f (u) satisfies (H). We aim to give the sufficient and nec-

essary conditions for the global existence of solution for problem (1.1), (1.2). In order to do this, we employ the variational
methods and the existence of the invariant sets of solutions [4–10]. Throughout this paper we denote L p(Rn) and Hs(Rn)

by L p and Hs respectively, with the norm ‖ · ‖p = ‖ · ‖Lp(Rn) , ‖ · ‖ = ‖ · ‖L2(Rn) and the inner product (u, v) = ∫
Rn uv dx. We

also define the space

H = {
u ∈ H1

∣∣ (−�)−
1
2 u ∈ L2},

with the norm

‖u‖2
H = ‖u‖2

H1 + ∥∥(−�)−
1
2 u

∥∥2
L2

and the space

L = {
u ∈ L2

∣∣ (−�)−
1
2 u ∈ L2},

with the norm

‖u‖2
L = ‖u‖2

L2 + ∥∥(−�)−
1
2 u

∥∥2
L2 ,

where (−�)−α v = F−1(|ξ |−2αF v), F and F−1 are the Fourier transformation and the inverse Fourier transformation
respectively.

Lemma 1.1. H is dense in L.

Proof. This lemma follows from the fact that H1 is dense in L2. �
We like to give the following conclusions, which will be used in the future discussions.
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Proposition 1.2. (See [13].) Assume that s > n
2 , u0 ∈ Hs, u1 ∈ Hs−1 , f ∈ C [s]+1(R). Then problem (1.1), (1.2) admits a unique local

solution u(t) ∈ C([0, T ), Hs) ∩ C1([0, T ), Hs−1), where T is the maximal existence time of u(t). Moreover if

sup
t∈[0,T )

(∥∥u(t)
∥∥

Hs + ∥∥ut(t)
∥∥

Hs−1

)
< ∞,

then T = ∞.

From Proposition 1.2 we see that if we take s = 1, u0 ∈ H1, u1 ∈ L2 in Proposition 1.2, since n < 2s = 2 we can only
know the local existence and global existence of solution for n = 1. In other words, for the case s = 1, u0 ∈ H1, u1 ∈ L2, it is
impossible for us to derive any local and global well-posedness results for problem (1.1), (1.2) for n > 1. One maybe thinks
this is just a special example. But indeed this restriction goes along with s perpetually. One can easily check that if s = 2,
we can only discuss the case n � 3 if we like to lean on Proposition 1.2. So this local well-posedness theory does limit us
to find more general conclusions. In the present paper, we aim to find another way to get more general results about the
well-posedness problem for (1.1), (1.2). And certainly Proposition 1.2 is abandoned in this paper.

Definition 1.3. We call u(x, t) a weak solution of problem (1.1), (1.2) on R
n × [0, T ), if u ∈ L∞(0, T ; H1), ut ∈ L∞(0, T ; L)

satisfying

(i)
(
(−�)−

1
2 ut, (−�)−

1
2 v

) + (ut, v) +
t∫

0

(
(u, v) + (∇u,∇v) + (

f (u), v
))

dτ

= (
(−�)−

1
2 u1, (−�)−

1
2 v

) + (u1, v), ∀v ∈ H, ∀t ∈ [0, T ). (1.8)

(ii) There holds u(x,0) = u0(x) in H1; and

ut(x,0) = u1(x) in L. (1.9)

(iii) E(t) � E(0) for all t ∈ [0, T ), (1.10)
where

E(t) = 1

2

(∥∥(−�)−
1
2 ut

∥∥2 + ‖ut‖2 + ‖u‖2
H1

) +
∫
Rn

F (u)dx,

F (u) =
u∫

0

f (s)ds.

2. Preliminary results

In this section we will give some preliminary results in order to state the main results of this paper. First for prob-
lem (1.1), (1.2) we introduce the following functionals

J (u) = 1

2

(‖u‖2 + ‖∇u‖2) +
∫
Rn

F (u)dx = 1

2
‖u‖2

H1 +
∫
Rn

F (u)dx,

I(u) = ‖u‖2
H1 +

∫
Rn

u f (u)dx,

d = inf
u∈N

J (u),

N = {
u ∈ H1

∣∣ I(u) = 0, ‖u‖H1 
= 0
}
,

where f (u) satisfies the assumption

(H0)

{
f (u) = a|u|p, a > 0, 1 < p � n+2

n−2 for n � 3;
1 < p < ∞ for n = 1,2.

Clearly if f (u) satisfies (H0), the above functionals can be well-defined on H1(Rn).

Lemma 2.1. Let f (u) satisfy (H0), u ∈ H1 and
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ϕ(λ) = −1

λ

∫
Rn

u f (λu)dx.

Assume that
∫

Rn u f (u)dx < 0. Then

(i) ϕ(λ) is increasing on 0 < λ < ∞.
(ii) limλ→0 ϕ(λ) = 0, limλ→+∞ ϕ(λ) = +∞.

Proof. This lemma follows from

ϕ(λ) = −1

λ

∫
Rn

u f (λu)dx = −λp−1
∫
Rn

u f (u)dx. �

Lemma 2.2. Let f (u) satisfy (H0), u ∈ H1 . Then

(i) limλ→0 J (λu) = 0.
(ii) I(λu) = λ d

dλ
J (λu), ∀λ > 0.

Furthermore if
∫

Rn u f (u)dx < 0, then

(iii) limλ→+∞ J (λu) = −∞.
(iv) In the interval 0 < λ < ∞ there exists a unique λ∗ = λ∗(u) such that

d

dλ
J (λu)

∣∣∣∣
λ=λ∗

= 0.

(v) J (λu) is increasing on 0 < λ � λ∗ , decreasing on λ∗ � λ < ∞ and takes the maximum at λ = λ∗ .
(vi) I(λu) > 0 for 0 < λ < λ∗ , I(λu) < 0 for λ∗ < λ < ∞ and I(λ∗u) = 0.

Proof. Parts (i)–(iii) are obvious.
Note that

∫
Rn u f (u)dx 
= 0 implies ‖u‖H1 
= 0 and

d

dλ
J (λu) = λ

(‖u‖2
H1

− ϕ(λ)
)
, (2.1)

which together with Lemma 2.1 gives parts (iv) and (v).
Part (vi) follows from part (ii) and (2.1). �

Lemma 2.3. Let f (u) satisfy (H0), u ∈ H1 . Then

(i) If 0 < ‖u‖H1 < r0 , then I(u) > 0;
(ii) If I(u) < 0, then ‖u‖H1 > r0;

(iii) If I(u) = 0 and ‖u‖H1 
= 0, i.e. u ∈ N , then ‖u‖H1 � r0 , where

r0 =
(

1

aC p+1∗

) 1
p−1

, C∗ = sup
u∈H1, u 
=0

‖u‖p+1

‖u‖H1
.

Proof. (i) If 0 < ‖u‖H1 < r0, then I(u) > 0 follows from∫
Rn

u f (u)dx �
∫
Rn

∣∣u f (u)
∣∣dx = a‖u‖p+1

p+1 � aC p+1∗ ‖u‖p+1
H1

= aC p+1∗ ‖u‖p−1
H1 ‖u‖2

H1 < ‖u‖2
H1 .

(ii) If I(u) < 0, then ‖u‖H1 > r0 follows from

‖u‖2
H1 < −

∫
Rn

u f (u)dx � aC p+1∗ ‖u‖p−1
H1 ‖u‖2

H1 .

(iii) If I(u) = 0 and ‖u‖H1 
= 0, then we have
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‖u‖2
H1 = −

∫
Rn

u f (u)dx � aC p+1∗ ‖u‖p−1
H1 ‖u‖2

H1 ,

which together with ‖u‖H1 
= 0 gives ‖u‖H1 � r0. �
Lemma 2.4. Let f (u) satisfy (H0). Then

(i) d � d0 = p − 1

2(p + 1)

(
1

aC p+1∗

) 2
p−1

. (2.2)

(ii) If u ∈ H1 and I(u) < 0, then

I(u) < (p + 1)
(

J (u) − d
)
. (2.3)

Proof. (i) For any u ∈ N , by Lemma 2.3 we have ‖u‖H1 � r0 and

J (u) = 1

2
‖u‖2

H1 +
∫
Rn

F (u)dx = 1

2
‖u‖2

H1 + 1

p + 1

∫
Rn

u f (u)dx

=
(

1

2
− 1

p + 1

)
‖u‖2

H1 + 1

p + 1
I(u) = p − 1

2(p + 1)
‖u‖2

H1 � p − 1

2(p + 1)
r2

0,

which gives (2.2).
(ii) Let u ∈ H1 and I(u) < 0, then from Lemma 2.2 it follows that there exists a λ∗ such that 0 < λ∗ < 1 and I(λ∗u) = 0.

From the definition of d we have

d � J (λ∗u) = 1

2
‖λ∗u‖2

H1 +
∫
Rn

F (λ∗u)dx

= 1

2
‖λ∗u‖2

H1 + 1

p + 1

∫
Rn

λ∗u f (λ∗u)dx

=
(

1

2
− 1

p + 1

)
‖λ∗u‖2

H1 + 1

p + 1
I(λ∗u)

= p − 1

2(p + 1)
‖λ∗u‖2

H1 = λ∗2 p − 1

2(p + 1)
‖u‖2

H1

<
p − 1

2(p + 1)
‖u‖2

H1 .

From this and

J (u) = p − 1

2(p + 1)
‖u‖2

H1 + 1

p + 1
I(u)

we get

d <
p − 1

2(p + 1)
‖u‖2

H1 = J (u) − 1

p + 1
I(u),

which gives (2.3). �
Now we define two subsets of H1(Rn) which will be proved to be invariant under the flow generated by problem (1.1),

(1.2). Set

W = {
u ∈ H1

∣∣ I(u) > 0, J (u) < d
} ∪ {0};

V = {
u ∈ H1

∣∣ I(u) < 0, J (u) < d
}
,

and

W ′ = {
u ∈ H1

∣∣ I(u) > 0
} ∪ {0};

V ′ = {
u ∈ H1

∣∣ I(u) < 0
}
.
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3. Invariant sets

This section will show that the subsets W and V of H1(Rn) are invariant under the flow of (1.1), (1.2).

Theorem 3.1. Let f (u) satisfy (H0), u0 ∈ H1 , u1 ∈ L. Assume that E(0) < d. Then both sets W ′ and V ′ are invariant under the flow
of (1.1), (1.2).

Proof. We only prove the invariance of W ′ , the proof for the invariance of V ′ is similar. Let u(t) be any weak solution of
problem (1.1), (1.2) with u0 ∈ W ′ , T be the maximal existence time of u(t). Next we prove that u(t) ∈ W ′ for 0 < t < T .
Arguing by contradiction we assume there is a t̄ ∈ (0, T ) such that u(t̄) /∈ W ′ . According to the continuity of I(u(t)) with
respect to t , there is a t0 ∈ (0, T ) such that u(t0) ∈ ∂W ′ . From the definition of W ′ and (i) of Lemma 2.3 we have Br0 ⊂ W ′ ,
Br0 = {u ∈ H1 | ‖u‖H1 < r0}. Hence we know 0 /∈ ∂W ′ . So u(t0) ∈ ∂W reads I(u(t0)) = 0 with ‖u(t0)‖H1 
= 0. The definition
of d tells J (u(t0)) � d, which contradicts

1

2

(∥∥(−�)−
1
2 ut

∥∥2 + ‖ut‖2) + J (u) � E(0) < d, 0 � t < T . (3.1)

So the prove can be completed. �
And the following corollary can be concluded from the above Theorem 3.1.

Corollary 3.2. Let f (u) satisfy (H0), u0 ∈ H1 , u1 ∈ L. Assume that E(0) < d. Then

(i) All weak solutions of problem (1.1), (1.2) belong to W provided I(u0) > 0 or ‖u0‖H1 = 0.
(ii) All weak solutions of problem (1.1), (1.2) belong to V provided I(u0) < 0.

Next we consider the case E(0) � 0, which is a special case of the energy restriction E(0) < d.

Corollary 3.3. Let f (u) satisfy (H0), u0 ∈ H1 , u1 ∈ L. Assume that E(0) < 0 or E(0) = 0, ‖u0‖H1 
= 0. Then all weak solutions of
problem (1.1), (1.2) belong to V .

Proof. Let u(t) be any weak solution of problem (1.1), (1.2) with E(0) < 0 or E(0) = 0, ‖u0‖H1 
= 0, T be the maximal
existence time of u(t). From

1

2

(∥∥(−�)−
1
2 u1

∥∥2 + ‖u1‖2) + p − 1

2(p + 1)
‖u0‖2

H1 + 1

p + 1
I(u0) = E(0),

we see that if E(0) < 0 or E(0) = 0 with ‖u0‖H1 
= 0, then I(u0) < 0. Hence from Corollary 3.2 we get u(t) ∈ V for
0 � t < T . �
4. Existence and nonexistence of global solution

In this section we study the existence and nonexistence of global solution for problem (1.1), (1.2). And we give some
sharp conditions for global well-posedness. These results are independent of the local existence theory, so they are not
restricted by the conditions for the local solution.

Let u0 ∈ H , u1 ∈ L, {w j}∞j=1 be a basis function system in H . Construct the approximate solutions of problem (1.1), (1.2)

um(x, t) =
m∑

j=1

g jm(t)w j(x), m = 1,2, . . . (4.1)

satisfying(
(−�)−

1
2 umtt, (−�)−

1
2 ws

) + (umtt, ws) + (um, ws) + (∇um,∇ws) + (
f (um), ws

) = 0,

s = 1,2, . . . ,m, (4.2)

um(x,0) =
m∑

j=1

a jm w j(x) → u0(x) in H, (4.3)

umt(x,0) =
m∑

b jm w j(x) → u1(x) in L. (4.4)

j=1
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Multiplying (4.2) by g′
sm(t) and summing for s we get

d

dt
Em(t) = 0,

and

Em(t) = Em(0), (4.5)

where

Em(t) = 1

2

(∥∥(−�)−
1
2 umt

∥∥2 + ‖umt‖2 + ‖um‖2 + ‖∇um‖2) +
∫
Rn

F (um)dx,

F (u) =
u∫

0

f (s)ds. (4.6)

Lemma 4.1. Let f (u) satisfy (H), u0 ∈ H, u1 ∈ L. Then F (u0) ∈ L1 . And for the approximate solutions um defined by (4.1)–(4.4) there
holds Em(0) → E(0) as m → ∞, where

E(0) = 1

2

(∥∥(−�)−
1
2 u1

∥∥2 + ‖u1‖2 + ‖u0‖2 + ‖∇u0‖2) +
∫
Rn

F (u0)dx.

Proof. First from (H) we have∣∣F (u)
∣∣ � a

p + 1
|u|p+1, ∀u ∈ R,

where 2(1 + 1
n ) � p + 1 < 2n

n−2 for n � 3, 2 < p + 1 < ∞ for n = 1,2. From this and u0 ∈ H1 we get F (u0) ∈ L1.
From (4.3), (4.4) we get that as m → ∞∥∥(−�)−

1
2 umt(0)

∥∥2 + ∥∥umt(0)
∥∥2 + ∥∥um(0)

∥∥2 + ∥∥∇um(0)
∥∥2 → ∥∥(−�)−

1
2 u1

∥∥2 + ‖u1‖2 + ‖u0‖2 + ‖∇u0‖2.

Next we prove∫
Rn

F
(
um(0)

)
dx →

∫
Rn

F (u0)dx as m → ∞.

In fact we have∣∣∣∣
∫
Rn

F
(
um(0)

)
dx −

∫
Rn

F (u0)dx

∣∣∣∣ �
∫
Rn

∣∣ f (ϕm)
∣∣∣∣um(0) − u0

∣∣dx �
∥∥ f (ϕm)

∥∥
r

∥∥um(0) − u0
∥∥

q, 1 < q, r < ∞,

1

q
+ 1

r
= 1,

where ϕm = u0 + θ(um(0) − u0), 0 < θ < 1.
(i) If n � 3. Choose q = 2n

n−2 , r = 2n
n+2 . We have∥∥um(0) − u0

∥∥
q � C

∥∥um(0) − u0
∥∥

H1 → 0 as m → ∞,∥∥ f (ϕm)
∥∥r

r =
∫
Rn

(
a|ϕm|p)r

dx = A‖ϕm‖pr
pr .

From (H) we have 2 � pr � 2n
n−2 , hence ‖ f (ϕm)‖r � C .

(ii) If n = 1,2. Choose q = r = 2, then we have∥∥um(0) − u0
∥∥

q �
∥∥um(0) − u0

∥∥ → 0 as m → ∞,∥∥ f (ϕm)
∥∥r

r = ∥∥ f (ϕm)
∥∥2 � A‖ϕm‖2p

2p .

Since 2 < 2p < ∞, we get ‖ f (ϕm)‖r < C .
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Thus for above two cases we always have∫
Rn

F
(
um(0)

)
dx →

∫
Rn

F (u0)dx as m → ∞

and Em(0) → E(0) as m → ∞. �
Corollary 4.2. Let f (u), u0 and u1 satisfy the conditions of Lemma 4.1. Assume that E(0) < d. Then Em(0) < d for sufficiently large m.

Lemma 4.3. Let f (u) satisfy (H), u0 ∈ H, u1 ∈ L, E(0) < d. Assume that I(u0) > 0 or ‖u0‖H1 = 0, i.e. u0 ∈ W ′ . Then for the approxi-
mate solutions um defined by (4.1)–(4.4) there holds um ∈ W ′ for 0 � t < ∞ and sufficiently large m.

Proof. Arguing by contradiction, we assume that there exists a t̄ > 0 such that um(t̄) /∈ W ′ for some sufficiently large m.
Then by the continuity of I(um) with respect to t it follows that there exists a t0 > 0 such that um(t0) ∈ ∂W ′ . On the other
hand, from the definition of W ′ we have 0 /∈ ∂W ′ . Hence I(um(t0)) = 0 and ‖um(t0)‖H1 
= 0 for some sufficiently large m.
From the definition of d we get J (um(t0)) � d, which contradicts (by (4.5))

Em(t) = 1

2

(∥∥(−�)−
1
2 umt

∥∥2 + ‖umt‖2) + J (um) = Em(0) < d, 0 � t < ∞ (4.7)

for sufficiently large m. �
Corollary 4.4. Under the assumption of Lemma 4.3 we have

‖um‖2
H1 � 2(p + 1)

p − 1
d,

∥∥(−�)−
1
2 umt

∥∥2 + ‖umt‖2 < 2d, 0 � t < ∞, (4.8)

for sufficiently large m.

Proof. From (4.7) we get that for sufficiently large m there holds

1

2

(∥∥(−�)−
1
2 umt‖2 + ‖umt

∥∥2) + p − 1

2(p + 1)
‖um‖2

H1 + 1

p + 1
I(um) = Em(0) < d, 0 � t < ∞,

which together with um(t) ∈ W ′ gives (4.8). �
Theorem 4.5 (Global existence). Let f (u) satisfy (H), u0 ∈ H, u1 ∈ L. Assume that E(0) < d, I(u0) > 0 or ‖u0‖H1 = 0. Then prob-
lem (1.1), (1.2) admits a global weak solution u(t) ∈ L∞(0,∞; H1) with ut(t) ∈ L∞(0,∞; L) and u(t) ∈ W for 0 � t < ∞.

Proof. For problem (1.1)–(1.2), construct the approximate solutions um(x, t) by (4.1)–(4.4). From Corollary 4.4 it follows that
{um} in L∞(0,∞; H1); {umt} in L∞(0,∞; L) are bounded respectively. Moreover by an argument similar to that in the proof
of Lemma 4.1 we can get { f (um)} are bounded in L∞(0,∞; Lr), where r is defined in the proof of Lemma 4.1. Hence there
exists a u and a subsequence {uν} of {um} such that as ν → ∞

uν → u in L∞(
0,∞; H1) weakly star and a.e. in Q = R

n × [0,∞);
uνt → ut in L∞(0,∞; L) weakly star;
f (uν) → χ = f (u) in L∞(

0,∞; Lr) weakly star.

Integrating (4.2) with respect to t from 0 to t we get

(
(−�)−

1
2 umt, (−�)−

1
2 ws

) + (umt, ws) +
t∫

0

(
(um, ws) + (∇um,∇ws) + (

f (um), ws
))

dτ

= (
(−�)−

1
2 umt(0), (−�)−

1
2 ws

) + (
umt(0), ws

)
. (4.9)

Let m = ν → ∞ in (4.9) we obtain

(
(−�)−

1
2 ut, (−�)−

1
2 ws

) + (ut, ws) +
t∫

0

(
(u, ws) + (∇u,∇ws) + (

f (u), ws
))

dτ

= (
(−�)−

1
2 u1, (−�)−

1
2 ws

) + (u1, ws), ∀s
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and

(
(−�)−

1
2 ut, (−�)−

1
2 v

) + (ut, v) +
t∫

0

(
(u, v) + (∇u,∇v) + (

f (u), v
))

dτ

= (
(−�)−

1
2 u1, (−�)−

1
2 v

) + (u1, v), ∀v ∈ H, ∀t ∈ [0,∞).

On the other hand, from (4.3) and (4.4) we have u(x,0) = u0(x) in H1 and ut(x,0) = u1(x) in L.
Next we prove that above u satisfies (1.10).
Note that the embedding H1 ↪→ L p+1 is compact under the condition 2(1 + 1

n ) � p + 1 < 2n
n−2 for n � 3; 2 < p + 1 < ∞

for n = 1,2. Thus from {um} is bounded in L∞(0,∞; H1) it follows that there exists a subsequence {uν} of {um} such that
as ν → ∞

uν → u in Lp+1 strongly for each t > 0.

Hence∣∣∣∣
∫
Rn

F (uν)dx −
∫
Rn

F (u)dx

∣∣∣∣ �
∫
Rn

∣∣ f (vν)
∣∣|uν − u|dx �

∥∥ f (vν)
∥∥

r̄‖uν − u‖q̄,

where q̄ = p + 1, r̄ = p+1
p , uν = u + θ(uν − u), 0 < θ < 1. From

‖uν − u‖q̄ → 0 as ν → ∞,

and ∥∥ f (vν)
∥∥r̄

r̄ =
∫
Rn

(
a|vν |p)r̄

dx = a
p+1

p ‖vν‖p+1
p+1 � C

we get∫
Rn

F (uν)dx →
∫
Rn

F (u)dx as ν → ∞.

Hence

1

2

(∥∥(−�)−
1
2 ut

∥∥2 + ‖ut‖2 + ‖u‖2
H1

)
� 1

2

(
lim inf
ν→∞

∥∥(−�)−
1
2 uνt

∥∥2 + lim inf
ν→∞ ‖uνt‖2 + lim inf

ν→∞ ‖uν‖2
H1

)
� 1

2
lim inf
ν→∞

(∥∥(−�)−
1
2 uνt

∥∥2 + ‖uνt‖2 + ‖uν‖2
H1

) (
by (4.5)

)
= lim inf

ν→∞

(
Eν(0) −

∫
Rn

F (uν)dx

)
= lim

ν→∞

(
Eν(0) −

∫
Rn

F (uν)dx

)

= E(0) −
∫
Rn

F (u)dx

which gives E(t) � E(0) for 0 � t < ∞. Therefore above u(x) is a global weak solution of problem (1.1), (1.2). Finally from
Corollary 3.2 we get u(t) ∈ W for 0 � t < ∞. �
Corollary 4.6. Under the conditions of Theorem 4.5, for the global weak solution of problem (1.1), (1.2) given in Theorem 4.5 we further
have

u(t) ∈ L∞(0, T ; H), ∀T > 0.

Proof. From

(−�)−
1
2 u =

t∫
0

(−�)−
1
2 uτ dτ + (−�)−

1
2 u0, 0 � t < ∞

we get
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∥∥(−�)−
1
2 u

∥∥ �
t∫

0

∥∥(−�)−
1
2 uτ

∥∥dτ + ∥∥(−�)−
1
2 u0

∥∥
� T max

0�t�T

(∥∥(−�)−
1
2 ut

∥∥) + ∥∥(−�)−
1
2 u0

∥∥, 0 � t � T ,

which gives

(−�)−
1
2 u ∈ L∞(

0, T ; L2), ∀T > 0

and

u(t) ∈ L∞(0, T ; H), ∀T > 0. �
Corollary 4.7. If in Theorem 4.5 the assumption “E(0) < d, I(u0) > 0 or ‖u0‖H1 = 0” is replaced by “0 < E(0) < d, ‖u0‖H1 < r0”,
where r0 is defined in Lemma 2.3. Then the conclusion of Theorem 4.5 still holds and

‖u‖2
H1 � 2(p + 1)

p − 1
E(0),

∥∥(−�)−
1
2 ut

∥∥2 + ‖ut‖2 � 2E(0), 0 � t < ∞.

Proof. Note that ‖u0‖H1 < r0 implies 0 < ‖u0‖H1 < r0 or ‖u0‖H1 = 0. If 0 < ‖u0‖H1 < r0, Lemma 2.3 immediately gives
I(u0) > 0. Then the proof is completed by Theorem 4.5 and

1

2

(∥∥(−�)−
1
2 ut

∥∥2 + ‖ut‖2) + p − 1

2(p + 1)
‖u‖2

H1 + 1

p + 1
I(u) = E(t) � E(0) < d, 0 � t < ∞. �

Next we prove the global nonexistence of weak solution for problem (1.1), (1.2).

Theorem 4.8 (Global nonexistence in V ). Let f (u) satisfy (H), u0 ∈ H, u1 ∈ L. Assume that E(0) < d, I(u0) < 0. Then problem (1.1),
(1.2) does not admits any global weak solution.

Proof. Let u(t) ∈ L∞(0,∞; H1) with ut(t) ∈ L∞(0,∞; L) be any weak solution of problem (1.1), (1.2), T be the maximal
existence time of u(t). Now we need to show T < ∞. Arguing by contradiction, we suppose that T = +∞. Let

φ(t) = ∥∥(−�)−
1
2 u

∥∥2 + ‖u‖2.

From the proof of Corollary 4.6 (note that in the proof of Corollary 4.6 the assumptions u ∈ L∞(0,∞; H1), ut ∈ L∞(0,∞; L)

and u0 ∈ H are required only), it follows that φ(t) is well defined for 0 � t < ∞. Then we have

φ̇(t) = 2
(
(−�)−

1
2 ut, (−�)−

1
2 u

) + 2(ut, u),

φ̈(t) = 2
∥∥(−�)−

1
2 ut

∥∥2 + 2‖ut‖2 + 2
(
(−�)−

1
2 utt, (−�)−

1
2 u

) + 2(utt, u)

= 2
∥∥(−�)−

1
2 ut

∥∥2 + 2‖ut‖2 + 2
(
(−�)−1utt, u

) + 2(utt, u)

= 2
∥∥(−�)−

1
2 ut

∥∥2 + 2‖ut‖2 − 2

(
‖u‖2

H1 +
∞∫

−∞
u f (u)dx

)

= 2
∥∥(−�)−

1
2 ut

∥∥2 + 2‖ut‖2 − 2I(u). (4.10)

From Schwartz inequality we get(
φ̇(t)

)2 = 4
((

(−�)−
1
2 u, (−�)−

1
2 ut

) + (u, ut)
)2

= 4
((

(−�)−
1
2 u, (−�)−

1
2 ut

)2 + (u, ut)
2 + 2

(
(−�)−

1
2 u, (−�)−

1
2 ut

)
(u, ut)

)
� 4

(∥∥(−�)−
1
2 u

∥∥2∥∥(−�)−
1
2 ut

∥∥2 + ‖u‖2‖ut‖2 + ∥∥(−�)−
1
2 u

∥∥2‖ut‖2 + ‖u‖2
∥∥(−�)−

1
2 ut

∥∥2)
which gives(

φ̇(t)
)2 � 4φ(t)

(∥∥(−�)−
1
2 ut

∥∥2 + ‖ut‖2).
Hence
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φ(t)φ̈(t) − p + 3

4

(
φ̇(t)

)2 � φ(t)
(−(p + 1)

(∥∥(−�)−
1
2 ut

∥∥2 + ‖ut‖2) − 2I(u)
)
.

From (1.10) we get

−(p + 1)
(∥∥(−�)−

1
2 ut

∥∥2 + ‖ut‖2) � 2(p + 1)
(

J (u) − E(0)
)
> 2(p + 1)

(
J (u) − d

)
.

So by Theorem 3.1 and (2.3) we have

φ(t)φ̈(t) − p + 3

4

(
φ̇(t)

)2 � 2φ(t)
(
(p + 1)

(
J (u) − d

) − I(u)
)
> 0

and

(
φ−α(t)

)′′ = −α

φ(t)α+2

(
φ(t)φ̈(t) − (α + 1)

(
φ̇(t)

)2)
< 0, α = p − 1

4
, 0 < t < ∞. (4.11)

On the other hand, from (4.10) and (2.3) we get

φ̈(t) � −2I(u) > 2(p + 1)
(
d − J (u)

)
� 2(p + 1)

(
d − E(0)

) = δ0 > 0,

φ̇(t) � δ0t + φ̇(0), 0 < t < ∞.

Hence there exists a t0 � 0 such that φ̇(t) > φ̇(t0) > 0 for t > t0 and

φ(t) > φ̇(t0)(t − t0) + φ(t0) � φ̇(t0)(t − t0), t0 < t < ∞.

Therefore there exits a t1 > 0 such that φ(t1) > 0 and φ̇(t1) > 0. From this and (4.11) it follows that there exists a T1 > 0
such that

lim
t→T1

φ−α(t) = 0

and

lim
t→T1

φ(t) = +∞, (4.12)

which contradicts T = +∞. So we prove the nonexistence of global weak solutions. �
From above Theorem 4.8 and Corollary 3.3 we can conclude

Corollary 4.9. Let f (u) satisfy (H), u0 ∈ H, u1 ∈ L. Assume that E(0) < 0 or E(0) = 0, ‖u0‖H1 
= 0. Then problem (1.1), (1.2) does not
admits any global weak solution.

From Theorems 4.5 and 4.8 we can obtain a sharp condition for existence and nonexistence of global weak solution for
problem (1.1), (1.2) as follows.

Theorem 4.10. Let f (u), u0 and u1 be same as those in Theorem 4.5. Assume that E(0) < d. Then when I(u0) > 0 problem (1.1), (1.2)
admits a global weak solution; and when I(u0) < 0 the problem (1.1), (1.2) does not admit any global weak solution.

The above theorem can be followed by another form as follows for problem (1.1), (1.2).

Theorem 4.11. Let f (u), u0 and u1 be same as those in Theorem 4.5. Assume that E(0) < d0 , where d0 is defined in Lemma 2.4, i.e.

d0 = p − 1

2(p + 1)

(
1

aC p+1∗

) 2
p−1

.

Then when ‖u0‖H1 < r0 problem (1.1), (1.2) admits a global weak solution; and when ‖u0‖H1 � r0 problem (1.1), (1.2) does not admit
any global weak solution, where r0 is defined in Lemma 2.3, i.e.

r0 =
(

1

aC p+1∗

) 1
p−1

, C∗ = sup
u∈H1, u 
=0

‖u‖p+1

‖u‖H1
.
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Proof. We will complete this proof by considering case ‖u0‖H1 < r0 and case ‖u0‖H1 � r0 separately as follows.
(i) Since ‖u0‖H1 < r0 implies 0 < ‖u0‖H1 < r0 or ‖u0‖H1 = 0. If 0 < ‖u0‖H1 < r0, from Lemma 2.3 we can derive

I(u0) > 0, which makes Theorem 4.5 work to make sure the weak solution exists globally.
(ii) If ‖u0‖H1 � r0, then by

1

2

(∥∥(−�)−
1
2 u1

∥∥2 + ‖u1‖2) + p − 1

2(p + 1)
‖u0‖2

H1 + 1

p + 1
I(u0) = E(0) < d0 = p − 1

2(p + 1)

(
1

aC p+1∗

) 2
p−1

= p − 1

2(p + 1)
r2

0,

we get I(u0) < 0. Then Theorem 4.8 gives that there is no global weak solution for problem (1.1), (1.2). �
Note that F (u0) = a

p+1 |u0|pu0. Hence if u0(x) � 0 a.e. in R
n , then from E(0) < d0 we can obtain ‖u0‖2

H1 � p−1
p+1 r2

0 < r2
0 .

Therefore we have the following corollary.

Corollary 4.12. Let f (u), u0 and u1 be same as those in Theorem 4.5. Assume that E(0) < d0 and u0(x) � 0 a.e. in R
n. Then prob-

lem (1.1), (1.2) admits a global weak solution.

5. Generalization and example

In this section we give a generalization and an example for the results of this paper.

Generalization 5.1. Clearly all the results of this paper also hold when we replace Eq. (1.1) by

utt − �u − a�utt + b�2u = � f (u),

where a and b are positive constants.

Example 5.2. Consider the multidimensional generalization of Eq. (1.3)

utt − �u − a�utt + b�2u = � f (u), (5.1)

where a and b are positive constants, f (u) = 3
2 u2. It is easy to check that this f (u) satisfies (H) for 1 � n � 5. Hence from

Theorem 4.11 we can obtain the following

Theorem 5.3. Let f (u) = 3
2 u2 , 1 � n � 5, u0 ∈ H and u1 ∈ L. Assume that

∥∥(−�)−
1
2 u1

∥∥2 + ‖u1‖2 + ‖u0‖2 + ‖∇u0‖2 +
∫
Rn

u3
0(x)dx <

1

3

(
2

3C3∗

)2

. (5.2)

Then when

‖u0‖2 + ‖∇u0‖2 <

(
2

3C3∗

)2

problem (5.1), (1.2) admits a global weak solution; and when

‖u0‖2 + ‖∇u0‖2 �
(

2

3C3∗

)2

the problem (5.1), (1.2) does not admit any global weak solution.

Corollary 5.4. Let f (u), n, u0 and u1 be the same with those in Theorem 5.3. Assume that u0(x) � 0 in R
n and (5.2) holds. Then

problem (5.1), (1.2) admits a global weak solution.
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