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It is shown that if A and B are n x n complex matrices with A = A* and 
II AB - BA /I < 2ce/(n - l), then there exist n x VI matrices A’ and B’ with 
A’ = A’* such that A’B’ = B’A’ and 11 A - A’ 11 < l , I( B - El’ \I < E. 

We consider operators (that is, bounded linear transformations) on a 
finite-dimensional Hilbert space S (over the complex numbers) with the 
usual operator norm 

il Tli = sup{li Tfli :fE X, lifli < 1:. 

We obtain the following result. 

THEOREM 1. Let X be an n-dimensional complex Hilbert space and let ,4 
and B be operators on &?, with A self-adjoint. Let E > 0 be given. If 

I/ AB - BA j( < 2, 

then there exist two operators A’ and B’ on s?, with A’ self-adjoint, such that 
A’B’ = B’A’ and 

// A - A’ (1 < E, (1 B - B’ (1 < C. (3) 

Furthermore, if B is self-adjoint then B’ can be chosen to be self-adjoint also. 

Note the asymmetry in (3), with strict inequality for one term but not for the 
other. The proof will show that we could also have the weak inequality for A 
and the strict inequality for B. (See the comment at the end of the proof.) 

This theorem gives a quantitative answer (in case A is self-adjoint) to a 
problem raised by Rosenthal [9] about whether a pair of n x n matrices that 
“almost commute” is close to another pair that do commute. More precisely, 
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the following is a slight reformulation of his question. Let .x? be an n-dimen- 
sional complex Hilbert space. Then for each z > 0, does there exist 6 = a(~, n)> 
0 such that if A, B are operators on .z? with 1) AB - BA 1) < 6, then there are 
operators ,4’, B’ on # that commute and for which (3) holds? He suggested 
that perhaps one should require in addition that 

II-Q < l,IIBll < 1. (4) 

Our result gives an affirmative answer in case A is self-adjoint and shows that 
in this case S(E, n) > 2e*/(n - 1); we do not know what the largest possible 
6 is. 

An affirmative answer (when (4) is assumed, but with no assumption of 
self-adjointness) was first given by Luxemburg and Taylor [6], using non- 
standard analysis. “Standard” proofs were then given, but not published, 
by P. R. Halmos and W. Kahan. Halmos’ proof later appeared as Lemma 1 
in [I]. J. Deddens, in an unpublished preprint [4], showed that if i4, B are both 
self-adjoint, and if I/ AB - B.4 1) < l 2/n2, then a pair of commuting self- 
adjoint operators A’, B’ can be found that satisfy (3). (Our work and his work 
were done independently of one another at about the same time-namely, 
early in 1972.) His proof is simpler than ours; it uses the Hilbert-Schmidt 
norm as a tool. This norm is easier to work with, but in passing to the regular 
norm some precision is lost. (His proof works even if B is not assumed to be 
self-adjoint; in this case B’ will usually not be self-adjoint.) Note that neither 
our result nor Deddens’ result requires (4). On the other hand, to establish 
either of our results it would be sufficient to establish it in the special case 
when (4) is assumed, the general case then would follow upon division by a 
constant. Thus (4) really plays no role in this problem (at least if one of the 
operators is self-adjoint), although it is needed in the compactness arguments 
used by the authors referred to above. 

After the proof of the theorem we discuss some open problems. We wish 
to thank Arlen Brown, P. R. Halmos, and W. Kahan for helpful discussions of 
this circle of ideas. 

We require three lemmas, the first of which is due to Schur (see I?, p. 13, 
in [l I]). He considered infinite matrices (viewed as linear transformations on 
(I”)) but his proof works for finite rectangular matrices as well. 

hvmA 1. Let T = (tij) be given and fet {fi>, {gj} c L2(1), where 1 is a sub- 
interval (possib& injnite) qf the real line. Assume that li.f, )I < cy, l/gj I/ < /3 for 
all i, j, and let vij = (fj , gj). Then 

The matrix with entries (uijtij) is sometimes called the Schur product of the 
matrices (zlij) and (tij). Von Neumann suggested the name “Hadamard product” 
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because of the analogous product of two power series, but the name “Schur 
product” seems much more appropriate since Hadamard never discussed 
this concept, whereas Schur’s paper [II] contains a number of very useful 
theorems concerning it. The next lemma is an easy consequence of Lemma 1. 

LEMMA 2. Let T = (tij) (1 < i < u, 1 < j < v) be a complex rectangular 
matrix. Let a, ,..., a, and b, ,..., b, be real numbers, with ai - bj > d > 0 for 
all i, j. Then 

ii( 
I __- 

a, - bj 
tij < iI\ T (1. 

Proof. Let c be the number midway between the smallest value of ai and 
the largest value of bj . Thus ai - c 3 d/2 and c - bj 3 d/2 for all i, j. In 
La(O, 00) let fi(x) = exp(-(a, - c)x), gj(x) = exp(-(c - b,)x). Then (( fi (I*, 
I( gj \I2 < l/d, and vij = (fi , gi) = l/(ai - bj). The result now follows from 
Lemma 1. (Note: instead of using Lemma 1 the proof could also be based 
on a theorem of Rosenblum [8].) 

The final lemma was conjectured (and established in a weaker form) by the 
authors and proved by S. Schanuel [IO] by an elementary but very clever 
argument. 

LEMMA 3. Let dI ,..., d, be non-negative numbers. Then a subset {i(l), i(2),..., 
i(m)} of the integers {I ,..., n} can be found such that i(1) < ... < i(m), and 

(9 4 + -‘. + d,(l)-1 -c 1, h+l + ... + dit2)pI < 1, . . . . 

(ii) -&- + & + ..- + & d n. 
2(l) 

We allow the empty subset (m = 0). In this case (ii) is vacuously satisfied, 
and (i) will be satisfied provided d, + . .. + d, < 1. We also allow the full 
set (m = n). In this case (i) is vacuously satisfied. In general we regard the subset 
&) ,.-., 4,)) = being “removed” from the ordered set dI ,..., d, , and then 
condition (i) requires that the sum in each “block” that remains must be less 
than one, while condition (ii) requires that the sum of the reciprocals of the 
removed elements must not exceed n. 

Proof of Theorem 1. Since A is self-adjoint we may choose an orthonormal 
basis relative to which the matrix for A has diagonal form, with diagonal entries 
A, > A, > ..’ > h, . Let (bi,) denote the matrix for B with respect to this basis. 
We shall identify A and B with their matrix representations. A calculation 
shows that 

AB - BA = ((Xi - Xj)bij) (1 < i, j < n). 
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We divide the numbers A, ,..., A, into disjoint consecutive blocks by a proced- 
ure to be described later. We require two properties of this division, the second 
of which will be given later (after (12)). The first property is that in each block 
the difference between the largest and smallest number shall be less than 2~. 
We introduce some notation. Let s denote the number of blocks and let the 
integers i(1) < i(2) < ... < i(s) denote the final indices in the blocks (thus 
i(s) = PZ). The blocks then are 

and our first condition is that 

A1 - hi(l) < 25 A&)+1 - hi(*) < 2E,.... (7) 

In each block we take the average value of the largest and smallest number, 
and we form a new sequence {pj) from these averages: 

z pi(l) == hl -+2Aic,r ) 
hc1 + 

A 

rul = ... 
pi(l)+l = ... z jqe) == 

i(P) 

2 

,... . 

Thus j ps - Ai i < E for all i. Let A’ denote the diagonal matrix formed from 
the $J; then clearly /I A - A’ )I < c. 

Using these blocks the matrix B is partitioned into a block matrix (Bij) 
(1 < i, j < s). Let B’ denote the diagonal block matrix formed by keeping 
only the diagonal terms B,, , B,, ,... and replacing all the off-diagonal terms 
by 0. Note that if B is self-adjoint, then so is B’. We illustrate the case s = 3: 

Then A’B’ = B’A’, since the entries for A’ are constant in each diagonal 
block. Thus to complete the proof we must show that the blocks can be chosen 
so that 11 B - B’ // .< E. 

We may write B - B’ = B, + B2 + ... + B,-, , where B, is formed from 
B by replacing B,, by 0, and by replacing B, by 0 whenever both i > 1 and 
j > 1. Likewise, B, is formed from B by replacing the first row and the first 
column of B by 0, by replacing B,, by 0, and by replacing Bij by 0 whenever 
both i > 2 and j > 2. The matrices B3 ,..., B,-, are defined similarly. Thus 

II B - B’ II d II B, II + ... + II B,-, Il. (9) 

We illustrate the case s = 3 as in (8): 
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Note that each matrix B, is the sum of two matrices, Bk = BL + B; , where 
B; contains the non-zero column of Bk , and B; contains the non-zero row. 
(Thus B; is formed from B, by replacing B,, , B,, ,... by 0, and similarly for 
B;, etc.). Also it is easy to see that 

II B, II = m4ll B; II , II Bi II). (10) 

Now let AB - BA = C = (Cij) (1 < i,j <s) where (Cij) is the block 
form of C. For 1 < k < s - 1, let CI, , CL , C;l. be formed from C in the same 
manner that the corresponding matrices were formed from B. It can be shown 
that /I CL 11 < (I C /(. (Consider a unit vector where C; attains its norm.) Hence, 
by taking adjoints, one sees that \I CL 11 < 11 C 11. Thus by (2) 

and similarly for CI . From (5) we see that the entries in Cl are of the form 

Cij = (hi - hj)bij , i(l) + 1 <i < ?Z, 1 <j f i(l). 

Analogous statements can be made for Cl and for CL , Cl , 2 < K < s - 1. Let 

% = h(l) - h(l)+1 ? 012 = b(2) - h2)+1 Y...T (11) 

Hence / hi - hj ( > ai whenever i( 1) + 1 < i and j < i(1). 
Applying Lemma 2 with T = C; , Ui x hi (i(l) + 1 < i .< ?l)y bj = Aj 

(1 <j S. i(l)), we have 

(1 B’ (1 ( m!e 2EP 11 a1 n--l’ 

We obtain the same estimate for B; , and hence, by (IO), for B, . Similarly, 
we have 

Thus by (9) 

!(B-B'jl< (+.+,&)-$ 

To complete the proof we must arrange that the term in parentheses doesn’t 
exceed (n - 1),/2~ . This is the second property that we require when we divide 
{hi} into blocks. 

Note that in proving the theorem it would be sufficient to establish it for one 
fixed value q, of E; the general case would follow from this by multiplying (2) 
and (3) by suitable constants. Let us take E” = &. Then our two conditions 
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on the division into blocks become: (i) the difference between the first and last 
h in each block must be less than 1, (ii) C C$ < n - 1, where the numbers oli 
are defined by (1 l), that is, 01~ is the difference between the last element in the 
ith block and the first element in the (i + I)-st block. It will be convenient to 
reformulate these conditions by introducing the differences 

4 = 4 - A, , dz = h, - h, ,..., d,,mr = h,-, - h, . 

These are non-negative numbers, and our two conditions now become 

N 4 + ... + &1)-l < 1, di(l)+l + a*- + 4(z)-1 < 1, . . . . 

(ii) 1 
d<(l) -’ 4(z) L+ -+A <n--l 

by virtue of (6), (7) and (11). It follows from Lemma 3 that the indices i(l),..., 
i(s - 1) can be chosen so as to satisfy these two conditions. This completes 
the proof of the theorem. 

COROLLARY 1. Let ~9 be an n-dimensional complex Hilbert space and let 
T be an operator on s?. If 

/I T*T- TT*jj <A, 

then there is a normal operator N on X with 11 T - N (/ < E. 

Proof. Let T = A + iB, with A, B self-adjoint. A calculation shows that 
T*T - TT* = Zi(AB - BA). Hence equation (2) is satisfied with E replaced 
by 42. Thus there are commuting self-adjoint operators A’, B’ that are within 
distance c/2 of A, B respectively. Let N = A’ + iB’. Then N is normal and 
11 T - AI] < E. 

There are several open problems that we would like to mention. First, does 
the theorem hold without the assumption that A is self-adjoint ? Two results 
in this direction were obtained by Bernstein (see [2; 3, Theorem 2.21) who 
showed that if A, B are n x n matrices that “almost commute” then they have 
a common “almost eigenvector,” and there is an orthonormal basis with respect 
to which they both “almost have” upper triangular form. He does not require 
self-adjointness, but his hypotheses are very restrictive in their dependence on n. 

The second problem concerns the dependence on n. It is still an open question 
whether, for each E > 0, there exists 6 = 8(e) > 0 such that for all n, if A, B 
are n x n complex matrices with /I AB - BA 1) < 6, then there exist commuting 
n x n matrices A’, B’ with I/ A - A’ /I < 6, I/ B - B’ /I ,( E. One could ask 
the analogous question about the corollary. If the answer to this question is 
affirmative, then one could pass to the limit and have an analogous result for 
compact operators on infinite-dimensional Hilbert space. 
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It is known that such a result is not true for non-compact operators. The 
following example was shown to us by Halmos; it is a slight modification of one 
given by Bastian and Harrison in [l]. 

Let {eJ& be an orthonormal basis for a separable, infinite-dimensional 
Hilbert space, and let T, be the weighted shift operator defined by Tnej = 
(i/n)ll”ei+l (1 < i < n), T,,ei = eitl (; > n). A calculation shows that 
(1 TtTn - T,Tz /( = l/n. On the other hand, T, differs from the unweighted 
unilateral shift by a compact operator, and hence, by a lemma of Halmos 
(see [l, Lemma 2]), /I T, - N 11 >, 1 for every normal operator IL’. For some 
other results in the infinite-dimensional case, see [5, 71. 

The last problem we shall mention is the following. (It is probably easier 
than the others.) As noted at the beginning of the paper, if we limit our atten- 
tion to operators of norm at most one, then for each E > 0 there exists S =: 
S(E, n) such that if /I AB - BA /I < 6, then there exist commuting operators 
A’, B’ for which /I A - A’ /( < E, II B - B’ 11 < l . We take S(q n) to be the 
maximum admissable value of such 6. Is it true that S(E, n) > S(E, n + 1) for 
all E and n ? 
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