
File: 505J 301201 . By:CV . Date:25:01:00 . Time:07:56 LOP8M. V8.0. Page 01:01
Codes: 3788 Signs: 1967 . Length: 50 pic 3 pts, 212 mm

Journal of Differential Equations � DE3012

journal of differential equations 125, 133�153 (1996)

Behavior of Solutions of Model Equations
for Incompressible Fluid Flow

Yahan Yang*

Courant Institute, New York University, New York, New York 10012

Received July 29, 1993; revised May 26, 1994

We study the behavior of solutions of model equations of inviscid incompressible
fluid flow proposed by Constantin, Lax and Majda together with a viscous version
studied by Schochet. A condition is found on initial data to guarantee that solution
of viscous equation remains smooth when the inviscid solution blows up. We prove
that global smooth solution of viscous model equation exists for a class of initial
data, for which the explicit solution is not known. Singularities of solutions pre-
viously obtained are characterized here as distributions. � 1996 Academic Press, Inc.

1. Introduction

Here we are concerned with the following equation

|t(x, t)=|(x, t) H(|)(x, t), (1.1)

together with its viscous version

|t(x, t)=|xx(x, t)+|(x, t) H(|)(x, t), (1.2)

where x is in R1 and H is the Hilbert transform. Equation (1.1) was intro-
duced by Constantin, Lax and Majda in [2] as a model of the vorticity
equation of the 3-D incompressible Euler equations. The initial value
problem with equation (1.1) is solved in [2], where it is also shown that
there exist initial data such that the solution blows up in finite time.
Schochet has obtained a class of explicit solutions for equation (1.2) which
too blow up in finite time, see [6].

In this paper, we study the behavior of solutions of equation (1.2). In
Section 3 we compare the life spans for solutions of equations (1.1) and
(1.2). We show for initial data |0 , if there exists x0 # R such that

|0(x0)=0, and H(|0)(x0)=max
x # R

H(|0)(x),
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then solution for (1.2) remains smooth even as the solution for equa-
tion (1.1) with the same initial data |0 blows up. On the other hand, it has
been demonstrated by Schochet in [6] that for model equation (1.2)
viscosity hastens the instability of solution for some other initial data.

In Section 4 we compare the behavior of blowing up of solutions of
viscous model equation to that of solutions of semi-linear heat equation.
We observe that solutions obtained by Constantin, Lax and Majda and
solutions obtained by Schochet converge to definite distributions when t
tends to critical time. In formulas we have

lim
t � t&

critical
|

+�

&�
|(x, t) ,(x) dx=(G, ,) ,

where | is a solution of Constantin, Lax and Majda for equation (1.1), or
a solution of Schochet for equation (1.2), G is a distribution depending on
initial data |0 and , is any C �

0 (R) test function. We include a discussion
of how this observation may relate to problem of continuing the solutions
beyond critical time.

Finally in Section 5 we prove for initial data |0 such that

|0(x)>0 for all x # R

or

|0(x)<0 for all x # R,

where explicit solution is not known, global smooth solution exists for
equation (1.2).

Section 2 next contains some preliminary materials.

2. A New Proof of Local Existence Result

2.1. Preliminaries

The equation of Constantin, Lax and Majda is a 1-dimensional model of
the vorticity equation for the 3-dimensional incompressible Euler equa-
tions. The initial value problem takes the form

|t=|H(|)
(2.1)

|(x, 0)=|0(x).
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In most of our study, (2.1) will be considered together with its viscous
counterpart

|t=|xx+|H(|)
(2.2)

|(x, 0)=|0(x).

A beautiful complexification technique is invented in [2] which provides
solutions to equation (2.1). Write

Q(x, t)=|(x, t)+H(|)(x, t) i.

Then if both Q and (&(i�2) Q2) are in Hardy space H 2(E +
2 ), by taking

Hilbert transform with equation (2.1), we have

Ht(|)=Im {&
i
2

Q2==
1
2

(H 2(|)&|2). (2.3)

Combining (2.3) with (2.1), we arrive at another form of the initial value
problem

Qt(x, t)=&
i
2

Q2(x, t)
(2.4)

Q(x, 0)=Q0(x),

with

Im[Q]=H(Re[Q]), (2.5)

where Q0(x)=|0(x)+iH(|0)(x) belongs to H 2(E +
2 ) if |0 is in L2. A very

useful result of these steps is that we get rid of the non-locality present in
(2.1), and (2.4) is simply an ODE with fixed x variable. But there is a point
of caution here: (2.4) and (2.5) as equations of Q are apparently overdeter-
mined in form, in general one can only pose the problem: find a complex
valued function Q(x, t) such that

Qt=&
i
2

Q2

(2.6)
Q(x, 0)=Q0(x).

Equation (2.6) is much easier to deal with. Solution formula follows
immediately

Q(x, t)=
Q(x, 0)

1+(t�2) iQ(x, 0)
. (2.7)
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It is easy to check that (2.7) is good only for finite time when there is
x0 # R such that the initial data satisfies

|0(x0)=0 and H(|0(x0))>0. (2.8)

In fact life span of solution in this case is

tcrit.=
2

(maxx # R, |(x)=0 H(|0(x)))
.

To show that Q(x, t) in (2.7) solves (2.1) , we need to prove that this
solution is in H 2(E +

2 ) for all t before critical time to justify (2.5).
In [2], this fact follows from the local existence proof using results for

Lipschitz nonlinear differential equations and the observation that H 1(R)
is a Banach algebra, where Hilbert transform is a continuous map. Later
in this section we will provide a simple direct verification of relation (2.5)
for solutions (2.7) using a simple lemma in complex variable.

Another important fact found in [2] is that, in case the initial data |0

is periodic (say 2?), and if we model the velocity field by

u(x, t)=|
x

0
|(!, t) d!,

then

|
?

&?
||(!, t)| p d! � � as t � tcrit. ,

|
?

&?
|u(!, t)| p d!<M( p) as t � tcrit. ,

for any 1� p<�. Our observation proved later that solutions converge in
distribution sense when blowing up shares similar basis with this property,
though one can not be deduced from the other. From now on, we use
Q(x, t) to stand for the solution given by (2.7).

Similarly, by complexifying the viscous model equation, we also get
another form of (2.2): find a complex valued function Q, such that

Qt=Qxx&
i
2

Q2

(2.9)

Q(x, 0)=Q0(x).
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A Family of Explicit Solutions of Schochet

A family of explicit solutions are found by Schochet in [6] for nonlinear
equation (2.9). They take the following form

Q=Q(x, t, z1(0), z2(0), \)

=|(x, t)+i[H(|)](x, t)

=&
k\ i

(x&z1(t))(x&z2(t))
&

12i
(x&z1(t))2&

12i
(x&z2(t))2 (2.10)

with k\=12(6\- 6), while z1(t), z2(t) are initially on the lower half plane
so that the initial data is in H 2(E +

2 ) and

z1(t)= 1
2 [z1(0)+z2(0)+([z1(0)&z2(0)]2& 5

3 k\ t)1�2],

z2(t)= 1
2 [z1(0)+z2(0)&([z1(0)&z2(0)]2& 5

3 k\ t)1�2].

Because the imaginary part of

([z1(0)&z2(0)]2& 5
3 k\ t)1�2

goes to +� as t � +�, z1(t) must move up to cross the real line in finite
time. It is at that time that the solution (2.10) blows up.

Obviously initial data of solutions in formula (2.10) consist of only a
subset of all data in H 2(E +

2 ). From now on, we use Q(x, t, z1 , z2 , \) to
stand for the solution given by (2.10).

2.2. A Direct Verification that Q(x, t) Remains in H 2(E +
2 ) for t<tcrit.

The proof is based on the following simple lemma

Lemma 1. Let f (z) be a complex analytic function defined on the upper
half plane E +

2 . Suppose f (z) � 0 as |z| � �, and there exists z0 in E +
2 where

Re[ f (z0)]=0 and Im[ f (z0)]>0. Then there is a curve in E +
2 connecting z0

to some point on real line

z(t) : [0, tm) � E +
2 , z(0)=z0

such that

Re[ f (z(t))]=0 for all t # [0, tm)

and Im[ f (z(t))] is strictly increasing with respect to t. In particular

max
z # E2

+, Re[ f (z)]=0
(Im[ f (z)])= max

x # R, Re[ f (x)]=0
(Im[ f (x)]).
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This lemma looks like the familiar maximum principle. Indeed we
can say something accordingly with respect to f (z). For example, | f (z)|,
Re[ f (z)] and Im[ f (z)] take on extreme value only on real line and at �.
However our lemma is slightly different in that we have the condition
Re[ f (z)]=0 in selecting a maximum for Im[ f (z)]. To prove Lemma 1,
one can begin by looking at the map f, which is assumed not to be a
constant, around a small neighborhood of z0 , where f (z)t

f (z0)+( f (n)(z0)�n !)(z&z0)n, n�1 and f (n)(z0){0. It is then easy to see
that the map we want to construct, z(t), exists locally; and we can choose
parameter t=Im[ f (z(t))]&Im[ f (z0)]. Now | f (z(t))|=Im[ f (z(t))]>
Im[ f (z0)]>0. Hence, in extending the domain of definition, Z(t) has to be
localized within some finite region B+(r)=[z | |z|�r, Im[z]>0], because
f (z) � 0 when z � �. Now for any $>0, B+

$ (r)=[z | |z|�r, Im[z]�$]
is a compact region in the interior of E +

2 , which can be covered by finite
number of small open discs where f is well approximated by the local
Taylor expansions as above. As a result, the domain of definition for z(t)
can be extended uniformly within B+

$ (r): there exists =>0, such that if z(t)
is defined for 0�t�tn and z(tn) # B+

$ , then z(t) can be defined for
t # (tn , tn+=), where Im[ f (z(tn+=))]&Im[ f (tn)]==. As Im[ f (z)] is
bounded for z # B+

$ , z(t) must leave the compact region after finite steps of
extensions. In other words, z(t) approaches the real line when t tends to the
upper limit. Of course the detail behavior of z(t) when t increases depends
on the regularity property of f near the real line. If f is assumed to be
analytic at R1, above argument (let $=0) shows that f (z(t)) reaches the
real line in finite steps. While if f is only assumed to be continuous at the
real line, we can conclude from this construction of z(t) that

max
z # E2

+, Re[ f (z)]=0
(Im[ f (z)])= max

x # R, Re[ f (x)]=0
(Im[ f (x)]).

In [2], | # H 1(R) and so the complex function |+H(|)(z) is continuous
at the real line.

We now prove that when |0 , H(|0) decay at infinity, relation (2.5)
holds for solution in (2.7) for any t<tcritical . Hence Q(x, t) must be a
solution for the vorticity model equation (2.1).

Proof. We recall the explicit solution formula

Q(x, t)=
Q(x, 0)

1+ 1
2 tiQ(x, 0)

.

In terms of |0 and H(|0), this is

Q(x, t)=
|0(x)+iH(|0)(x)

(1&(t�2) H(|0)(x))+(1�2) |0(x)i
. (2.11)
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As |0 # L2, the domain of definition of |0+iH(|0) can be analytically
extended to include E +

2 . Then by (2.11), Q(z, t) is defined for z # E +
2 . In

verifying that Q(z, t) is analytic and in H 2(E +
2 ), we first show that there

is no singularity for Q(z, t) in E +
2 for t<tcritical . Obviously

\1&
t
2

H(|0)(x)++
1
2

|0(x)i{0 for all x # R, t # (0, tcritical). (2.12)

Because |0(x), H(|0)(x) decay at infinity, |0(z)+iH(|0)(z) � 0 as z � �.
Using Lemma 1, we have from (2.12)

\1&
t
2

H(|0)(z)++
1
2

|0(z) i{0 for all z # E +
2 , t # (0, tcritical).

In addition, we have |Q(x + yi, t)| t O( ||0(x + yi ) + iH(|0)(x + yi)| )
( y�0), as x � �. As a result Q(z, t) is in H 2(E +

2 ) for all t before Q(x, t)
breaks down, which implies relation (2.5) for Q; then because Q(x, t)
satisfies ODE

Qt(x, t)=&
i
2

Q2(x, t),

we conclude that the real part is indeed a solution for (2.1).

3. Comparison of Life Spans

It is a surprising result in [6] that solution of viscous model equation,
Q(x, t, z1 , z2 , +), with

z1(0)=x1&
ic
2

|x1&x2 |, z2(0)=x2&
ic
2

|x1&x2 |,

x1 , x2 # R, c<0.219, blows up sooner than the solution of the inviscid
model equation with the same initial data. In general viscosity is known to
have regularizing effect on solutions. Constantin shows in [5] that, at any
given time, solution of the genuine Navier�Stokes equation remains
smooth if inviscid Euler flow exists, providing that the viscosity is small;
and we note that for the later to become singular, vorticity must blow up,
see [1]. For nonlinear heat equations, Friedman and Lacey prove in [4]
that viscosity increases the life spans of solutions. In this section, we iden-
tify a class of initial data for the model equations where viscosity decreases
instability.
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Theorem 1. Suppose the initial data |0 , H(|0) # L2 & L�, decay at
infinity, and solution Q(x, t) for equation (2.1) blows up at x0 . If in addition

H(|0)(x0)=max
x # R

H(|0)(x),

then the solution for equations (2.2) with same initial data |0 remains smooth
when solution for equations (2.1) blows up.

It is readily verified that following initial data in H 2(E +
2 ):

|0(x)+H(|0)(x) i=
(&1)n bi

(x&x0+ai )2n , or
(&1)n+1 b

(x&x0+ai )2n+1,

where x0 # R, a>0, b>0, n is any positive integer, will satisfy conditions
of Theorem 1.

Schochet points out in [6] that when we have two locations where H|
is large, one might diffuse toward the other so that the blow up of viscous
solution happens sooner. The condition in Theorem 1 corresponds to a
single hump situation. For the viscous solution, blow up does not
necessarily occur at the point where | vanishes. The key point in the proof
below is that | being non zero does not increase the instability of viscous
solution. In the proof of Theorem 1, we make frequent uses of the com-
parison theorem:

Theorem 2 (Comparison Theorem). Suppose f (x, t, u) is a smooth
function and D=0_(0, T ) is a bounded domain in Rn_R+ , with 0 simply
connected, �0 smooth. Let

pu=ut& :
n

i, j=1

(aij (x, t) uxi)xj ;

we assume that p is uniformly parabolic. Let u and v each be C 2 functions of
x in 0� , C1 function of t on [0, T], and satisfy the following three conditions:

pu& f (x, t, u)� pv& f (x, t, v), (i)

u(x, 0)�v(x, 0), (ii)

u(x, t)>v(x, t) for (x, t) # �0_[0, T]. (iii)

Then

u(x, t)>v(x, t) for all (x, t) # 0_(0, T ).
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Remark 1. We can have a variation on condition (i) of this theorem.
Suppose u(x, t)>0 for all (x, t) # 0� _[0, T], then the result is still true if
(i) holds whenever v�0, that is,

pu& f (x, t, u)�pv& f (x, t, v) for (x, t), such that v(x, t)�0. (i)$

Proof of Theorem 1. We begin by first comparing the life spans of the
imaginary parts of solutions to (2.6) and (2.9). For brevity we use
|1+iH1 , |2+iH2 to stand for two solutions and |0+iH0 for initial data.
Hence

I: �t H1(x, t)= 1
2 (H 2

1&|2
1),

II: �t H2(x, t)=�xx H2+ 1
2 (H 2

2&|2
2),

with the same initial data |0 which satisfies

A: |0(x0)=0,

B: H0(x0)>0,

C: H0(x0)=maxx # R H0(x).

We show that H2(x, t) remains smooth even when H1(x, t) blows up. First
we observe that

max
x # R

H1(x, t)=H1(x0 , t),

which follows from solution formula (2.7). Hence H1(x, t) blows up if and
only if H1(x0 , t) blows up. By A and (2.11), |1(x0 , t)#0. Hence I gives

�t H1(x0 , t)= 1
2 H 2

1 (x0 , t).

Define

H1*(x, t)=H1(x0 , t) \x # R.

Then

�t H1*(x, t)=�xx H 1*(x, t)+ 1
2 H1*(x, t)2.

Now the problem of comparing H1(x, t) and H2(x, t) becomes the problem
of comparing H 1*(x, t) and H2(x, t), which fits into the framework of the
comparison theorem. First, as |0(x), H0(x) decay at infinity, by some
standard methods with parabolic equations, |2(x, t), H2(x, t) must tend to
0 as x � � for fixed t before blowing up. Let u=H 1*, v=H2 . Then condi-
tion (ii) of the comparison theorem is obviously satisfied. Condition (iii)
holds if 0, an interval here, is sufficiently large due to the decay property
of H2 in x variable. As for condition (i), now let

pg=gt&gxx , f ( g)= 1
2 g2.
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We have

( pu& f (u))&( pv& f (v))= 1
2 |2

2�0.

So we conclude

H 1*(x, t)>H2(x, t)

for t>0 before H 1* blows up. Next we show that H 1* blows up sooner from
the strict inequality above. By continuity there exists a positive number =,
such that

H2(x, t1+=)�H 1*(x, t1).

Now we use comparison theorem for H 1*(x, t) with initial data H 1*(x, t1)
and H2(x, t) with initial data H2(x, t1+=). We have

H 1*(x, t1+t)�H2(x, t1+=+t)

as long as H 1*(x, t1+t) remains finite. This implies H 1* blows up at least
= sooner than H2 . To complete the proof of the Theorem 1, we still
have to show that, if maxx # R H2(x, t) remains finite, then so do
maxx # R ||2(x, t)| and minx # R H2(x, t).

Lemma 2. Let |, H be a solution to the following system

|t=|xx+|H

Ht=Hxx+ 1
2 (H 2&|2) for x # R, t # [0, T ), T>0.

Suppose

H(x, t)�M for x # R, t # [0, T ).

Then

||(x, t)|�max
x # R

( ||0 | ) eMT,

H(x, t)�min
x # R

(H0(x))& 1
2 max

x # R
( ||0(x)| 2) Te2MT.

Proof. Let |*, |
*

be two functions of t that solve the ODE with dif-
ferent initial data:

|t*=M|* |
*t=M|

*
|*(0)=max(0, max

x # R
(|0(x))), |

*
(0)=min(0, min

x # R
(|0(x))).
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By using comparison theorem in the way that we just did, together with the
variation of condition (i) in our Remark 1, we have

|
*

(t)�|(x, t)�|*(t) for all x # R, t # [0, T ).

Integrating these two ODEs, we get

||(x, t)|�(max
x # R

||0(x)| ) eMT.

Apply comparison theorem once more now with equation for H, then the
lower bound of H can be dominated by function H

*
(t) which is solution

of

H
*t=&1

2 (maxx # R ||0(x)| )2 e2MT

H
*

(0)=min
x # R

(H0(x)).

Lemma 2 follows immediately.

4. Solutions Blow Up As Distributions

In many physical situations, the development of singularities in the solu-
tions is intimately connected with the problem of continuing the solution
beyond critical time in the weak sense. As a first step in this direction, we
establish a few basic facts below concerning the solutions of model equa-
tions. We show that solutions given by (2.7) and (2.10) converge in dis-
tribution sense as t � tcrit. . As a result, one may first drop the constraint
imposed by relation (2.5) to simplify the problem and treat continuation of
solutions as an initial value problems for differential equations, (2.6), (2.9),
with distributional initial data and t starting from tcrit. . We point out here
that, while this consideration raises an interesting problem on the other
aspects of viscous model equation, it is straight forward to verify that such
continuation does not exist for equation (2.6). We remark here that the
uniform boundedness of L p norm of model velocity observed in [2]
already implies that there exists a subsequence, tn � tcrit. , such that |(tn)
converge to a distribution. Our explicit computations below also apply to
the more singular viscous solutions of Schochet.

The main underlying technical point involved here can be illustrated very
briefly as follows: the complex function

v(x, t)=
2

(x+(tcrit.&t) i )2
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will have some cancellation at x=0 and converge in inner product with a
C�

0 test function of x as t tends to tcrit ; on the other hand the familiar real
function

v
*

(x, t )=
2

x2+(tcrit.&t)2

will make inner product with test functions which are not zero at x=0 go
to �, even though they both tend to

v0(x)=
2
x2

as t tends to tcrit. for almost all x.

Theorem 3. Suppose Q(x, t) in (2.6) blows up at finite points xj ,
1� j�n at t=tcrit . If in addition the initial data Q0=|0+iH(|0) satisfies

Q0(z)=Q0(xj)+(aj+bj i )(z&xj)+O((z&xj)
2),

with aj{0, for z in small neighborhoods around xj in E +
2 . Then Q(x, t) con-

verges in distribution sense as t � tcrit. .

Remark 2. In case n=1, write Q0(z)=Q0(x1)+(a~ 1+b� 1 i )(z&x1),
where a~ 1=a1+O(z&x1), b� 1=b1+O(z&x1). Let Re[Q0(z)]=0. We have
x&x1=(b� 1 �a~ 1)( y), where Im[Q0(z)]=Im[Q0(x1)]+((a~ 1

2+b� 1
2)�a~ 1)( y).

By Lemma 1, a1<0, because maxz # E 2
+, |0(z)=0 H(|0(z)) is achieved only on

the real line.

We give a proof of Theorem 3 for the case n=1, x1=0. The general
situation can be proved similarly.

Proof. For any real test function ,,

|
+�

&�
Q(x, t ) ,(x) dx=|

+�

&�

Q(x, 0)
1+(t�2) iQ(x, 0)

,(x) dx

=
2
it |

+�

&� \1&
1

1+(t�2) iQ(x, 0)+ ,(x) dx

=|
+�

&�

2,(x)
it

dx&|
+�

&�

4 ,(x)
it2((2�t)+iQ(x, 0))

dx.
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On the right hand side above, the first term, denoted by I, converges to

|
+�

&�

2,(x)
itcrit.

dx

at critical time. Because x=0 is the only singular point, the denominator
of the second integrand vanishes only when t=tcrit. and only at x=0. By
assumption

1
(2�t)+iQ(x, 0)

=
1

(2�t)+(H(|0)(0) i+ax+bxi ) i+O(x2)

=
1

((2�t)&H(|0)(0)&bx)+iax+O(x2)
.

Denote 2�t&H(|0)(0)>0 as =(t). Then

1
=(t)&bx+iax+O(x2)

=
1

=(t)&bx+iax
&

O(x2)
(=(t)&bx+iax)(=(t)&bx+iax+O(x2))

.

Denote the first and second terms of the right hand side above by C1(x, t)
and C2(x, t), their inner products with (4,�it2) by II and III respectively.
We have

|C2(x, t)|�
O(x2)

|ax| ( |ax|&O(x2))
,

which is bounded near x=0. Because when x is fixed, C2(x, t) has limit
as t � tcrit. if x{0, III=(4�it2) �+�

&� C2(x, t) ,(x) dx must converge as
t � tcrit. . We can treat C1(x, t) in a more direct way:

II=
4

it2 |
+�

&�

1
=(t)&bx+iax

,(x) dx

=
4

it2(ai&b) |
+�

&�

1
=1(t)+x

,(x) dx

=
4

it2(ai&b) |
+�

&�
(ln(=1(t)+x) )x ,(x) dx

=&
4

it2(ai&b) |
+�

&�
ln(=1(t)+x) ,x(x) dx,
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where

=1(t)=
=(t)

ai&b

is in the upper half of complex plane for t<tcrit. (recall =(t)>0, a<0 ) and
tends to zero as t � tcrit. . Observe that ln( |x| ) is a weak singularity. We
have , as t � tcrit. ,

|
+�

&�
Re[ln(=1(t)+x)] ,x(x) dx � |

+�

&�
ln( |x| ) ,x(x) dx,

|
+�

&�
Im[ln(=1(t)+x)] ,x(x) dx � |

+�

&�
?(1&:(x)) ,x(x) dx,

where :(x) is the characteristic function of positive x line. Hence II con-
verges as t tends to critical time. Theorem 3 is proved.

Theorem 4. Schochet's explicit solutions (2.10) for equations (2.2) con-
verge in distribution sense when t tends to critical time.

We do not know yet whether such statement is true with solutions of
viscous model equation for general H2(E +

2 ) initial data not in form of
(2.10). Proof of Theorem 4 is similar to the case for Constantin�Lax�
Majda solutions above. Observe that terms like 1�(x&z(t)), 1�(x&z(t))2

can be written as first and second derivative of the ln function. We now
evaluate �+�

&� Q(x, t, z1 , z2 , \) ,(x) dx, which, by (2.10), is

|
+�

&�

&k\ i
(x&z1)(x&z2)

,(x)dx+|
+�

&�

&12i
(x&z1)2 ,(x)dx

+|
+�

&�

&12i
(x&z2)2 ,(x) dx.

Among z1 , z2 , only z1(t) will go up to hit the real line. Then

|
+�

&�
Q(x, t, z1 , z2 , \) ,(x) dx

=
&k\ i
z2&z1 \|

+�

&�
ln(x&z1) ,x(x) dx+|

+�

&�

,(x)
x&z2

dx+
+12i |

+�

&�
ln(x&z1) ,xx dx&|

+�

&�

12i
(x&z2)2 ,(x).

All integrations have limits as t � tcrit. . This finishes our proof.
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Similar to the observation in [2] on comparison between singularity of
inviscid solution of equation (2.1) and a local scaler quadratic equation,
|t(x, t)=|2, the behavior of solutions for the complexified semilinear heat
equation (2.9) is sharply different from the real one in that blowing up of
solutions occurs in a very restrained way. This can be seen from the follow-
ing characterization of singularities for semilinear heat equations .

Theorem 5. (Giga, Kohn, [5]). Let u solve the semilinear heat equation

ut&2u&|u| p&1 u=0 (4.1)

on Q1=B1_(&1, 0), and assume that

|u(x, t)| (&t); is bounded in Q1,

where ;=1�p&1 if p�(n+2)�(n&2) or if n�2, let u*(x, t)=
*2;u(*x, *2t), then

lim
* � 0

(&t); u*(x, t) equals \;; or 0.

For each c>0, the limit exists uniformly for (x, t) # Q1 such that
|x|<c(&t)1�2.

The assumption on the boundedness of |u(x, t)| (&t); was proved by
Weissler under some conditions on initial data. The zero alternate of limit
value was later shown by Giga and Kohn to imply that singularity is
removable.

We claim that if in addition we have

u(x, t)�0 for all (x, t) # Q1,

then u is not a distribution when t=0.

Corollary 1. Suppose a nonnegative solution u(x, t) of semilinear heat
equation satisfies conditions of Theorem 5 and blows up when t=0 at x=0.
Suppose p<3, then for any test function , # C�

0 (B1), ,�0, ,(0)>0, we
have

lim
t � 0&

(u(x, t), ,(x) )= lim
t � 0& |

+�

&�
u(x, t) ,(x) dx=+�.
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Proof. By assumption, there is a positive number a>0, such that
,(x)>,(0)�2 for all x # (&a, a), then

|
+�

&�
u(x, t) ,(x) dx�

,(0)
2 |

&a<x<a
u(x, t) dx

�c1

,(0)
2 |

|x|<c(&t)1�2

1
(&t); dx

=c2

,(0)
2

} (&t)1�2&;,

c1 , c2 are some positive constants. So for ;> 1
2 ( p<3),

(&t)(1�2)&; � �, as t � �.

Discussion of Continuation for Solutions beyond Critical Time

For explicit solutions in (2.7), (2.10), the poles move to the upper half
plane when t is greater than tcrit. . As a result relation (2.5) fails to hold.
Following discussions are presented in the context of differential equations
(2.6) and (2.9) in themselves.

We observe first that both solution formulas (2.7) and (2.10) make sense
except at t=tcrit. . It is easy to verify that, for t<tcrit. and t>tcrit. , they
satisfy the complex ODE and complex semilinear heat equation respec-
tively. We notice that the movement of poles in to the upper half plane,
which leads to the violation of (2.5), is reflected here in another way as
resulting in the discontinuities of solutions in the sense of distributions
when t � tcrit.&0 and t � tcrit.+0. For convenience, we will illustrate this
phenomenon with the typical singular terms 1�(x+ti ) and 1�(x+ti )2 that
appear in these solutions. The reason is, although Re[1�(x+ti )] tends to
1�x as t � 0, the imaginary part of 1�(x+ti ) converges to different distribu-
tions depending on t � 0+ or t � 0&. A similar situation happens for
1�(x+ti )2. Let , be C�

0 (R). We now evaluate the action of the distribution
on ,. Let :(x) be the characteristic function of positive x-axis, then

lim
t � 0+ |

�

&�

1
(x+ti )

.(x) dx= lim
t � 0+ |

�

&�
(ln(x+ti ))x .(x) dx

= lim
t � 0+

&|
�

&�
ln(x+ti ) .x(x) dx
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= lim
t � 0+

&|
�

&�
(ln |x+ti | ) .x(x) dx

&i |
�

&�
?(1&:(x)) .x(x) dx

=&|
�

&�
(ln |x| ) .x(x) dx&.(0) ?i.

Similarly we have

lim
t � 0& |

�

&�

1
(x+ti )

.(x) dx= lim
t � 0& |

�

&�
(ln (x+ti ))x .(x) dx

= lim
t � 0&

&|
�

&�
(ln |x+ti | ) .x(x) dx

&i |
�

&�
?:(x) .x(x) dx

=&|
�

&�
(ln |x| ) .x(x) dx+.(0) ?i.

For the typical singular term in Schochet's explicit solutions, we do
integration by parts one more times to get

lim
t � 0+ |

�

&�

1
(x+ti )2 .(x) dx=&|

�

&�
(ln |x| ) .xx(x) dx&.x(0) ?i,

lim
t � 0& |

�

&�

1
(x+ti )2 .(x) dx=&|

�

&�
(ln |x| ) .xx(x) dx+.x(0) ?i.

Thus the limit when t � 0& and t � 0+ of the inner product of

1
x+ti

,
1

(x+ti )2

with . are not the same whenever .(0){0 and .x(0){0. We can use
several steps in the computations above to show that the trivial continua-
tion by (2.10) does not satisfy the viscous equation in the weak sense.
Let ,(x, t) be a C�

0 test function. Assume x=0 is the singular pole of
viscous solution (2.10). Let B be a small rectangle centered at (0, tcrit.),
B=(&$, $ )_(tcrit.&=, tcrit.+=), $, = small positive numbers. We have

|
R_(0, �)&B \Qt&Qxx+

i
2

Q2+ ,(x, t) dx dt=0
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Integration by parts gives

|
R_(0, �)&B \&Q,t&Q,xx+

i
2

Q2,+ dx dt=&Ih(=, $ )&Iv(=, $ ),

where

Ih(=, $ )=|
+$

&$
(&Q,(x, tcrit.+=)+Q,(x, tcrit.&=)) dx,

and

Iv(=, $)=|
tcrit.+=

tcrit.&=
[(Qx ,&Q,x)($, t)&(Qx ,&Q,x)(&$, t)] dt.

It is easy to see that for any =>0, $ can be chosen sufficiently small to
make Iv(=, $ )t0. To show Ih(=, $ ) does not tend to zero as =, $ � 0, which
implies that Q is not a weak solution around (0, tcrit.), one notes that for
the typical singular term 1�(x+ti )2 in (2.10), similar computations lead to

lim
= � 0 |

$

&$ \
1

(x+(tcrit.+=) i)2&
1

(x+(tcrit.&=) i)2+ ,(x, t) dx

=&2,x(0, tcrit.) ?i.

5. A Global Existence Theorem

Here we study equations (2.9) for some class of initial data where explicit
solution formula is not available.

The nonlinear term here (&(i�2) Q2) of equation (2.9) demonstrates
qualitatively different behavior in comparison to its real counterpart in
semilinear heat equations (4.1), |u| p&1 u, which is monotone as a function
of positive u. While formula (2.10) predict blowing up in finite time for
solutions with initial data intersecting the imaginary y-axis in complex
plane, we pay attention here to two other regions: right half plane x>0
and left half plane x<0. Roughly speaking, our result in Theorem 6 says
that, while viscosity can hasten the development of singularities for the
modeling flow as shown by Schochet, it does not produce new singularities
when the inviscid solution exists for all time.

Theorem 6. Suppose initial data |0 , H(|0) # L2 & L�, decay at infinity,
and |0(x)>0 for all x or |0(x)<0 for all x. Then the initial value problem
of viscous model equation (2.9) has global smooth solution.
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It is easy to see that initial data

Q0(x)=
bi

x&x0+ai
,

where a, b are non-zero real numbers, satisfies our condition here.
In the following, we treat our viscous model equation as a semi-linear

parabolic system. The proof requires a closer look at our model non-
linearity and is based on the method of invariant region, see [7].

First we study the orbits of ODE Qt=&(i�2) Q2. Write Q=|+iH.
Then

Q(t)=
Q(0)

1+(t�2) iQ(0)
=

|0+iH0

(1&(t�2) H0)+(t�2) i|0

.

Now look at those initial data of ODE such that H0=0 and |0{0. We
have

Q(t)&
|0

2
=

|0

1+t|0 i�2
&

|0

2
=\|0

2 +\
1&t|0 i�2
1+t|0 i�2+ .

Hence |Q(t)&|0 �2|=||0 | �2 for all t. Thus all the circles in the left or
right half plane which are centered on the x-axis and tangent to the y-axis
at origin are ODE orbits. To prove Theorem 6, we need only find a closed
curve such that the set [Qv(x, t) | &�<x<�], where Qv(x, t)=
|v(x, t)+H(|v)(x, t) i is the solution of (2.9), sits inside for all time. For
this purpose, a sufficient condition is that the curve should bound a region
large enough to include the initial data [Q0(x) | x # R1] and the curve
should be convex with the nonlinear term of equation (2.9), (&(i�2) Q2),
pointing inward everywhere on this curve. Such a curve is not obvious to
get here, but another general statement also holds. For a closed convex
curve where the initial data of equation (2.9) lies inside, the solution can
not first cross the part of the curve where the nonlinear term is pointing
inward. Our ODE orbits above almost do except for two points: the direc-
tion of term (&(i�2) Q2) is tangent to the circle instead of pointing inside
on the orbit; and these orbits are actually not closed because the origin is
reached only at t=\�. Nevertheless, some perturbations on the orbits
work. We can approximate a orbit circle by convex closed curves with the
property that (&(i�2) Q2) points inside except near the origin.

Such a closed convex curve can be constructed by simply moving the
center of the circle below the real axis an arbitrarily small amount, on
which the vector field points inward on the boundary except near the
origin. Now the vector field points to the right side of the lines in the
first quadrant passing through the origin, and points to the right side of
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the curve along the curve (|&c)2+H 4=c2 in the fourth quadrant near
the origin, where it intersects the bottom half of the translated circle. At the
same time, we can clearly choose the slope of a line in the first quadrant
to make it intersect the top half of the translated circle arbitrarily near the
origin. Replacing an arc of the translated circle by the union of those two
curves yields a convex region arbitrarily close to the original circle, on
whose boundary the vector field points inward everywhere except at the
origin. We thus conclude that a solution of (2.9) with initial data inside a
circle can not cross it without first hitting the origin.

Next we show that the solution can not first hit the origin. For example,
look at the situation on the right half plane. As long as it is bounded by
the circle, we have |Qv(x, t)|�2a where a is the radius. By similar
arguments as in Section 3, we have |v(x, t)�|*(t), where |v(x, t) is the
real part of the solution of (2.9) and |*(t) is solution of ODE

|t*(t)=&2a|*(t)

with initial data

|*(0)= inf
&�<x<+�

Re[Q0(x)].

Obviously |*(t)=|*(0) e&2at>0 for all t. Since any given initial data in
the right half plane or the left half plane can be bounded by a ODE circle,
we have proved Theorem 6.
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