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Abstract

We discuss a quantum extension of the holographic RG flow equation obtained previously from the classical Hamiltonian
constraint in the bulk AdS supergravity. The Wheeler—DeWitt equation is proposed to generate the extended RG flow and
to produce 1/Nsubleading corrections systematically. Our formulation in five dimensions is applied to the derivation of the
Weyl anomaly of boundary\' = 4 SU(N) super-Yang-Mills theory beyond the lar@e limit. It is shown that subleading
1/N2 corrections arising from fields in AdSsupergravity agree with those obtained recently by Mansfield et al. using their
Schrédinger equation, thereby guaranteeing to reproduce the exact form of the boundary Weyl anomaly after summing up all
of the KK modes.

0 2003 Elsevier B.V.Open access under CC BY license.

Since the proposal of the AAS/CFT correspondence by Maldacena [1], a lot of effort has been made to test his
conjecture. Among several others, Henningson and Skenderis derived the boundary theory Weyl anomaly in the
large N limit by evaluating the tree-level on-shell action of the bulk AdS supergravity [2]. (See also [3].) The same
result was also obtained by Mansfield and Nolland [4], where they constructed a functional Schrddinger equation
for the partition function on AdS space and solved it at the tree-level. Recently the Schrddinger equation was
fully considered to obtain a subleading correction to the la¥gesult, and the exact form of the boundary Weyl
anomaly has been successfully derived [5,6].

On the other hand, an alternative formulation of the bulk theory was given by de Boer, Verlinde and Verlinde
[7], who gave attention to the fact that the radial flow in AdS space transverse to boundary directions corresponds
to the renormalization group (RG) flow at the boundary. The classical Hamiltonian constraint arising from the
reparameterization invariance of the bulk supergravity with respect to (w.r.t.) the radial direction was shown to
be cast into the Callan—Symanzik RG flow equation on the boundary space. In this formulation, the derivation of
the anomaly, at least in the lar@élimit, was seen to be performed more simply and quickly than with the other
methods.
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The purpose of this Letter is to extend the classical Hamiltonian constraint to a quantum equation on the
bulk AdS and to present a generalized holographic RG flow equation, which systematically produces subleading
corrections in the AN expansion. Obviously, the Wheeler—-DeWitt equation is a promising candidate for it and
suggests that the subleading correction arises from terms with second-order functional derivatives w.r.t. fields
of AdS supergravity, as happens in the ordinary WKB method of quantum mechanics. We demonstrate that the
Wheeler—DeWitt equation applied to the AJEFT, case works indeed to derive the exa¢NF correction to the
Weyl anomaly of the boundary” = 4 SU(N) super-Yang—Mills (SYM) theory.

We start with a brief review of the tree-level (lar@g€) calculation of the boundary Weyl anomaly via the
holographic RG flow equation [7-9], in which the temporal gauge is used for the metti¢ ih dimensions,

ds? = gapdx®dx® = dr? + g (x,r)dx*dx" (u,v=1,...,d), (1)

whereg,,, is dynamical in the bulk but supposed to tend to the form of anAd$netric asymptotically at the
boundaryr — oo [10],

12 —~ 1 ~ 2
2r/l| a A —2r/l —-2r/1
gulx,r)=e |:gw(x) — —d > (R,w — 72([1 ) ng>e + O((e ) )i| (2)

The curvaturei?um R are defined with the boundary metgig, (x), and! is the AdS .1 radius. As the AdS metric
diverges at the boundary, we will take the large cutro# rg. We consider the gravitational Lagrangian coupled
to a massive scalar field in the bulk,
1 1

Liy1= K_Z\/§|:—Rd+l +2A+ Egabaad)abd5 + §m2¢2}, (3

where the cosmological constamt= —d(d — 1)/2I2. Then the Hamiltonian reads
1

H= /ddxH = /ddx |:—K2g_1/2PW;“,(g)n’“’ﬁx‘I — Ekzg_l/znz + Cd], (4)

Wherep/wka(g) = %(gukgua + guo&vi) — ﬁguvgka and
1 1
Lg= K—Zﬁ[—R +24+ 5" 0,000 + §m2¢2:|. (5)

Introducing the Hamilton—Jacobi functionidl(g, ¢) asm*¥ = éW/8g,, andr = §W /8¢, and inserting them into
the Hamiltonian constrairftf ~ 0, we obtain the holographic RG flow equation [7],

H=—{W,W}+Ls=0, X
where
sw2 1 LANRTLLAS
— o 2,-1/2 _ =\ = !
= () 2 2] "

Note that the RG flow equation is defined on the surfagerg. In d = 4, we decompose the functioril into the
sum ofSjgc and I,

1
Sloc = K’zfd“x \/§[U(¢) —P(@PR+ EM(¢)g“”3u¢8u¢], (8)
whereU (¢), @ (¢), M (¢) are functions ofp expanded as

1 1
U($) =Uo+ Urp + §U2¢2 +0(#3),  P(p)=Po+ Prg + sz +0(4%),
M($) = Mo+ O(¢). 9)
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The terms inSjoc are the first three terms appearing in the derivative expansitn defisertingW = Sjoc + I” into
(6) and comparing terms with the same weighthe number of differentiations) [8], we have a series of equations

U? 12 1,

. 2
) Uuo 1 , " 1 ' v
0=2 (5 -Ue 6g 0upidu +U'(~MOp — VMV + 5 M'g" 0,90, (10)

1
= —R —+ Eg’waﬂ(ﬁav(ﬁ,
where’ means the differentiation w.r¢g., which leads to

U0=—61_1, Uy =0, U2=l_1(AS_4)7

l (A —4) l
Do=—, @1 =0, Pop=——— Mop=——"—, 11
=73 ! 2= 1204, -3 °= 24, -3 (11)
whereA; = 2+ +/m?2I2 + 4 is the scaling dimension of a boundary operator associatedpyvihd
1 U or
w=4 @gK_Z\/E(R“VRIW — §RZ) 30 Suvsg +0(¢?) =0. (12)
8y

Finally, taking the boundary values of the metgig, (x, 7o) — ¢¥%/!g,,,(x) and the scalar fielg(x, ro) — 0
as rp — oo, and using the relations =2 = 1/167Gs = Vol(5°) /167 G1p = [°73/167875¢%(8) and 18 =
(4)?(g;N)218 in (12), we obtain the Weyl anomaly of the boundary theory on the curved backgggund

2 I N2 [ 1~
T,M) = 5 —( R*R,, — =R?), 13
< n ) \/—glw SgW 327t2< w3 ) (13)

which exactly reproduces the Weyl anomaly\éf= 4 SU(N) SYM at leading (largeV) order. Note that the scalar

field does not contribute to the final result (13) since, at leading order, there only appear the first-order derivatives
of Sjoc W.I.t. ¢, which tend to zero when taking(x, ro) — 0 asrg — oo. However, at subleading order, we have
second-order derivatives w.r.t. the scalar field (and also w.r.t. all the other Kaluza—Klein (KK) modes appearing in
the bulk supergravity [11]), which generally contribute to the subleading Weyl anomaly even when they take their
vanishing boundary values, as will be shown below.

As is well known, the exact form of the boundary Weyl anomaly is given by (13) with the replacement
N? — N? — 1. The factor-1 represents a/IV? correction to the leading result and is expected to be derived from
the quantum (one-loop) calculation of the bulk supergravity. A generalized version of the Hamiltonian constraint
(6) responsible for the quantum case is the Wheeler—DeWitt equation, which is a quantum mechanical realization
of (6) where a physical state has to be annihilated by the quantum operatowhich guarantees the ‘time’= rg
reparameterization invariance ¥f asd,,¥ = — [ d“x H¥ = 0. The physical state, when expressed in terms of
path integral, would be interpreted as the partition function with boundary valugs¢),

5 1 82
88uv 880 2842
or equivalently with® (g, ¢) = e =89,

HY = —K2g—1/2( Puvio(8) — )w + Lg¥ =0, (14)

82w 182w
HW/W = —(W, W} + Ly +i2g Y3 P, +5 =0, 15
/ { } d TK & UVAC €3] 5gw3gm 2 3¢2 (15)
where the last two second-order derivative terms are of aréler N —2 and thus subleading corrections to (6). We
argue that this naive expression, however, leads to a misleading result and have to be more careful to define the
guantum Hamiltonian operator associated with the time reparameterization.
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To explain what is actually missing in (15), let us consider the scalar part of the partition fudgtianth the
boundary conditionsp (x, r;) = ¢; (x) and¢ (x, r¢) = ¢ (x),

rf X B 1 1
Ws =/D¢)ef’l drfddx['s(¢,é)’ /;:S =K 2\/§[§g0baa¢ab¢+ §m2¢2:|’ (16)

where the path integral measuf®p is induced by the reparameterization-invariant inner prodisgt]|?> =
f dtly JE& 8¢2. By the standard canonical path integration, it is easily verified#hig expressed in the operator
formalism as

ry
(¢f|TEXp[—/dr/ddx7‘ls}l¢i) = 1/8 wa/% g =]]sG. i) 17)

The extra factor yggil/g modifies the ordinary Hamiltonian operatsf; into H, in the Schrddinger equation,
8rfq/s = —fddXﬁstIISa

~ 1
Hs=él<*2 #gf[— 4,-19" ¢

Note that the Schrédinger equation is identical to that derived in [4] when the metric is replaced with AdS
background metric. Comparing (14), (15) and (18), we see that the extra subleadiﬁg)llergﬁl/gad (0) is needed
in the scalar part of the Wheeler—DeWitt equation. It is straightforward to extend the argument to higher spin cases
such as vector, tensor and fermionic fields [12]; for example, a similar calculatioridor 4)-dimensional vector
leads to its quantum Hamiltonian with the extra tedgin g~(@—2//845/:54(0) and so on. The Wheeler-DeWit
equation for the total partition functio® is thus defined with the subleading(0) term for each KK particle
appearing in Adg;1 supergravity.

Let us estimate the subleading contribution to the boundary anomaly arising from a five-dimensional scalar
field, where the extra term combined with the last term in (15) gives

o 8 s + m2¢,%} + 3, Ing %% (0). (18)
f

1 2 _128°W g L/8gsh
3, Ing~Y/85%0
28 T g2 + 0
1 82r
= 5[Mo(~0) = @2R + Uz + 3 Ing *1/4]34(0)+ 2gm 2 557 H 0@ (19)

where we ignore the last two terms on the right-hand side (RHS) since the second term is ofuwei§htvhile
¢-dependent terms vanish as— 0. The operator in the first term stands in need of regularization; for example, it

is carried out by the zeta-function regularization in which the operator is represented by a generalized zeta-function
¢(—1) as described in detail in [12]. After taking — oo and removing regularization-dependent divergent terms,

we have a finite term given by the heat-kernel coefficietit, x) of = 4 in the DeWitt—Schwinger proper time
representation [13], showing that the subleading contribution does not modify the result (11). In the operator,
terms with—0O and R are of next-to-leading order O(e=2°/!) in the vicinity of the boundary, compared with

U ~ O(1). We thus need leading and next-to-leading terms of the asymptotic AdS metric (2) to evaluate the
operator

%[Mo(—m+%§>+(A -2 1]64<0> fzm — 217 a0 ), (20)

which shows that a 5D minimally coupled scalar gives the heat-kernel coeffigientx) of a 4D conformally
coupled scalar. As the RHS of (20) comes in the RHS ottke4 Eq. (12), we have, at the boundagy— oo,

N2 ([~ ~ 1, AS—Z ~1/6
(T,*) = @<RH R,y — :—SR ) ~ 352 ¢ (x, x). (21)
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Interestingly, similar calculations for higher-spin fields in five dimensions exhibit that their &@aterms lead

to four-dimensional conformally covariant operators, as the scalar case [12]. We see that the subleading correction
(21) for the scalar and those for the higher-spin fields to the leadiifigesult are exactly the same as those
previously obtained in the Schrédinger method [5,6], which guarantees the desired/3hift N2 — 1 when
summing up contributions from all of the KK particles in AdS supergravity,

N? ([~ =~ 1 Ar-2 N2—1(~ =~ 1
<TMM>=@(RHVRMV—§R )—;Waz(x,x)z 327_[2 (RHUR/LV_é ) (22)

It is straightforward to generalize the above argumend te even dimensional case in whiddyc in (8) is
given by the sum of all possible local terms with weight= 0 to d — 2. For the leading larg® result, see [2,8].
In the massive scalar theory (3), the subleading correction is given by the heat-kernel coefficientr) for
d-dimensional conformally coupled operateri + &£, R, with &; = (d — 2)/4(d — 1),

Ay —d)2
<Tﬂu>subleading= - 2(47)d/2 ad‘jz(x’ x), (23)

whereA; —d/2 = /12m2 + (d/2)2. It will be discussed elsewhere how this result and those for higher-spin fields
contribute to the boundary Weyl anomaly at subleading order ik AQBT, and AdS/CFTg cases.
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