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Abstract

We discuss a quantum extension of the holographic RG flow equation obtained previously from the classical Ham
constraint in the bulk AdS supergravity. The Wheeler–DeWitt equation is proposed to generate the extended RG
to produce 1/Nsubleading corrections systematically. Our formulation in five dimensions is applied to the derivation
Weyl anomaly of boundaryN = 4 SU(N) super-Yang–Mills theory beyond the largeN limit. It is shown that subleading
1/N2 corrections arising from fields in AdS5 supergravity agree with those obtained recently by Mansfield et al. using
Schrödinger equation, thereby guaranteeing to reproduce the exact form of the boundary Weyl anomaly after summ
of the KK modes.
 2003 Elsevier B.V.

Since the proposal of the AdS/CFT correspondence by Maldacena [1], a lot of effort has been made to
conjecture. Among several others, Henningson and Skenderis derived the boundary theory Weyl anoma
largeN limit by evaluating the tree-level on-shell action of the bulk AdS supergravity [2]. (See also [3].) The
result was also obtained by Mansfield and Nolland [4], where they constructed a functional Schrödinger e
for the partition function on AdS space and solved it at the tree-level. Recently the Schrödinger equat
fully considered to obtain a subleading correction to the largeN result, and the exact form of the boundary We
anomaly has been successfully derived [5,6].

On the other hand, an alternative formulation of the bulk theory was given by de Boer, Verlinde and V
[7], who gave attention to the fact that the radial flow in AdS space transverse to boundary directions corr
to the renormalization group (RG) flow at the boundary. The classical Hamiltonian constraint arising fro
reparameterization invariance of the bulk supergravity with respect to (w.r.t.) the radial direction was sh
be cast into the Callan–Symanzik RG flow equation on the boundary space. In this formulation, the deriv
the anomaly, at least in the largeN limit, was seen to be performed more simply and quickly than with the o
methods.
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The purpose of this Letter is to extend the classical Hamiltonian constraint to a quantum equation
bulk AdS and to present a generalized holographic RG flow equation, which systematically produces su
corrections in the 1/N expansion. Obviously, the Wheeler–DeWitt equation is a promising candidate for
suggests that the subleading correction arises from terms with second-order functional derivatives w.r
of AdS supergravity, as happens in the ordinary WKB method of quantum mechanics. We demonstrate
Wheeler–DeWitt equation applied to the AdS5/CFT4 case works indeed to derive the exact 1/N2 correction to the
Weyl anomaly of the boundaryN = 4 SU(N) super-Yang–Mills (SYM) theory.

We start with a brief review of the tree-level (largeN ) calculation of the boundary Weyl anomaly via t
holographic RG flow equation [7–9], in which the temporal gauge is used for the metric ind + 1 dimensions,

(1)ds2 = gab dx
a dxb = dr2 + gµν(x, r) dx

µ dxν (µ, ν = 1, . . . , d),

wheregµν is dynamical in the bulk but supposed to tend to the form of an AdSd+1 metric asymptotically at the
boundaryr → ∞ [10],

(2)gµν(x, r)= e2r/ l
[
ĝµν(x)− l2

d − 2

(
R̂µν − 1

2(d − 1)
R̂ĝµν

)
e−2r/ l +O

((
e−2r/ l)2)]

.

The curvatureŝRµν , R̂ are defined with the boundary metricĝµν(x), andl is the AdSd+1 radius. As the AdS metric
diverges at the boundary, we will take the large cut-offr = r0. We consider the gravitational Lagrangian coup
to a massive scalar field in the bulk,

(3)Ld+1 = κ−2√g
[
−Rd+1 + 2Λ+ 1

2
gab∂aφ∂bφ + 1

2
m2φ2

]
,

where the cosmological constantΛ= −d(d − 1)/2l2. Then the Hamiltonian reads

(4)H =
∫
ddxH =

∫
ddx

[
−κ2g−1/2Pµνλσ (g)π

µνπλσ − 1

2
κ2g−1/2π2 +Ld

]
,

wherePµνλσ (g)= 1
2(gµλgνσ + gµσ gνλ)− 1

d−1gµνgλσ and

(5)Ld = κ−2√g
[
−R + 2Λ+ 1

2
gµν∂µφ∂νφ + 1

2
m2φ2

]
.

Introducing the Hamilton–Jacobi functionalW(g,φ) asπµν = δW/δgµν andπ = δW/δφ, and inserting them into
the Hamiltonian constraintH ≈ 0, we obtain the holographic RG flow equation [7],

(6)H = −{W,W } +Ld = 0,

where

(7){W,W } = κ2g−1/2
[(

δW

δgµν

)2

− 1

d − 1

(
gµν

δW

δgµν

)2

+ 1

2

(
δW

δφ

)2]
.

Note that the RG flow equation is defined on the surfacer = r0. In d = 4, we decompose the functionalW into the
sum ofSloc andΓ ,

(8)Sloc = κ−2
∫
d4x

√
g

[
U(φ)−Φ(φ)R + 1

2
M(φ)gµν∂µφ∂νφ

]
,

whereU(φ),Φ(φ),M(φ) are functions ofφ expanded as

U(φ)=U0 +U1φ + 1

2
U2φ

2 +O
(
φ3), Φ(φ)=Φ0 +Φ1φ + 1

2
Φ2φ

2 +O
(
φ3),

(9)M(φ)=M0 +O(φ).
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The terms inSloc are the first three terms appearing in the derivative expansion ofW . InsertingW = Sloc + Γ into
(6) and comparing terms with the same weightω (the number of differentiations) [8], we have a series of equat

ω= 0: −U2

3
+ 1

2
(U ′)2 = −12

l2
+ 1

2
m2φ2,

(10)ω= 2:
(
UΦ

3
−U ′Φ ′

)
R − ca

6
gµν∂µφ∂νφ +U ′

(
−M✷φ − ∇µM∇µφ + 1

2
M ′gµν∂µφ∂νφ

)
= −R+ 1

2
gµν∂µφ∂νφ,

where′ means the differentiation w.r.t.φ, which leads to

U0 = −6l−1, U1 = 0, U2 = l−1(∆s − 4),

(11)Φ0 = l

2
, Φ1 = 0, Φ2 = l(∆s − 4)

12(∆s − 3)
, M0 = l

2(∆s − 3)
,

where∆s = 2+ √
m2l2 + 4 is the scaling dimension of a boundary operator associated withφ, and

(12)ω= 4: Φ2
0κ

−2√g
(
RµνRµν − 1

3
R2

)
− U0

3
gµν

δΓ

δgµν
+O

(
φ2) = 0.

Finally, taking the boundary values of the metricgµν(x, r0) → e2r0/ l ĝµν(x) and the scalar fieldφ(x, r0) → 0
as r0 → ∞, and using the relationsκ−2 = 1/16πG5 = Vol(S5)/16πG10 = l5π3/16π(8π6g2

s l
8
s ) and l8 =

(4π)2(gsN)2l8s in (12), we obtain the Weyl anomaly of the boundary theory on the curved backgroundĝµν ,

(13)
〈
Tµ

µ
〉 = − 2√

ĝ
ĝµν

δΓ

δĝµν
= N2

32π2

(
R̂µνR̂µν − 1

3
R̂ 2

)
,

which exactly reproduces the Weyl anomaly ofN = 4 SU(N) SYM at leading (largeN ) order. Note that the scala
field does not contribute to the final result (13) since, at leading order, there only appear the first-order de
of Sloc w.r.t. φ, which tend to zero when takingφ(x, r0)→ 0 asr0 → ∞. However, at subleading order, we ha
second-order derivatives w.r.t. the scalar field (and also w.r.t. all the other Kaluza–Klein (KK) modes appe
the bulk supergravity [11]), which generally contribute to the subleading Weyl anomaly even when they ta
vanishing boundary values, as will be shown below.

As is well known, the exact form of the boundary Weyl anomaly is given by (13) with the replace
N2 →N2 − 1. The factor−1 represents a 1/N2 correction to the leading result and is expected to be derived
the quantum (one-loop) calculation of the bulk supergravity. A generalized version of the Hamiltonian con
(6) responsible for the quantum case is the Wheeler–DeWitt equation, which is a quantum mechanical re
of (6) where a physical stateΨ has to be annihilated by the quantum operatorH, which guarantees the ‘time’r = r0
reparameterization invariance ofΨ as∂r0Ψ = − ∫

ddxHΨ = 0. The physical state, when expressed in term
path integral, would be interpreted as the partition function with boundary values,Ψ (g,φ),

(14)HΨ = −κ2g−1/2
(
Pµνλσ (g)

δ

δgµν

δ

δgλσ
+ 1

2

δ2

δφ2

)
Ψ +LdΨ = 0,

or equivalently withΨ (g,φ)= e−W(g,φ),

(15)HΨ/Ψ = −{W,W } +Ld + κ2g−1/2
(
Pµνλσ (g)

δ2W

δgµνδgλσ
+ 1

2

δ2W

δφ2

)
= 0,

where the last two second-order derivative terms are of orderκ2 ∼N−2 and thus subleading corrections to (6). W
argue that this naive expression, however, leads to a misleading result and have to be more careful to d
quantum Hamiltonian operator associated with the time reparameterization.



T. Kubota et al. / Physics Letters B 579 (2004) 200–204 203

or

,

h AdS

in cases
r
itt

l scalar

le, it
-function
ms,
e
perator,
th
ate the
To explain what is actually missing in (15), let us consider the scalar part of the partition functionΨs , with the
boundary conditions,φ(x, ri)= φi(x) andφ(x, rf )= φf (x),

(16)Ψs =
∫

Dφ e
∫ rf
ri

dr
∫
ddxLs (φ,g), Ls = κ−2√g

[
1

2
gab∂aφ∂bφ + 1

2
m2φ2

]
,

where the path integral measureDφ is induced by the reparameterization-invariant inner product‖δφ‖2 =∫
dd+1x

√
g δφ2. By the standard canonical path integration, it is easily verified thatΨs is expressed in the operat

formalism as

(17)〈φf |T exp

[
−

rf∫
ri

dr

∫
ddxHs

]
|φi〉 = g1/8

f Ψsg
1/8
i , gi(f ) =

∏
x

g(x, ri(f )).

The extra factor g1/8f g1/8
i modifies the ordinary Hamiltonian operatorHs into H̃s in the Schrödinger equation

∂rf Ψs = − ∫
ddx H̃sΨs ,

(18)H̃s = 1

2
κ−2√gf

[
−κ4g−1

f

δ2

δφ2
f

+ g
µν
f ∂µφf ∂νφf +m2φ2

f

]
+ ∂rf lng−1/8

f δd(0).

Note that the Schrödinger equation is identical to that derived in [4] when the metric is replaced wit
background metric. Comparing (14), (15) and (18), we see that the extra subleading term∂r0 lng−1/8δd(0) is needed
in the scalar part of the Wheeler–DeWitt equation. It is straightforward to extend the argument to higher sp
such as vector, tensor and fermionic fields [12]; for example, a similar calculation for a(d + 1)-dimensional vecto
leads to its quantum Hamiltonian with the extra term∂r0 lng−(d−2)/8dδ

µ
µδ

d(0) and so on. The Wheeler–DeW
equation for the total partition functionΨ is thus defined with the subleadingδd(0) term for each KK particle
appearing in AdSd+1 supergravity.

Let us estimate the subleading contribution to the boundary anomaly arising from a five-dimensiona
field, where the extra term combined with the last term in (15) gives

1

2
κ2g−1/2 δ

2W

δφ2 + ∂r0 lng−1/8δ4(0)

(19)= 1

2

[
M0(−✷)−Φ2R +U2 + ∂r0 lng−1/4]δ4(0)+ 1

2
κ2g−1/2δ

2Γ

δφ2 +O(φ),

where we ignore the last two terms on the right-hand side (RHS) since the second term is of weightω = 8, while
φ-dependent terms vanish asφ → 0. The operator in the first term stands in need of regularization; for examp
is carried out by the zeta-function regularization in which the operator is represented by a generalized zeta
ζ(−1) as described in detail in [12]. After takingr0 → ∞ and removing regularization-dependent divergent ter
we have a finite term given by the heat-kernel coefficienta2(x, x) of ω = 4 in the DeWitt–Schwinger proper tim
representation [13], showing that the subleading contribution does not modify the result (11). In the o
terms with−✷ andR are of next-to-leading order∼ O(e−2r0/ l) in the vicinity of the boundary, compared wi
U2 ∼ O(1). We thus need leading and next-to-leading terms of the asymptotic AdS metric (2) to evalu
operator

(20)
1

2

[
M0

(
−✷ + 1

6
R̂

)
+ (∆s − 2)l−1

]
δ4(0)=

√
ĝ

32π2(∆s − 2)l−1a
ξ=1/6
2 (x, x),

which shows that a 5D minimally coupled scalar gives the heat-kernel coefficienta2(x, x) of a 4D conformally
coupled scalar. As the RHS of (20) comes in the RHS of theω= 4 Eq. (12), we have, at the boundaryr0 → ∞,

(21)
〈
Tµ

µ
〉 = N2

32π2

(
R̂µνR̂µν − 1

3
R̂ 2

)
− ∆s − 2

32π2 a
ξ=1/6
2 (x, x).
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Interestingly, similar calculations for higher-spin fields in five dimensions exhibit that their extraδ4(0) terms lead
to four-dimensional conformally covariant operators, as the scalar case [12]. We see that the subleading c
(21) for the scalar and those for the higher-spin fields to the leadingN2 result are exactly the same as tho
previously obtained in the Schrödinger method [5,6], which guarantees the desired shiftN2 → N2 − 1 when
summing up contributions from all of the KK particles in AdS supergravity,

(22)
〈
Tµ

µ
〉 = N2

32π2

(
R̂µνR̂µν − 1

3
R̂ 2

)
−

∑
I

∆I − 2

32π2 aI2(x, x)=
N2 − 1

32π2

(
R̂µνR̂µν − 1

3
R̂ 2

)
.

It is straightforward to generalize the above argument tod = even dimensional case in whichSloc in (8) is
given by the sum of all possible local terms with weightω = 0 to d− 2. For the leading largeN result, see [2,8]
In the massive scalar theory (3), the subleading correction is given by the heat-kernel coefficientad/2(x, x) for
d-dimensional conformally coupled operator−✷ + ξd R̂, with ξd = (d − 2)/4(d − 1),

(23)
〈
Tµ

µ
〉
subleading= −∆s − d/2

2(4π)d/2
a
ξd
d/2(x, x),

where∆s − d/2= √
l2m2 + (d/2)2. It will be discussed elsewhere how this result and those for higher-spin

contribute to the boundary Weyl anomaly at subleading order in AdS3/CFT2 and AdS7/CFT6 cases.
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