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Aims: To investigate the effects and study the underlying cell death mechanisms of diaryl diselenides, including:
diphenyl diselenide (C6H5Se)2; 4-chlorodiphenyl diselenide (4-ClC6H4Se)2; 3-(trifluoromethyl)-diphenyl diselenide
(3-CF3C6H4Se)2 and 4-methoxydiphenyl diselenide (4-MeOC6H4Se)2, on the human colon adenocarcinoma cell line
HT-29.
Mainmethods: The viability of HT-29 cells after exposure to the diaryl diselenides and its substituted structures was
based on the MTT assay. To verify if cell death was mediated throughout apoptosis mechanisms, flow cytometry
and real-time PCR (qPCR) analyses were conducted.
Key findings: The MTT assay and flow cytometry analyses showed that (3-CF3C6H4Se)2 and (4-MeOC6H4Se)2 in-
duced cytotoxicity through apoptosis mechanisms in HT-29 cells. qPCR revealed there was an up-regulation of

pro-apoptotic (Bax, casapase-9, caspase-8, apoptosis-inducing factor (AIF) and Endonuclease G (EndoG)) and
cell-cycle arrest genes (p53 and p21) and down-regulation of anti-apoptotic (Bcl-2 and survivin) and Myc genes.
Significance: These results demonstrate that (3-CF3C6H4Se) and (4-MeOC6H4Se)2 have the potential to induce ap-
optosis in HT-29 cells through the activation of caspase-dependent and independent pathways and through
cell-cycle arrest.
© 2012 Elsevier Inc. Open access under the Elsevier OA license.
Introduction

Colorectal cancer is one of the leading causes of cancer mortality
(Limami et al., 2011), corresponding to 9.4% of all cases of cancer
worldwide (Cantero-Muñoz et al., 2011). Fifty percent of all recently
diagnosed patients ultimately develop metastatic disease. Regardless
of the advances in developing new chemotherapy agents, no drug has
been able to treat colorectal cancer metastasis with a non-relapsing
cure rate. Currently the clinical challenge is to develop new drugs
that will have a significant impact on cure rates, by reversing drug re-
sistance, and with minimal toxicity (Miura et al., 2011).

Selenium is an essential trace element (Zeng and Combs, 2008) that
has the ability to prevent cancer in several animalmodels and to enhance
chemopreventive efficacy in human lung, colorectal, head and neck and
prostate cancer (Suzuki et al., 2010). The chemopreventive role of seleni-
um iswell supported by epidemiological, preclinical, and clinical evidence
(Clark et al., 1998). Furthermore, emerging evidence has indicated the
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potential of selenium compounds in cancer chemotherapy (Suzuki et al.,
2010).

Diphenyl diselenide (C6H5Se)2, an organic selenium compound,
has raised great interest due to its antioxidant, antidepressant-like,
neuroprotective and antinociceptive properties (Nogueira and
Rocha, 2011; Savegnago et al., 2007, 2008a, 2008b). Recently,
Posser et al. (2011) showed, for the first time, that (C6H5Se)2 was
cytotoxic to human cancer cells (SH-SY5Y) in vitro, possibly medi-
ated by the ERK1/2 pathway (Posser et al., 2011). However, to date
no study has evaluated the cytotoxic effect of (C6H5Se)2 in other
human cancer cell types.

In addition, studies have demonstrated that the introduction of a sub-
stitute (e.g., chloro, fluor or methoxyl) in the aromatic ring of (C6H5Se)
can alter its molecular properties (Machado et al., 2009; Savegnago et
al., 2009; Wilhelm et al., 2009). The introduction of chloro into the aryl
group of diaryl diselenide conferred a weak cytotoxic effect on V79
cells (Chinese hamster lung fibroblast cells) compared to (C6H5Se)
(Machado et al., 2009; Savegnago et al., 2009; Wilhelm et al., 2009). Al-
though this substitute could alter the biological effects of (C6H5Se) ,
their potential as cytotoxic agents for cancer chemotherapy has not yet
been explored.

Therefore, our objective was to investigate the effect and the underly-
ing cell death mechanisms of (C6H5Se)2 and its substituted structures,
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4-chlorodiphenyl diselenide (4-ClC6H4Se)2, 3-(trifluoromethyl)-diphenyl
diselenide (3-CF3C6H4Se)2 and 4-methoxydiphenyl diselenide
(4-MeOC6H4Se)2 on the human colon adenocarcinoma cell line
(HT-29). In addition, we also verified whether the introduction of an
electrondonating (‐methoxyl) or anelectronwithdrawing group (‐chloro
and -trifluoromethyl) into the aryl groupof diaryl diselenide altered its bi-
ological effect. To the best of our knowledge this is the first study that
demonstrates the effect of (C6H5Se)2 and its substituted structures on
HT-29 cells.

Materials and methods

Chemicals

(C6H5Se)2, (4-ClC6H4Se)2, (3-CF3C6H4Se)2 and (4-MeOC6H4Se)2
(Fig. 1) were prepared according to methods in the literature. Analy-
sis of 1H and 13C NMR spectra showed that the analytical and spectro-
scopic data was in full agreement with its assigned structure. The
chemical purity of these compounds was determined by gas chroma-
tography/mass spectrometry.

Cell culture

The HT-29 cells were obtained from the Rio de Janeiro Cell Bank
(PABCAM, Federal University of Rio de Janeiro, RJ, Brazil). The cells were
cultured in Dulbecco's modified Eagle's medium (DMEM), supplemented
with 10% foetal bovine serum (FBS), purchased from Vitrocell Embriolife
(Campinas, Brazil) and Gibco (Grand Island, NY, USA), respectively. Cells
were grown at 37 °C in an atmosphere of 95% humidified air and 5%
CO2. The experiments were performed with cells in the logarithmic
phase of growth.

Determination of cytotoxicity

The viability of the HT-29 cells was determined by measuring
the reduction of soluble MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide] to water insoluble formazan (Ali et
al., 2010; Henn et al., 2011). Briefly, cells were seeded at a density
of 2×104 cells per well in a volume of 100 μL in 96-well plates and
grown at 37 °C in a humidified atmosphere of 5% CO2/95% air for
24 h before being used in the MTT assay. Cells were incubated with
different concentrations of (C6H5Se)2, (4-ClC6H4Se)2, (3-CF3C6H4Se)2
or (4-MeOC6H4Se)2 (5–80 μM) for 24, 48 and 72 h. These compounds
were dissolved in dimethyl sulfoxide (DMSO) and added to the
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Fig. 1. Chemical structure
DMEM supplemented with 10% FBS to the desired concentrations. The
final DMSO concentration in the culture medium never exceeded
0.8% and a control group exposed to an equivalent concentration
of DMSO was evaluated. After incubation the media were re-
moved and 180 μL of DMEM and 20 μL MTT (5 mg MTT/mL solu-
tion) were added to each well. The plates were incubated for an
additional 3 h and the medium was discarded. 200 μL of DMSO was
added to each well, and the formazan was solubilized on a shaker for
5 min at 100×g. The absorbance of each well was read on a microplate
reader (MR-96A, Mindray Shenzhen, China) at a wavelength of 492 nm.
The percentage inhibition of cell growth was determined as follows:
inhibitory rate=(1−Abs4treated cells/Abs492control cells)×100 (Zheng et
al., 2011). All observations were validated by at least three independent
experiments and for each experiment the analyses were performed in
triplicate.

Apoptotic assay

The Guava Nexin assay (Guava Technologies) was conducted fol-
lowing the manufacturer's instructions. Briefly, 2.0×104 to 1.0×105

of the treated HT-29 cells (100 μL) were added to 100 μL of Guava
Nexin reagent. Cells were incubated in the dark at room temperature
for 20 min and samples (2000 cells per well) were acquired on the
flow cytometry Guava EasyCyte System. In this assay, an annexin
V-negative and 7-AAD-positive result indicated nuclear debris, an
annexin V-positive and 7-AAD-positive result indicated late apoptotic
cells, while an annexin V-negative and 7-AAD-negative result indicat-
ed live healthy cells and annexin V-positive and 7-AAD-negative re-
sult indicated the presence of early apoptotic cells.

Gene expression evaluation by real-time PCR

TheHT-29 cellswere seeded in a 6-wellflat bottomplate at a density
of 2×105 perwell and grown at 37 °C in a humidified atmosphere of 5%
CO2/95% air for 24 h. Cells were then exposed to 20, 40 and 80 μM of
(C6H5Se)2, (3-CF3C6H4Se)2 or (4-MeOC6H4Se)2 for 48 h. After this peri-
od the cells were washed with phosphate-buffered saline (PBS; Gibco)
and the RNA was extracted from the cells. Total RNA extraction, cDNA
synthesis and real-time PCR (qPCR) were carried out as previously de-
scribed (Campos et al., 2010). Briefly, RNA samples were isolated
using TRIzol Reagent (Invitrogen) and samples were DNase-treated
with a DNA-free kit (Ambion, USA) following themanufacturer's proto-
col. First-strand cDNA synthesis was performed with 2 μg of RNA using
High Capacity cDNA Reverse Transcription kit (Applied Biosystems, UK)
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according to the manufacturer's protocol. The qPCR reactions were run
on a Stratagene Mx3005P real-time PCR system (Agilent Technologies,
Santa Clara, CA, USA) using SYBR Green PCR Master Mix (Applied
Biosystems, UK) using the primers described in Table 1.

Data analysis

Data sets from the MTT assay and qPCR were analysed using a
two-way ANOVA followed by a Tukey test for multiple comparisons.
Two factors were considered: the compound used (four levels) and
the concentration of the compound (three levels). Significance was
considered at pb0.05 in all analyses. The data are expressed as the
means±SEM.

Results

Determination of cytotoxicity

Both the (C6H5Se)2 and (4-ClC6H4Se)2 compounds had a significant
cytotoxic effect on the HT-29 cells at 80 μM and this effect improved
significantly with exposure time (Fig. 2). Both the (3-CF3C6H4Se) and
(4-MeOC6H4Se) compounds achieved significant cytotoxicity at a con-
centration of 20 μM. After 48 h exposure to 20 μM (3-CF3C6H4Se) , cy-
totoxicity was 24% (pb0.05) and this increased significantly to 96% at
80 μM (Fig. 2). The cytotoxicity of the (4-MeOC6H4Se) compound at
20 μM, after 24 h exposure, was 44% and further increases in the
concentration of the compound resulted in a significant reduction
in the viability of the HT-29 cells (62 and 75% cytotoxicity, Fig. 2).
The exposure time had no significant effect on the cytotoxicity of
the (3-CF3C6H4Se) compound. Only the (4-MeOC6H4Se) compound
showed a significant improvement with exposure time, for example,
at 20 μMand after 24 and 48 h exposure, cytotoxicity increased from
44 to 65%, respectively, although there was no further improvement
at 72 h (Fig. 2). The presence of 0.8% DMSO in the culture medium
had no effect on cell viability, as compared to the control cells with-
out DMSO.

Apoptosis analysis

The annexin-PE staining assay was performed to further charac-
terize the observation that the (3-CF3C6H4Se) and (4-MeOC6H4Se)2
Table 1
Primer sequences used in this study.

Primers Sequence 5′→3′ Reference

p53 for AGCGAGCACTGCCCAACA Gochhait et al. (2009)
p53 rev CACGCCCACGGATCTGAA
Bcl-2 for GTGTGGAGAGCGTCAACC Chen et al. (2010)
Bcl-2 rev CTTCAGAGACAGCCAGGAG
Bax for ATGCGTCCACCAAGAAGC Chen et al. (2010)
Bax rev ACGGCGGCAATCATCCTC
Casp9 for CCAGAGATTCGCAAACCAGAGG Huang et al. (2007)
Casp9 rev GAGCACCGACATCACCAAATCC
Survivin for CTGTGGGCCCCTTAGCAAT Wang et al. (2008)
Survivin rev TAAGCCCGGGAATCAAAACA
p21 for CCTAATCCGCCCACAGGAA Wang et al. (2008)
p21 rev ACCTCCGGGAGAGAGGAAAA
MYC for TCAGCAACAACCGAAAATGC Wang et al. (2008)
MYC rev TTCCGTAGCTGTTCAAGTTTGTG
GAPDH for GGATTTGGTCGTATTGGG Hu et al. (2010)
GAPDH rev TCGCTCCTGGAAGATGG
Casp8 for GGATGGCCACTGTGAATAACTG Lin et al. (2011)
Casp8 rev TCGAGGACATCGCTCTCTCA
AIF for GGGAGGACTACGGCAAAGGT Lu et al. (2010)
AIF rev CTTCCTTGCTATTGGCATTCG
EndG for GTACCAGGTCATCGGCAAGAA Lin et al. (2008)
EndG rev CGTAGGTGCGGAGCTCAATT
compounds could induce apoptosis in HT-29 cells after exposure for
48 h. Annexin V binds to those cells that express phosphatidylserine
on the outer layer of the cell membrane, a characteristic feature of
cells entering apoptosis. The results indicated that (C6H5Se) induced
apoptosis at a concentration of 80 μM (22.5%, Fig. 3B). The lower con-
centrations (20 and 40 μM) of (C6H5Se) were not effective in causing
cell death through apoptosis, inducing similar levels of apoptosis (5.2
and 6.1%, respectively) seen in the control groups (3.0 and 6.1%, re-
spectively). The (3-CF3C6H4Se) compound induced a higher percent-
age of apoptosis at the 40 and 80 μM concentrations (22.3 and 84.7%,
respectively) compared to the controls and the (C6H5Se) compound.
At the 20 μM concentration the percentage of apoptotic cells was 7.8%,
similar to that observed in the control groups. The (4-MeOC6H4Se)
compound was able to induce significant apoptosis in the HT-29 cells
at 20 μM(38.6%), this increased to 58.9% upon exposure to a concentra-
tion of 40 μM, although a further increase in concentration to 80 μMdid
not increase apoptosis (54.7%). Apoptosis induction from exposure of
the HT-29 cells to 0.8% DMSO had no effect.
Gene expression

In order to evaluate the likely apoptosis pathways activated by
(3-CF3C6H4Se) and (4-MeOC6H4Se) in HT-29 cells (48 h expo-
sure), anti-apoptotic and pro-apoptotic gene expressions were in-
vestigated. Bax mRNA levels were significantly higher (pb0.05) in
cells exposed to (3-CF3C6H4Se) (80 μM) and (4-MeOC6H4Se) (20,
40 and 80 μM) when compared to the control groups (Fig. 4A).
However, (C6H5Se) had no effect on Bax mRNA levels when com-
pared to the control groups (p>0.05). Bcl-2 mRNA levels decreased
significantly (pb0.05) in cells exposed to (3-CF3C6H4Se) (80 μM) and
(4-MeOC6H4Se) (40 and 80 μM) when compared to control groups.
HT-29 cells exposed to (3-CF3C6H4Se) (40 μM), (4-MeOC6H4Se)
(20 μM) and (C6H5Se) (40 and 80 μM) decreased Bcl-2 mRNA levels
when compared to control groups (pb0.05) (Fig. 4B). Caspase 9 was
up-regulated (pb0.05) in cells treated with (3-CF3C6H4Se) (80 μM),
(4-MeOC6H4Se) (40 and 80 μM) (Fig. 4C). Exposure to (3-CF3C6H4Se)
(20 and 40 μM), (4-MeOC6H4Se) (20 μM) and (C6H5Se) (20, 40 and
80 μM) had no effect on caspase 9 gene expression (p>0.05). However,
caspase 8 mRNA levels were significantly higher (pb0.05) in cells ex-
posed to (4-MeOC6H4Se) (40 and 80 μM)when compared to the control
groups. (C6H5Se) , (3-CF3C6H4Se) and (4-MeOC6H4Se) (20 μM) did not
affect caspase 8 gene expression (p>0.05) (Fig. 4D). Survivin expression
was significantly down-regulated (pb0.05) in HT-29 cells treated with
(3-CF3C6H4Se) (40 and 80 μM), (4-MeOC6H4Se) (20, 40 and 80 μM)
and (C6H5Se) (80 μM) when compared to the control group (Fig. 4E).
The (3-CF3C6H4Se) (20 μM) and (C6H5Se) (20 and 40 μM) compounds
had no effect on survivin expression (p>0.05).

The mRNA levels for AIF and EndoG were also evaluated. AIF expression
was significantly up-regulated (pb0.05) upon exposure to (3-CF3C6H4Se)
(80 μM) and (4-MeOC6H4Se) (20, 40 and 80 μM) when compared to the
control group (Fig. 4F). However, (C6H5Se) and 3-CF3C6H4Se) (20 and
40 μM) had no effect on AIF mRNA levels when compared to control groups
(p>0.05). EndoG mRNA expression was up-regulated (pb0.05) when the
HT-29 cells were treated with (C6H5Se)2 (20, 40 and 80 μM), (3-CF3C6H4Se)
(20,40and80 μM)and(4-MeOC6H4Se) (20, 40and80 μM)compared to the
control group (Fig. 4G). HT-29 cells treatedwith (3-CF3C6H4Se) (80 μM) and
(4-MeOC6H4Se) (40 and 80 μM) had altered levels of cell cycle-related gene
expression, p53 expression was significantly up-regulated (pb0.05), in com-
parison to the control groups. (C6H5Se) , at all concentrations tested, had no
effectonp53mRNAlevels (Fig.5A).p21geneexpressionshowedthesameex-
pression pattern as p53, where (3-CF3C6H4Se) (80 μM) and (4-MeOC6H4Se)
(40 and 80 μM) caused significant up-regulation (pb0.05) and (C6H5Se) had
no effect (Fig. 5B). MYC gene expression was significantly reduced (pb0.05)
in cells treated with (3-CF3C6H4Se) (80 μM) and (4-MeOC6H4Se) (40 and
80 μM). (C6H5Se) had no effect on MYC gene expression (Fig. 5C). Gene



Fig. 2. Effect of the different concentration of substituted diaryl diselenides, (C6H5Se)2 (4-ClC6H4Se)2, (3-CF3C6H4Se)2 and (4-MeOC6H4Se)2 following exposure for 24, 48 and 72 h
on the inhibition of HT-29 cells. Data are expressed as the means±SEM. Uppercase letters indicate significant differences between treatment times and lowercase letters indicate
significant differences in the concentrations used. A p-valueb0.05 was considered significant (Tukey test).
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expression upon exposure to 0.8% DMSOwas similar to the control group in
all experiments.

Discussion

Previous studies have confirmed that organoselenium com-
pounds, such as (C6H5Se) and its substituted structures, exhibit a
remarkable spectrum of pharmacological properties (Machado et al.,
2009; Savegnago et al., 2009; Wilhelm et al., 2009). Indeed, (C6H5Se)
has exhibited antioxidant, antidepressant-like, neuroprotective and
antinociceptive properties and recently it was demonstrated that
(C6H5Se) had a cytotoxic effect, mediated by the ERK1/2 pathway, on
SH-SY5Y cancer cells (Posser et al., 2011). Posser et al. (2011) reported
that 30 μM(C6H5Se) significantly decreased cell viability in 50% of cells
and, at a concentration of 10 μM, induced changes in cell morphology
(Posser et al., 2011). To the best of our knowledge no study has evaluat-
ed the effect of (C6H5Se)2 and the substituted diaryl diselenides (4-ClC6-
H4Se)2, (3-CF3C6H4Se) and (4-MeOC6H4Se) as cytotoxic and apoptotic
agents against cancer cells in vitro or in vivo.

In the present study, (C6H5Se) and one of its substituted structures,
(4-ClC6H4Se)2, only presented significant cytotoxic effects against the
HT-209 cells at a concentration of 80 μM. A similar study that used a
neuroblastoma cell line reported cytotoxic effects at lower concentra-
tions (10–30 μM (C6H5Se) ). However, this discrepancy may be related
to differences between the SH-SY5Y and HT-29 tumor cell lines, as they
exhibit different gene profiles when exposed to potent toxic substances
(Thirunavukkarasusx et al., 2011). These results suggest that (C6H5Se)
has a selective action and therefore offers an opportunity to investigate
its use as a therapeutic agent. This selectivity has been observed with
other selenium compounds, where cancer cells, including lung (A549)
and head and neck (HSC-3), were substantially more sensitive to sele-
nite and prone to induction of apoptosis than the breast cancer cell
line MCF-7 (Suzuki et al., 2010). The (3-CF3C6H4Se) and (4-MeOC6H4-

Se) compounds induced cytotoxicity and alterations in cellmorphology
in HT-29 cells in a dose-dependent manner: 20 μM (24.4 vs. 65.2%),
40 μM (81.8 vs. 81.7%) and 80 μM (91.2 vs. 96.1%), respectively. A re-
cent study evaluated the ability of different selenium compounds (sele-
nate, selenite, MeSeA, MeSeCys and SeMet) to induce cell death in
HT-29 cells (Lunøe et al., 2011). The most effective compound was sel-
enite, an inorganic selenium, the percentage of cell death was 21
(10 μM) and 39% (100 μM), followed by two organic selenium com-
pounds, MeSeA (methylseleninic acid) 2 (10 μM) and 14% (100 μM),
and MeSeCys (Se-methylselenocysteine) 3% (100 μM). This suggests
that the (3-CF3C6H4Se) and (4-MeOC6H4Se) compounds evaluated in
the current study are potentially cytotoxic against human colon adeno-
carcinoma cells, albeit in vitro. The substitution of a hydrogen atom on
the aryl group of diaryl diselenide by an electron withdrawing group
(‐trifluoromethyl) or an electron donating group (‐methoxyl) altered
the cytotoxicity when compared to diphenyl diselenide. However,
these effects were independent of the nature of the aromatic ring in
the diaryl diselenide. Bothmolecules demonstrated greater cytotoxicity
compared to (C6H5Se) and (4-ClC6H4Se)2. It has been reported that se-
lenium can inhibit cell proliferation, inducing injury via generation of
reactive oxygen species (ROS) (Rudolf et al., 2008). ROS levels can acti-
vate the JNK pathway and caspases-3 and 9 via cytochrome c, with
down-regulation of Bcl-2 and up-regulation of Bax (Chen et al., 2012).
Also, it has been demonstrated that (C6H5Se) and (4-ClC6H4Se)2 pres-
ent higher thiol peroxidase activity and an improved antioxidant poten-
tial than (3-CF3C6H4Se) and (4-MeOC6H4Se) in vivo (Meotti et al.,
2004). Since, selenium-induced apoptosis in cancer cells can be
suppressed by antioxidants (Wu et al., 2010), it is possible that the
higher antioxidant potential of (C6H5Se) and (4-ClC6H4Se)2 could trig-
ger a less effective cytotoxic effect on HT-29 cells than (3-CF3C6H4Se)
and (4-MeOC6H4Se) .

Since apoptosis is thought to be the mediator of selenium anticancer
activity,we verified, by anAnnexin-PE staining assay, that the cytotoxicity
effect caused by the (3-CF3C6H4Se) and (4-MeOC6H4Se) compoundswas
mediated by apoptosis. Caspases are central to themechanism of apopto-
sis as they are both the initiators and executioners. One pathway by
which caspases can be activated involves the extrinsic death receptor
pathway, where death ligands bind to death receptors, activating caspase
8 and subsequently initiating apoptosis by cleaving other downstream or
executioner caspases (Wong, 2011). When (C6H5Se)2 and its substituted
structureswere tested for their ability to stimulate expression of caspase-
8, (4-MeOC6H4Se) (40 and 80 μM)was the only compound that induced
high levels of caspase-8mRNA. Since the upstream caspase for the extrin-
sic death receptor pathway is caspase-8, this suggests that (4-MeOC6H4-

Se) could be activating a death receptor and therefore contributing to
apoptosis in the HT-29 cells. In addition, (4-MeOC6H4Se) could present
a different biological effect from the other substituted structures due to
its electron donating group (‐methoxyl).

A second pathway involved in caspase activation is themitochondrial
release of cytochrome c (Wong, 2011). The cytoplasmatic release of cyto-
chrome c activates capase-3 via the formationof a complex (apoptosome)



Fig. 3. Annexin V-PE analysis of HT-29 cells treated with 20, 40 and 80 μM of (C6H5Se)2, (3-CF3C6H4Se)2 and (4-MeOC6H4Se)2, and control groups after exposure for 48 h. Panel A.
Flow cytometry graphs. Panel B. Percentage of apoptotic cells.
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which is made of cytochrome c, APAF-1 and caspase-9 (Jackson and
Combs, 2008). Bcl-2 (anti-apoptotic) and Bax (pro-apoptotic) are closely
involved in this process, an increase in Bcl-2 expression prevents cyto-
chrome c release from the mitochondria, inhibiting the activation of
caspase-9 and caspase-3, and preventing apoptosis (Santandreu et al.,
2011). In the present study, Bcl-2 expression was down-regulated by
(3-CF3C6H4Se) (80 μM) and (4-MeOC6H4Se) (40 and 80 μM), whereas
Bax expression was up-regulated. These findings suggest that Bax and
Bcl-2 were involved in mediating the apoptotic effects associated with
the cytotoxicity of (3-CF3C6H4Se) and (4-MeOC6H4Se) in HT-29 cells.
In addition, caspase-9 mRNA levels were significantly increased by treat-
ment with (3-CF3C6H4Se) (80 μM) and (4-MeOC6H4Se) (40 and 80 μM)

image of Fig.�3
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showing that caspase-9 was involved in mediating the apoptotic effects
associated with these compounds. Apoptosis induced by selenium has
been reported to involve the activation of caspases. It was shown that
Fig. 4. Effect of (C6H5Se)2, (3-CF3C6H4Se)2 and (4-MeOC6H4Se)2, in apoptotic-related gene
EndoG. The data shown are expressed as the means±SEM of a representative experiment
A p-valueb0.05 was considered significant (Tukey test).
MeSeA induced apoptosis in human prostate cancer (Yamaguchi et al.,
2005) and leukemia cells (Kim et al., 2001) by the activation of multiple
caspases (caspases-3, -7, -8 and ‐9), mitochondrial release of cytochrome
expression. A—Bax, B—Bcl-2, C—caspase 9, D—caspase 8, E—survivin, F—AIF and G—
performed in triplicate (n=3). Letters above the bars indicate significant differences.

image of Fig.�4


Fig. 5. Effect of (C6H5Se)2, (3-CF3C6H4Se)2 and (4-MeOC6H4Se)2, in cell-cycle arrest-related
geneexpression.A—p53, B—p21 andC—Myc. Thedata shownare expressed as themeans±
SEM of a representative experiment performed in triplicate (n=3). Letters above the bars
indicate significant differences. A p-valueb0.05 was considered significant (Tukey test).
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c and DNA fragmentation. Other organic and inorganic selenium com-
pounds have been shown to induce caspase-mediated apoptosis, includ-
ing MeSeCys, selenite (Suzuki et al., 2010), sodium selenite (Chen et al.,
2012), and selenium dioxide (SeO2) (Rikiishi, 2007).

Additional apoptotic factors that can be released from the mito-
chondrial intermembrane space into the cytosol are AIF and EndoG,
which translocate to the nucleus, triggering chromatin condensation
and DNA degradation in a caspase-independent manner (Vařecha et
al., 2012; Wong, 2011). In the current study AIF gene expression
was up-regulated by (3-CF3C6H4Se) (80 μM) and (4-MeOC6H4Se)
(20, 40 and 80 μM) and EndoG was up-regulated by exposure to the
two substituted diaryl diselenides as well as to (C6H5Se)2. These re-
sults suggest time that diaryl diselenide and its substituted structures
could induce apoptosis not only through the activation of multiple
caspases but also through a caspase-independent pathway.

Survivin has been implicated in the inhibition of apoptosis, cell prolif-
eration, angiogenesis, and cellular stress response. In HT-29 cells,
(3-CF3C6H4Se) (40 and 80 μM), (4-MeOC6H4Se) (20, 40 and 80 μM)
and (C6H5Se) (80 μM) down-regulated the gene expression of survivin.
Survivin expression was down-regulated in cell lines derived from pros-
tate cancer cells, such as LNCaP, C4-2 (Chun et al., 2007), DU145 and
PC-3 (Huet al., 2008) treatedwith selenium.However,when the same se-
lenium compound was tested with a metastatic cell line derived from
PC-3 (PC-3M) and two other prostate cancer cell lines (C4-2B and
22Rv1), it hadno effect on survivin expression, indicating that the apopto-
sis induced by seleniumwas notmediated by decreasing survivin expres-
sion (Liu et al., 2010). These results indicated that selenium could trigger
different responses depending on the type of cell. Furthermore, p53 and
p21 mRNA expression levels were increased while MYC gene expression
was down-regulated upon exposure to (3-CF3C6H4Se) (80 μM) and
(4-MeOC6H4Se) (40 and 80 μM). The expression of p53, p21 andMYC in-
duced by (C6H5Se) did not differ from that of the control groups. Investi-
gators have shown that cells deficient in p21 escaped G2/M phase cell
cycle arrest when exposed to DNA damaging agents (Rosa et al., 2007b),
and that p53 arrested the cell cycle by lowering cyclin B1 levels (Rosa et
al., 2007a). In addition, reduction of MYC expression was associated
with cell cycle arrest in SH-SY5Y cells (Posser et al., 2011). Our results sug-
gest that (3-CF3C6H4Se) and (4-MeOC6H4Se) influenced the expression
of p53, p21 and MYC and that they could be effective as anti-
proliferative agents by inducing G2/M cell cycle arrest. Selenite was
shown to elevate the levels of phosphorylated p53 protein at Ser-15
and concomitantly increase the expression of p21. In addition, the
pro-apoptotic Bax levels were elevated andwhen a p53-specific inhibitor
was used Bax expression was reduced by 50%, suggesting that selenium
compounds couldmediate tumor cell death by the p53 pathway. Howev-
er, othermechanismsmay also contribute to the expression of Bax. In ad-
dition, it was observed that cytochrome c, capspases-9 and ‐8 did not
participate in the execution of apoptosis in selenite-exposed cells
(Rudolf et al., 2008). In the present study, the (3-CF3C6H4Se) and (4-
MeOC6H4Se) compounds appeared to mediate apoptosis in a caspase-
dependent manner, since the expression of caspase-9 was significantly
higher in treated HT-29 cells. However, p53 phosphorylation could also
contribute to elevated Bax expression leading to apoptosis.

Of note, the role of apoptosis in the current study was determined
using real-time PCR and this is a potential limitation as it is known
that mRNA does not necessarily reflect protein concentration, this
will be part of future work on these compounds. Furthermore, it is
important to clarify that the benefit of selenium compounds is related
to its bioavailability in the intestine and its ability to enter the blood-
stream where it can be distributed to various organs and tissues. Of
note, the bioavailability of selenium is closely related to its chemical
form (Thiry et al., 2012). In this study the most cytotoxic compound,
(4-MeOC6H4Se) , exhibited a significant inhibitory effect (> 40%) on
HT-29 cells at a concentration of 20 μM that increased to >75% at a
concentration of 80 μM following exposure for 24 h. Furthermore,
these concentrations are similar to those used in other studies that
reported induction of apoptosis in cancer cells with similar doses
(10–100 μM) of selenium compounds (Lunøe et al., 2011; Posser et
al., 2011). Further work will need to be carried out to verify the cyto-
toxic effects of the compounds in animal models and to confirm their
bioavailability at these concentrations.

Conclusion

In summary, for thefirst time the cytotoxic potential of (3-CF3C6H4Se)
and (4-MeOC6H4Se) was demonstrated in human colon adenocarcinoma
cells and the cytotoxic effectwas likelymediated through the induction of
apoptosis. In addition, severalmolecular targets of these compoundswere
investigated and the evidence suggests that apoptosiswas stimulatedby a
caspase-dependant pathway as well as by a caspase-independent path-
way and that cell-cycle arrest was mediated by the p53, p21 and MYC
genes. However, mRNA levels do not necessarily reflect protein concen-
tration and further work will be required to confirm these findings.
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