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Abstract

The following inverse eigenvalue problem was introduced and discussed in [J. Peng, X.Y. Hu, L. Zhang,
Two inverse eigenvalue problems for a special kind of matrices, Linear Algebra Appl. 416 (2006) 336–
347]: to construct a real symmetric bordered diagonal matrix A from the minimal and maximal eigenvalues
of all its leading principal submatrices. However, the given formulae in [4, Theorem 1] to compute the
matrix A may lead us to a matrix, which does not satisfy the requirements of the problem. In this paper,
we rediscuss the problem to give a sufficient condition for the existence of such a matrix and necessary and
sufficient conditions for the existence of a nonnegative such a matrix. Results are constructive and generate
an algorithmic procedure to construct the matrices.
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1. Introduction

In this paper, we consider the problem of constructing a symmetric bordered diagonal matrix
of the form:

A =

⎛⎜⎜⎜⎜⎜⎝
a1 b1 b2 · · · bn−1
b1 a2 0 · · · 0
b2 0 a3 · · · 0
...

...
...

. . .
...

bn−1 0 0 · · · an

⎞⎟⎟⎟⎟⎟⎠ , (1)

where aj , bj ∈ R.
This class of matrices appears in certain symmetric inverse eigenvalue and inverse Sturm-

Liouville problems, which arise in many applications, including control theory and vibration
analysis [1–4].

We denote as Ij the identity matrix of order j ; as Aj the j × j leading principal submatrix of

A; as Pj (λ) the characteristic polynomial of Aj and as λ
(j)

1 � λ
(j)

2 � · · · � λ
(j)
j the eigenvalues

of Aj .
Our work is motivated by the results in [4]. There, the authors introduced two inverse eigenvalue

problems, where a special spectral information is considered. An inverse eigenvalue problem for
tridiagonal matrices with the same spectral information is also considered in [5]. One of the
problems in [4], Problem I, is of our interest here:

Problem I [4]. For 2n − 1 given real numbers λ
(n)
1 < λ

(n−1)
1 < · · · < λ

(2)
1 < λ

(1)
1 < λ

(2)
2 < · · · <

λ
(n)
n , find an n × n matrix A of the form (1), with the ai all distinct for i = 2, 3, . . . , n and the bi

all positive, such that λ
(j)

1 and λ
(j)
j are, respectively, the minimal and the maximal eigenvalue of

Aj for all j = 1, 2, . . . , n.

In [4, Theorem 1] is said that there is a unique solution of Problem I if and only if

h̃j = (−1)j−1

⎡⎣Pj−1

(
λ

(j)

1

) j−1∏
i=2

(
λ

(j)
j − ai

)
− Pj−1

(
λ

(j)
j

) j−1∏
i=2

(
λ

(j)

1 − ai

)⎤⎦ > 0. (2)

We observe that the condition (2) is always satisfied under the hyphotesis of Problem I. Moreover,
the formulae to compute the ai and the bi, given in [4, Theorem 1] may lead us to a matrix, which
does not satisfy the requirements: the given real numbers λ

(4)
1 = 1, λ

(3)
1 = 2, λ

(2)
1 = 3, λ

(1)
1 = 4,

λ
(2)
2 = 5, λ

(3)
3 = 6, λ

(4)
4 = 7, satisfy the condition (2). However, the resulting matrix is

A =

⎛⎜⎜⎝
4 1

√
3

√
5

1 4 0 0√
3 0 4 0√
5 0 0 4

⎞⎟⎟⎠ , (3)

where the diagonal entries are not distinct.
In this paper, we consider the following more general problem:

Problem II. Given the 2n − 1 real numbers λ
(j)

1 and λ
(j)
j , j = 1, 2, . . . , n, find an n × n matrix

A of the form (1) such that λ(j)

1 and λ
(j)
j are, respectively, the minimal and the maximal eigenvalue

of Aj , j = 1, 2, . . ., n.
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The paper is organized as follows: In Section 2, we solve Problem II by giving a necessary and
sufficient condition for the existence of the matrix A in (1) and also solve the case in which the
matrix A, in Problem II, is required to have all its entries bi positive. In Section 3, we discuss Prob-
lem I in [4] and give a sufficient condition for its solution. In Section 4, we study the nonnegative
case by giving a necessary and sufficient condition for the existence of a nonnegative matrix A of
the form (1) such that λ

(j)

1 and λ
(j)
j are, respectively, the minimal and the maximal eigenvalue of

Aj for all j = 1, 2, . . . , n. Finally, in Section 5 we show some examples to illustrate the results.

2. Solution of Problem II

We start this section by recalling the following lemmas:

Lemma 1. Let A be a matrix of the form (1). Then the sequence of characteristic polynomials
{Pj (λ)}nj=1 satisfies the recurrence relation:

P1(λ) = (λ − a1),

P2(λ) = (λ − a2)P1(λ) − b2
1,

Pj (λ) = (λ − aj )Pj−1(λ) − b2
j−1

∏j−1
i=2 (λ − ai), j = 3, 4, . . ., n.

(4)

Lemma 2. Let P(λ) be a monic polynomial of degree n with all real zeroes. If λ1 and λn are,
respectively, the minimal and the maximal zero of P(λ), then

1. If μ < λ1, we have that (−1)nP (μ) > 0.
2. If μ > λn, we have that P(μ) > 0.

Proof. Let P(λ) = (λ − λ1)(λ − λ2) · · · (λ − λn). Thus, if μ < λ1 and n is odd then P(μ) < 0.
If μ < λ1 and n is even then P(μ) > 0. Hence, (−1)nP (μ) > 0. If μ > λn, then clearly P(μ) >

0. �

Observe that from the Cauchy interlacing property, the minimal and the maximal eigenvalue,
λ

(j)

1 and λ
(j)
j , respectively, of each leading principal submatrix Aj , j = 1, 2, . . ., n, of the matrix

A in (1) satisfy the relations:

λ
(n)
1 � · · · � λ

(3)
1 � λ

(2)
1 � λ

(1)
1 � λ

(2)
2 � λ

(3)
3 < · · · � λ(n)

n (5)

and

λ
(j)

1 � ai � λ
(j)
j , i = 1, . . . , j ; j = 1, . . . , n. (6)

Lemma 3. Let {Pj (λ)}nj=1 be the polynomials defined in (4), whose minimal and maximal zeroes,

λ
(j)

1 and λ
(j)
j , j = 1, 2, . . . , n, respectively, satisfy the relation (5). Then

h̃j = (−1)j−1

⎡⎣Pj−1(λ
(j)

1 )

j−1∏
i=2

(
λ

(j)
j − ai

)
− Pj−1

(
λ

(j)
j

) j−1∏
i=2

(
λ

(j)

1 − ai

)⎤⎦ � 0,

j = 2, 3, . . . , n. (7)
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Proof. From Lemma 2, we have

(−1)j−1Pj−1

(
λ

(j)

1

)
� 0 and Pj−1

(
λ

(j)
j

)
� 0. (8)

Moreover, from (6)

j−1∏
i=2

(
λ

(j)
j − ai

)
� 0 (9)

and

(−1)j−1
j−1∏
i=2

(
λ

(j)

1 − ai

)
� 0. (10)

Clearly h̃j � 0 follows from (8)–(10). �

The following theorem solves Problem II. In particular the theorem shows that the condition
(5) is necessary and sufficient for the existence of the matrix A in (1).

Theorem 1. Let the real numbers λ
(j)

1 and λ
(j)
j , j = 1, 2, . . . , n, be given. Then there exists an

n × n matrix A of the form (1), such that λ
(j)

1 and λ
(j)
j are, respectively, the minimal and the

maximal eigenvalue of its leading principal submatrix Aj , j = 1, 2, . . ., n, if and only if

λ
(n)
1 � · · · � λ

(3)
1 � λ

(2)
1 � λ

(1)
1 � λ

(2)
2 � λ

(3)
3 � · · · � λ(n)

n . (11)

Proof. Let λ
(j)

1 and λ
(j)
j , j = 1, 2, . . . , n, satisfying (11). Observe that

A1 = [a1] = [
λ

(1)
1

]
and P1(λ) = λ − a1. To show the existence of Aj , j = 2, 3, . . . , n with λ

(j)

1 and λ
(j)
j as its minimal

and maximal eigenvalues, respectively, is equivalent to show that the system of equations

Pj

(
λ

(j)

1

)
=

(
λ

(j)

1 − aj

)
Pj−1

(
λ

(j)

1

)
− b2

j−1

j−1∏
i=2

(
λ

(j)

1 − ai

)
= 0

Pj

(
λ

(j)
j

)
=

(
λ

(j)
j − aj

)
Pj−1

(
λ

(j)
j

)
− b2

j−1

j−1∏
i=2

(
λ

(j)
j − ai

)
= 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (12)

has real solutions aj and bj−1, j = 2, 3, . . ., n. If the determinant

hj = Pj−1

(
λ

(j)

1

) j−1∏
i=2

(
λ

(j)
j − ai

)
− Pj−1

(
λ

(j)
j

) j−1∏
i=2

(
λ

(j)

1 − ai

)
(13)

of the coefficients matrix of the system (12) is nonzero then the system has unique solutions aj

and b2
j−1, j = 2, 3, . . ., n. In this case, from Lemma 3 we have h̃j > 0. By solving the system

(12) we obtain

aj =
λ

(j)

1 Pj−1

(
λ

(j)

1

)∏j−1
i=2

(
λ

(j)
j − ai

)
− λ

(j)
j Pj−1

(
λ

(j)
j

)∏j−1
i=2

(
λ

(j)

1 − ai

)
hj

(14)
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and

b2
j−1 =

(
λ

(j)
j − λ

(j)

1

)
Pj−1

(
λ

(j)

1

)
Pj−1

(
λ

(j)
j

)
hj

. (15)

Since

(−1)j−1
(
λ

(j)
j − λ

(j)

1

)
Pj−1

(
λ

(j)

1

)
Pj−1

(
λ

(j)
j

)
� 0,

then bj−1 is a real number and therefore, there exists A with the spectral properties required.
Now we will show that if hj = 0, the system (12) still has a solution. We do this by induction

by showing that the rank of the coefficients matrix is equal to the rank of the augmented matrix.
Let j = 2. If h2 = 0 then

h̃2 = (−1)1h2

= (−1)1
[
P1

(
λ

(2)
1

)
− P1

(
λ

(2)
2

)]
= 0,

which, from Lemma 2, is equivalent to

P1

(
λ

(2)
1

)
= 0 ∧ P1

(
λ

(2)
2

)
= 0

and therefore

λ
(2)
1 = λ

(1)
1 ∧ λ

(1)
1 = λ

(2)
2 . (16)

In this case the augmented matrix is⎡⎣P1

(
λ

(2)
1

)
1

P1

(
λ

(2)
2

)
1

∣∣∣∣∣∣
λ

(2)
1 P1(λ

(2)
1 )

λ
(2)
2 P1(λ

(2)
2 )

⎤⎦
and the ranks of both matrices, the coefficient matrix and the augmented matrix, are equal. Hence
A2 exists and has the form

A2 =
[
λ

(1)
1 0
0 λ

(1)
1

]
.

Now we consider j � 3. If hj = 0 then

h̃j = (−1)j−1hj

= (−1)j−1

⎡⎣Pj−1

(
λ

(j)

1

) j−1∏
i=2

(
λ

(j)
j − ai

)
− Pj−1

(
λ

(j)
j

) j−1∏
i=2

(
λ

(j)

1 − ai

)⎤⎦ = 0.

From Lemma 2

Pj−1

(
λ

(j)

1

)
= 0 ∨

j−1∏
i=2

(
λ

(j)
j − ai

)
= 0

and

Pj−1

(
λ

(j)
j

)
= 0 ∨

j−1∏
i=2

(
λ

(j)

1 − ai

)
= 0.
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Then hj = 0 leads us to the following cases:

(i) λ
(j)

1 = λ
(j−1)

1 ∧ λ
(j−1)

j−1 = λ
(j)
j ,

(ii) λ
(j)

1 = λ
(j−1)

1 ∧
j−1∏
i=2

(
λ

(j)

1 − ai

)
= 0,

(iii)
j−1∏
i=2

(
λ

(j)
j − ai

)
= 0 ∧ λ

(j−1)

j−1 = λ
(j)
j ,

(iv)

j−1∏
i=2

(
λ

(j)
j − ai

)
= 0 ∧

j−1∏
i=2

(
λ

(j)

1 − ai

)
= 0

and the augmented matrix is⎡⎢⎢⎢⎣
Pj−1

(
λ

(j)

1

) j−1∏
i=2

(
λ

(j)

1 − ai

)
Pj−1

(
λ

(j)
j

) j−1∏
i=2

(
λ

(j)
j − ai

)
∣∣∣∣∣ λ

(j)

1 Pj−1

(
λ

(j)

1

)
λ

(j)
j Pj−1

(
λ

(j)
j

)
⎤⎥⎥⎥⎦ . (17)

By replacing conditions (i)–(iii) in (17), it is clear that the coefficients matrix and the augmented
matrix have the same rank. From condition (iv), the system of equations (12) becomes

Pj−1

(
λ

(j)

1

)
aj = λ

(j)

1 Pj−1

(
λ

(j)

1

)
Pj−1

(
λ

(j)
j

)
aj = λ

(j)
j Pj−1

(
λ

(j)
j

)
⎫⎬⎭ .

If Pj−1(λ
(j)

1 ) /= 0 and Pj−1

(
λ

(j)
j

)
/= 0 then aj = λ

(j)

1 = λ
(j)
j and from (11)

λ
(j)

1 = λ
(j−1)

1 = · · · = λ
(1)
1 = · · · = λ

(j−1)

j−1 = λ
(j)
j .

Thus, Pj−1

(
λ

(j)

1

)
= Pj−1

(
λ

(j)
j

)
= 0, which is a contradiction. Hence, under condition (iv)

Pj−1

(
λ

(j)

1

)
= 0 or Pj−1

(
λ

(j)
j

)
= 0 and therefore, the coefficients matrix and the augmented

matrix have also the same rank. By taking b2
j−1 � 0, there exists a j × j matrix Aj with the

required spectral properties. The necessity comes from the Cauchy interlacing property. �

We have seen in the proof of Theorem 1 that if the determinant hj of the coefficients matrix
of the system (12) is nonzero, then the Problem II has a unique solution except for the sign of the
bi entries.

Now we solve the Problem II in the case that the bi entries are required to be positive. We need
the following Lemma:

Lemma 4. Let A be a matrix of the form (1) with bi /= 0, i = 1, . . . , n − 1. Let λ
(j)

1 and λ
(j)
j ,

respectively, be the minimal and the maximal eigenvalue of the leading principal submatrix Aj ,

j = 1, 2, . . ., n, of A. Then

λ
(j)

1 < · · · < λ
(3)
1 < λ

(2)
1 < λ

(1)
1 < λ

(2)
2 < λ

(3)
3 < · · · < λ

(j)
j (18)
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and

λ
(j)

1 < ai < λ
(j)
j , i = 2, 3, . . ., j (19)

for each j = 2, 3, . . . , n.

Proof. For j = 2, we have from (4)

P2(λ) = (λ − a2)P1(λ) − b2
1

= (λ − a2)(λ − λ
(1)
1 ) − b2

1.

As b1 /= 0, then P2(λ
(1)
1 ) /= 0 and from (5), we have

λ
(2)
1 < λ

(1)
1 < λ

(2)
2 .

If λ
(2)
1 = a2 or λ

(2)
2 = a2 then

0 = P2(a2) = (a2 − a2)P1(a2) − b2
1 = −b2

1

contradicts b1 /= 0 and from (6) we have

λ
(2)
1 < a2 < λ

(2)
2 . (20)

Let j = 3. Then from (4)

P3

(
λ

(2)
1

)
=

(
λ

(2)
1 − a3

)
P2

(
λ

(2)
1

)
− b2

2

(
λ

(2)
1 − a2

)
= −b2

2

(
λ

(2)
1 − a2

)
/= 0.

In the same way P3(λ
(2)
2 ) /= 0. Hence, λ

(2)
1 and λ

(2)
2 are not zeroes of P3(λ) and from (5)

λ
(3)
1 < λ

(2)
1 < λ

(1)
1 < λ

(2)
2 < λ

(3)
3 . (21)

Now, suppose that λ
(3)
1 = a3. Then

0 = P3(a3) = (a3 − a3)P2(a3) − b2
2(a3 − a2)

= −b2
2(a3 − a2) = −b2

2

(
λ

(3)
1 − a2

)
contradicts the inequalities (20) and (21). Same occurs if we assume that λ

(3)
3 = a3. Then from

(6) we have

λ
(3)
1 < ai < λ

(3)
3 , i = 2, 3.

Now, suppose that (18) and (19) hold for 4 � j � n − 1 and consider

Pj+1(λ) = (λ − aj+1)Pj (λ) − b2
j

j∏
i=2

(λ − ai).

Since bj /= 0 and λ
(j)

1 < ai < λ
(j)
j , i = 2, 3, . . ., j , then

∏j

i=2

(
λ

(j)

1 − ai

)
/= 0 and∏j

i=2

(
λ

(j)
j − ai

)
/= 0. Hence λ

(j)

1 nor λ
(j)
j are zeroes of Pj+1(λ). Then from (5) we have

λ
(j+1)

1 < λ
(j)

1 < · · · < λ
(2)
1 < λ

(1)
1 < λ

(2)
2 < · · · < λ

(j)
j < λ

(j+1)

j+1 . (22)
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Finally, if λ
(j+1)

1 = aj+1 then

0 = Pj+1(aj+1) = (aj+1 − aj+1)Pj (aj+1) − b2
j

j∏
i=2

(aj+1 − ai)

= −b2
j

j∏
i=2

(aj+1 − ai) = −b2
j

j∏
i=2

(
λ

(j+1)

1 − ai

)
contradicts (22). Then from (6)

λ
(j+1)

1 < ai < λ
(j+1)

j+1 , i = 2, 3, . . ., j + 1. �

The following corollary solves Problem II with bj > 0.

Corollary 1. Let the real numbers λ
(j)

1 and λ
(j)
j , j = 1, 2, . . . , n, be given. Then there exists a

unique n × n matrix A of the form (1), with aj ∈ R and bj > 0, such that λ
(j)

1 and λ
(j)
j are,

respectively, the minimal and the maximal eigenvalue of the leading principal submatrix Aj ,

j = 1, . . . , n, of A, if and only if

λ
(n)
1 < · · · < λ

(3)
1 < λ

(2)
1 < λ

(1)
1 < λ

(2)
2 < λ

(3)
3 < · · · < λ(n)

n . (23)

Proof. The proof is quite similar to the proof of Theorem 1: Let λ
(j)

1 and λ
(j)
j , j = 2, . . . , n,

satisfying (23). To show the existence of Aj , j = 2, 3, . . . , n, with the required spectral properties,
is equivalent to show that the system of equations (12) has real solutions aj and bj−1, with
bj−1 > 0, j = 2, 3, . . ., n. To do this it is enough to show that the determinant of the coefficients
matrix

hj = Pj−1

(
λ

(j)

1

) j−1∏
i=2

(
λ

(j)
j − ai

)
− Pj−1

(
λ

(j)
j

) j−1∏
i=2

(
λ

(j)

1 − ai

)
(24)

be nonzero.
From Lemmas 3 and 4 it follows that h̃j = (−1)1hj > 0. Hence hj /= 0 and the system (12)

has real and unique solutions:

aj =
λ

(j)

1 Pj−1

(
λ

(j)

1

)∏j−1
i=2

(
λ

(j)
j − ai

)
− λ

(j)
j Pj−1

(
λ

(j)
j

)∏j−1
i=2

(
λ

(j)

1 − ai

)
hj

(25)

and

b2
j−1 =

(
λ

(j)
j − λ

(j)

1

)
Pj−1

(
λ

(j)

1

)
Pj−1

(
λ

(j)
j

)
hj

, (26)

where

(−1)j−1
(
λ

(j)
j − λ

(j)

1

)
Pj−1

(
λ

(j)

1

)
Pj−1

(
λ

(j)
j

)
> 0.

Then it is clear that b2
j−1 > 0. Therefore, the bj−1 can be chosen positive and then there exists

a unique matrix Aj with the required spectral properties. The necessity of the result comes from
Lemma 4. �
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3. Partial solution to Problem I

As it was observed in Section 1, Problem I in [4] has not been solved. In fact, the matrix A in (3)
shows that to apply the formulae in [4, Theorem 1] may lead us to a matrix, which does not satisfy
the requirements. In this section, we give a sufficient condition to solve Problem I. Previously,
we give conditions under which we may construct a matrix of the form (1) with ai = a ∈ R,
i = 1, . . . , n and bi /= 0. We start with the following:

Lemma 5. Let A be a matrix of the form

Ã =

⎛⎜⎜⎜⎜⎜⎜⎝

0 b1 b2 · · · bn−1

b1 0 0 · · · 0

b2 0 0 · · · 0
...

...
...

. . .
...

bn−1 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎠ with bj /= 0, 1 � j � n − 1. (27)

Let P̃j (λ) be the characteristic polynomial of the leading principal submatrix Ãj of Ã, j =
1, . . . , n. Then, if j is even, P̃j (λ) is an even polynomial and if j is odd, P̃j (λ) is a odd polynomial.

Proof. If aj = 0, j = 1, 2, . . . , n, then the recurrence relation (4) become

P̃1(λ) = λ,

P̃2(λ) = λ2 − b2
1, (28)

P̃j (λ) = λP̃j−1(λ) − b2
j−1(λ)j−2, j = 3, . . ., n.

Clearly, P̃1(λ) is a odd polynomial, while P̃2(λ) is an even polynomial. Now, suppose that P̃j (λ)

is even for an even j and that P̃j (λ) is odd for a odd j . Let j + 1 be even. Then j is odd with
P̃j (λ) odd and j − 1 is even with P̃j−1(λ) even. From (4), we have

P̃j+1(−λ)=−λP̃j (−λ) − b2
j (−λ)j−1

=λP̃j (λ) − b2
j (λ)j−1

= P̃j+1(λ).

Hence P̃j+1(λ) is an even polynomial. Analogously if j + 1 is odd, P̃j+1(−λ) = −P̃j+1(λ). �

Definition 1. We say that � = {λ1, λ2, . . . , λn} is a balanced set if λi = −λn−i+1 with λn+1
2

= 0

for odd n.

Thus, if λ
(1)
1 = 0 and λ

(j)

1 = −λ
(j)
j , j = 2, 3, . . ., n, then the minimal and maximal eigenvalues{

λ
(j)

1 , λ
(j)
j

}
of all leading principal submatrices Ãj of Ã form a balanced set.

Corollary 2. Let λ
(j)

1 and λ
(j)
j , j = 1, 2, . . . , n, be real numbers satisfying (23). Then there

exists a unique n × n matrix A = Ã + aI, a ∈ R, where Ã is of the form (27), such that λ
(j)

1 and
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λ
(j)
j are, respectively, the minimal and the maximal eigenvalue of the leading principal submatrix

Aj of A, if and only if

λ
(j)

1 + λ
(j)
j = 2λ

(1)
1 , j = 2, . . ., n. (29)

Proof. Letλ(j)

1 + λ
(j)
j = 2λ

(1)
1 , j = 2, . . ., n. It is enough to prove the result for a balanced set, that

is, for λ
(1)
1 = 0. Otherwise, if λ

(1)
1 /= 0, then define μ

(j)
i = λ

(j)
i − λ

(1)
1 , j = 1, 2, . . . , n, i = 1, j

to obtain μ
(1)
1 = 0, μ

(j)

1 = −μ
(j)
j , j = 2, . . . , n. Hence, if there exists a unique matrix Ã of the

form (27) such that μ(j)

1 and μ
(j)
j are, respectively, the minimal and the maximal eigenvalue of the

leading principal submatrix Ãj , j = 1, . . . , n, of Ã, then A = Ã + λ
(1)
1 I is the unique symmetric

bordered diagonal matrix with the required spectral properties.
Let λ

(1)
1 = 0 and λ

(j)

1 = −λ
(j)
j , j = 2, . . ., n. Since (23) holds, then from Corollary 1 there

exists a unique matrix A of the form (1) with the required spectral properties. It only remains to
show that aj = 0, j = 1, 2, . . ., n.

Clearly, a1 = λ
(1)
1 = 0 and a1 + a2 = a2 = λ

(2)
1 + λ

(2)
2 = 0. Suppose that ak = 0, k = 1,

2, . . . , j ; j < n. Let k + 1 be even. Then from Lemma 5, Pk(λ) is odd and the numerator in
(25) is

λ
(k+1)
1 Pk

(
λ

(k+1)
1

) (
λ

(k+1)
k+1

)k−1 − λ
(k+1)
k+1 Pk

(
λ

(k+1)
k+1

) (
λ

(k+1)
1

)k−1

= −λ
(k+1)
k+1 Pk

(
−λ

(k+1)
k+1

) (
λ

(k+1)
k+1

)k−1 − λ
(k+1)
k+1 Pk

(
λ

(k+1)
k+1

) (
−λ

(k+1)
k+1

)k−1

= λ
(k+1)
k+1 Pk

(
λ

(k+1)
k+1

) (
λ

(k+1)
k+1

)k−1 − λ
(k+1)
k+1 Pk

(
λ

(k+1)
k+1

) (
λ

(k+1)
k+1

)k−1

= 0

from where ak+1 = 0. Similarly, it can be shown that ak+1 = 0 when k + 1 is odd.
Now, let A be the unique n × n matrix of the form (1) with aj = a, j = 1, 2, . . . , n, bj /=

0, such that λ
(j)

1 and λ
(j)
j are, respectively, the minimal and the maximal eigenvalue of the

leading principal submatrix Aj , j = 1, 2, . . . , n, of A. Then A = Ã + aI , with a = λ
(1)
1 and

Ã of the form (27) having leading principal submatrices Ãj with characteristic polynomials
P̃j (λ), j = 1, 2, . . . , n. Since P̃j (λ) even or P̃j (λ) odd imply P̃j (−λ) = 0, then the eigen-

values μ
(j)

1 < μ
(j)

2 < · · · < μ
(j)

j−1 < μ
(j)
j of Ãj satisfy the relation μ

(j)
i + μ

(j)

j−i+1 = 0. It is

clear that the minimal and maximal eigenvalues of Ãj are, respectively, λ
(j)

1 − λ
(1)
1 and λ

(j)
j −

λ
(1)
1 , j = 1, 2, . . . , n. Hence

(
λ

(j)

1 − λ
(1)
1

)
+

(
λ

(j)
j − λ

(1)
1

)
= 0 and consequently, λ(j)

1 + λ
(j)
j =

2λ
(1)
1 , j = 1, 2, . . . , n. The proof is completed. �

The following result gives a sufficient condition in order Problem I to have a solution.

Theorem 2. Let λ
(j)

1 and λ
(j)
j , j = 1, 2, . . . , n, be real numbers satisfying

λ
(n)
1 < · · · < λ

(3)
1 < λ

(2)
1 < λ

(1)
1 < λ

(2)
2 < λ

(3)
3 < · · · < λ(n)

n . (30)

Then, there exists a unique n × n matrix A of the form (1), with ai /= aj for i /= j (i, j =
1, 2, . . . , n) and bi > 0, such that λ

(j)

1 and λ
(j)
j are, respectively, the minimal and the maximal

eigenvalue of the leading principal submatrix Aj , j = 1, 2, . . . , n, of A if
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λ
(2)
1 + λ

(2)
2 /= 2λ

(1)
1 (31)

and

λ
(j−1)

j−1 − λ
(j)
j

λ
(j−1)

j−1 − λ
(j)

1

>
Pj−1

(
λ

(j)

1

)∏j−1
i=2

(
λ

(j)
j − ai

)
Pj−1

(
λ

(j)
j

)∏j−1
i=2

(
λ

(j)

1 − ai

) (32)

or

λ
(j−1)

1 − λ
(j)
j

λ
(j−1)

1 − λ
(j)

1

<
Pj−1

(
λ

(j)

1

)∏j−1
i=2

(
λ

(j)
j − ai

)
Pj−1

(
λ

(j)
j

)∏j−1
i=2

(
λ

(j)

1 − ai

) , (33)

j = 3, 4, . . ., n.

Proof. From Corollary 1, condition (30) guarantees the existence of a unique matrix A of the
form (1) with bi > 0 and the required spectral properties, and from Corollary 2, condition (31) is
necessary and sufficient in order that a1 /= a2. Now, let

uj = Pj−1

(
λ

(j)

1

) j−1∏
i=2

(
λ

(j)
j − ai

)
and

vj = Pj−1

(
λ

(j)
j

) j−1∏
i=2

(
λ

(j)

1 − ai

)
,

j = 3, 4, . . . , n (the numerator and the denominator in the right side of (32)). Suppose that (32)
holds for j = 3, that is

λ
(2)
2 − λ

(3)
3

λ
(2)
2 − λ

(3)
1

>
(−1)2u3

(−1)2v3
.

Then

(−1)2
[
λ

(3)
1 u3 − λ

(3)
3 v3

]
> λ

(2)
2 (−1)2[u3 − v3]

and

a3 = (−1)2[λ(3)
1 u3 − λ

(3)
3 v3]

(−1)2[u3 − v3] > λ
(2)
2 .

From Lemma 4, we have λ
(2)
1 < a1, a2 < λ

(2)
2 . Hence, a3 /= a2 /= a1.

Similarly, if (33) holds for j = 3, then a3 < λ
(2)
1 , and therefore, a3 /= a2 /= a1.

Now, suppose that the ai are all different, i = 1, . . . , j − 1 and (32) holds, that is

λ
(j−1)

j−1 − λ
(j)
j

λ
(j−1)

j−1 − λ
(j)

1

>
(−1)j−1uj

(−1)j−1vj

.

Then

(−1)j−1
[
λ

(j)

1 uj − λ
(j)
j vj

]
> λ

(j−1)

j−1 (−1)j−1[uj − vj ]
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and therefore

aj =
(−1)j−1

[
λ

(j)

1 uj − λ
(j)
j vj

]
(−1)j−1[uj − vj ] > λ

(j−1)

j−1 .

From Lemma 4, we have λ
(j−1)

1 < ai < λ
(j−1)

j−1 , i = 1, . . . , j − 1 and then aj /= aj−1 /= · · · /=
a2 /= a1. Similarly if (33) holds then we obtain aj < λ

(j−1)

1 and then aj /= aj−1 /= · · · /= a2 /= a1
again. �

We observe that a sufficient condition for Problem I can be obtained from (30) together with
(32) or (33).

4. The nonnegative case

In this section, we look for conditions for the existence of a matrix A of the form (1) with
aj � 0, bj � 0 and such that the given real numbers λ

(j)

1 , λ
(j)
j , j = 1, 2, . . . , n, are, respectively,

the minimal and the maximal eigenvalue of the leading principal submatrix Aj , j = 1, 2, . . . , n,
of A. We start by giving a necessary and sufficient condition for the existence of such a matrix,
when λ

(j)

1 , λ
(j)
j are all distinct.

Corollary 3. Let λ
(j)

1 and λ
(j)
j , j = 1, 2, . . . , n, be real numbers satisfying

λ
(n)
1 < · · · < λ

(3)
1 < λ

(2)
1 < λ

(1)
1 < λ

(2)
2 < λ

(3)
3 < · · · < λ(n)

n . (34)

Then, there exists a unique n × n nonnegative matrix A of the form (1), such that λ
(j)

1 and λ
(j)
j

are, respectively, the minimal and the maximal eigenvalue of the leading principal submatrix Aj ,

j = 1, 2, . . . , n, of A if and only if

λ
(1)
1 � 0 (35)

and

λ
(j)

1

λ
(j)
j

�
Pj−1

(
λ

(j)
j

)∏j−1
i=2

(
λ

(j)

1 − ai

)
Pj−1

(
λ

(j)

1

)∏j−1
i=2

(
λ

(j)
j − ai

) , j = 2, 3, . . ., n. (36)

Proof. Corollary 1 guarantees the existence of a unique matrix A of the form (1) with bi > 0,
i = 1, . . . , n − 1. It remains to show that the diagonal elements ai are nonnegative. From (35),
a1 = λ

(1)
1 � 0 and from (36)

λ
(j)

1

λ
(j)
j

�
(−1)j−1Pj−1

(
λ

(j)
j

)∏j−1
i=2

(
λ

(j)

1 − ai

)
(−1)j−1Pj−1

(
λ

(j)

1

)∏j−1
i=2

(
λ

(j)
j − ai

) , j = 2, 3, . . ., n.

Since 0 � λ
(1)
1 < λ

(j)
j then from Lemmas 2 and 3

(−1)j−1Pj−1

(
λ

(j)

1

) j−1∏
i=2

(
λ

(j)
j − ai

)
> 0.
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Then

λ
(j)

1 (−1)j−1Pj−1

(
λ

(j)

1

) j−1∏
i=2

(
λ

(j)
j − ai

)
� λ

(j)
j (−1)j−1Pj−1

(
λ

(j)
j

) j−1∏
i=2

(
λ

(j)

1 − ai

)
or

g̃j = (−1)j−1

⎡⎣λ
(j)

1 Pj−1

(
λ

(j)

1

) j−1∏
i=2

(
λ

(j)
j − ai

)

−λ
(j)
j Pj−1

(
λ

(j)
j

) j−1∏
i=2

(
λ

(j)

1 − ai

)⎤⎦ � 0.

Hence, from the proof of Corollary 1, we obtain

aj = g̃j

h̃j

� 0.

Now, let us assume that there exists a unique n × n nonnegative matrix A of the form (1)
with bi > 0, λ

(j)

1 , λ
(j)
j , j = 1, . . . , n, satisfying (34) and being the minimal and the maximal

eigenvalue of each leading principal submatrix Aj of A. From Lemma 4 the condition (30) is
satisfied. Moreover, from the proof of Corollary 1, the diagonal elements of A are of the form

aj =
[
λ

(j)

1 Pj−1

(
λ

(j)

1

)∏j−1
i=2

(
λ

(j)
j − ai

)
− λ

(j)
j Pj−1

(
λ

(j)
j

)∏j−1
i=2

(
λ

(j)

1 − ai

)]
hj

=
(−1)j−1

[
λ

(j)

1 Pj−1

(
λ

(j)

1

)∏j−1
i=2

(
λ

(j)
j − ai

)
− λ

(j)
j Pj−1

(
λ

(j)
j

)∏j−1
i=2

(
λ

(j)

1 − ai

)]
h̃j

� 0.

with h̃j > 0. Then

(−1)j−1λ
(j)
1 Pj−1

(
λ
(j)
1

)∏j−1

i=2

(
λ
(j)
j

− ai

)
� (−1)j−1λ

(j)
j

Pj−1

(
λ
(j)
j

)∏j−1

i=2

(
λ
(j)
1 − ai

)
,

that is

λ
(j)

1

λ
(j)
j

�
(−1)j−1Pj−1

(
λ

(j)
j

)∏j−1
i=2

(
λ

(j)

1 − ai

)
(−1)j−1Pj−1

(
λ

(j)

1

)∏j−1
i=2

(
λ

(j)
j − ai

)
=

Pj−1

(
λ

(j)
j

)∏j−1
i=2

(
λ

(j)

1 − ai

)
Pj−1

(
λ

(j)

1

)∏j−1
i=2

(
λ

(j)
j − ai

)
and the proof is completed. �

Now we discuss the case in which some of the given real numbers λ
(j)

1 , λ
(j)
j , j = 1, 2, . . . , n,

are equal. It is clear that if λ
(n)
1 = λ

(n)
n = α, then λ

(j)

1 = λ
(j)
j = α, j = 1, 2, . . . , n, and therefore,

A = αI.
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Suppose that the determinant hj of the coefficients matrix of the system (12) is nonzero, that
is

hj = Pj−1

(
λ

(j)

1

) j−1∏
i=2

(
λ

(j)
j − ai

)
− Pj−1

(
λ

(j)
j

) j−1∏
i=2

(
λ

(j)

1 − ai

)
/= 0.

In this case the solution matrix A is unique, except for the sign of bj−1, which we may choose as
nonnegative. Then we examine conditions for the nonnegativity of

aj =
[
λ

(j)

1 Pj−1

(
λ

(j)

1

)∏j−1
i=2

(
λ

(j)
j − ai

)
− λ

(j)
j Pj−1

(
λ

(j)
j

)∏j−1
i=2

(
λ

(j)

1 − ai

)]
Pj−1

(
λ

(j)

1

)∏j−1
i=2

(
λ

(j)
j − ai

)
− Pj−1

(
λ

(j)
j

)∏j−1
i=2

(
λ

(j)

1 − ai

) .

Since hj /= 0, from Lemma 3 h̃j = (−1)j−1hj > 0. Then from Lemma 2 we have the following
cases:

(i) Pj−1

(
λ

(j)

1

) j−1∏
i=2

(
λ

(j)
j − ai

)
/= 0 and Pj−1

(
λ

(j)
j

) j−1∏
i=2

(
λ

(j)

1 − ai

)
= 0.

Then aj = λ
(j)

1 and aj � 0 if λ
(j)

1 � 0.

(ii) Pj−1

(
λ

(j)

1

) j−1∏
i=2

(
λ

(j)
j − ai

)
= 0 and Pj−1

(
λ

(j)
j

) j−1∏
i=2

(
λ

(j)

1 − ai

)
/= 0.

Then aj = λ
(j)
j and aj � 0 always occurs since λ

(1)
1 � λ

(j)
j and 0 � λ

(1)
1 is a necessary condition:

(iii) Pj−1

(
λ

(j)

1

) j−1∏
i=2

(
λ

(j)
j − ai

)
/= 0 and Pj−1

(
λ

(j)
j

) j−1∏
i=2

(
λ

(j)

1 − ai

)
/= 0.

Then λ
(j)

1 < λ
(j−1)

1 and λ
(j−1)

j−1 < λ
(j)
j and a necessary and sufficient condition for aj � 0 is given

by (35) and (36) of Corollary 3.
Now, suppose that hj = 0. From Lemma 2 we have the following cases:

(i) λ
(j)

1 = λ
(j−1)

1 and λ
(j−1)

j−1 = λ
(j)
j .

From (12) aj can take any real value. Then we may choose aj � 0. On the other hand

b2
j−1 = 0 ∨

⎛⎝j−1∏
i=2

(
λ

(j)

1 − ai

)
= 0 ∧

j−1∏
i=2

(
λ

(j)
j − ai

)
= 0

⎞⎠ .

Thus bj−1 = 0 or bj−1 can be chosen as nonnegative.

(ii) λ
(j)

1 = λ
(j−1)

1 ∧
j−1∏
i=2

(
λ

(j)

1 − ai

)
= 0.

If Pj−1(λ
(j)
j ) = 0, then aj can take any real value. In particular, aj � 0 and bj−1 = 0 or bj−1 � 0.

If Pj−1(λ
(j)
j ) /= 0, then

aj =
λ

(j)
j Pj−1

(
λ

(j)
j

)
− ∏j−1

i=2

(
λ

(j)
j − ai

)
b2
j−1

Pj−1

(
λ

(j)
j

) .
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From Lemma 2, Pj−1
(
λ

(j)
j

)
> 0, and from (6),

∏j−1
i=2

(
λ

(j)
j − ai

)
� 0. Moreover, if bj−1 � 0,

then aj � 0 if

λ
(j)
j �

∏j−1
i=2

(
λ

(j)
j − ai

)
b2
j−1

Pj−1

(
λ

(j)
j

) .

(iii)
∏j−1

i=2

(
λ

(j)
j − ai

)
= 0 ∧ λ

(j−1)

j−1 = λ
(j)
j .

If Pj−1
(
λ

(j)

1

) = 0, aj can be taken as nonnegative. Moreover, bj−1 = 0 or bj−1 � 0. If

Pj−1
(
λ

(j)

1

)
/= 0, then

aj =
λ

(j)

1 Pj−1

(
λ

(j)

1

)
− ∏j−1

i=2

(
λ

(j)

1 − ai

)
b2
j−1

Pj−1

(
λ

(j)

1

) .

From Lemma 2, (−1)j−1Pj−1(λ
(j)

1 ) > 0, and from (6), (−1)j−1∏j−1
i=2

(
λ

(j)

1 − ai

)
� 0. Moreover,

if bj−1 � 0, then aj � 0 if

λ
(j)

1 �
∏j−1

i=2

(
λ

(j)

1 − ai

)
b2
j−1

Pj−1

(
λ

(j)

1

) .

(iv)

j−1∏
i=2

(
λ

(j)
j − ai

)
= 0 ∧

∏j−1

i=2

(
λ

(j)

1 − ai

)
= 0.

In this case the system (12) reduces to

Pj−1

(
λ

(j)

1

)
aj + 0b2

j−1 = λ
(j)

1 Pj−1

(
λ

(j)

1

)
Pj−1

(
λ

(j)
j

)
aj + 0b2

j−1 = λ
(j)
j Pj−1

(
λ

(j)
j

)
⎫⎬⎭ .

We assume that bj−1 � 0. Then, if Pj−1
(
λ

(j)

1

) = 0 and Pj−1(λa
(j)
j ) = 0, we may choose aj �

0. If Pj−1
(
λ

(j)

1

) = 0 and Pj−1
(
λ

(j)
j

)
/= 0, then aj = λ

(j)
j � λ

(1)
1 � 0. If Pj−1

(
λ

(j)

1

)
/= 0 and

Pj−1
(
λ

(j)
j

) = 0, thenaj = λ
(j)

1 � 0 ifλ(j)

1 � 0. Finally, the casePj−1
(
λ

(j)

1

)
/= 0 andPj−1(λ

(j)
j ) /=

0 cannot occur.

5. Examples

Example 1. The following numbers:

λ
(5)
1 λ

(4)
1 λ

(3)
1 λ

(2)
1 λ

(1)
1 λ

(2)
2−11.2369 −11.1921 −10.9106 −8.7760 −6.0043 −2.6295

λ
(3)
3 λ

(4)
4 λ

(5)
5

1.8532 8.4266 10.4020

satisfy the sufficient conditions (30)–(32) of the Theorem 2. Then the bordered diagonal matrix
with bi > 0 and ai /= aj , i /= j is
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A =

⎛⎜⎜⎜⎜⎝
−6.0043 3.0584 5.2453 2.9624 1.2602
3.0584 −5.4011
5.2453 −2.3357
2.9624 7.6429
1.2602 10.2504

⎞⎟⎟⎟⎟⎠ .

Example 2. We modify the previous example, in order that some given eigenvalues be equal:

λ
(5)
1 λ

(4)
1 λ

(3)
1 λ

(2)
1 λ

(1)
1 λ

(2)
2−11.2369 −10.9106 −10.9106 −8.7760 −6.0043 −6.0043

λ
(3)
3 λ

(4)
4 λ

(5)
5

1.8532 8.4266 10.4020

These numbers satisfy (11). One solution of Problem II is the matrix

A =

⎛⎜⎜⎜⎜⎝
−6.0043 0 6.2090 0 3.2977

0 −8.7760
6.2090 −3.0531

0 8.4266
3.2977 9.5989

⎞⎟⎟⎟⎟⎠ .

Example 3. The numbers

λ
(5)
1 λ

(4)
1 λ

(3)
1 λ

(2)
1 λ

(1)
1 λ

(2)
2−3.8467 −3.4048 −3.3900 −1.5635 0.2233 6.0818

λ
(3)
3 λ

(4)
4 λ

(5)
5

9.4090 11.7029 15.3806

satisfy relations (30)–(32), and relations (35) and (36). Then we obtain the nonnegative bordered
diagonal matrix

A =

⎛⎜⎜⎜⎜⎝
0.2233 3.2354 4.6803 0.5594 3.3490
3.2354 4.2950
4.6803 6.3405
0.5594 11.6505
3.3490 14.4225

⎞⎟⎟⎟⎟⎠
with the required spectral properties.
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