Extremal inverse eigenvalue problem for bordered diagonal matrices ${ }^{\text {h }}$

Hubert Pickmann, Juan Egaña*, Ricardo L. Soto
Departamento de Matemáticas, Universidad Católica del Norte, Antofagasta, Chile
Received 29 January 2007; accepted 26 July 2007
Available online 14 September 2007
Submitted by R.A. Brualdi

Abstract

The following inverse eigenvalue problem was introduced and discussed in [J. Peng, X.Y. Hu, L. Zhang, Two inverse eigenvalue problems for a special kind of matrices, Linear Algebra Appl. 416 (2006) 336347]: to construct a real symmetric bordered diagonal matrix A from the minimal and maximal eigenvalues of all its leading principal submatrices. However, the given formulae in [4, Theorem 1] to compute the matrix A may lead us to a matrix, which does not satisfy the requirements of the problem. In this paper, we rediscuss the problem to give a sufficient condition for the existence of such a matrix and necessary and sufficient conditions for the existence of a nonnegative such a matrix. Results are constructive and generate an algorithmic procedure to construct the matrices.

© 2007 Elsevier Inc. All rights reserved.

AMS classification: 65F15; 65F18; 15A18
Keywords: Symmetric bordered diagonal matrices; Matrix inverse eigenvalue problem

[^0]0024-3795/\$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.1aa.2007.07.020

1. Introduction

In this paper, we consider the problem of constructing a symmetric bordered diagonal matrix of the form:

$$
A=\left(\begin{array}{ccccc}
a_{1} & b_{1} & b_{2} & \cdots & b_{n-1} \tag{1}\\
b_{1} & a_{2} & 0 & \cdots & 0 \\
b_{2} & 0 & a_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
b_{n-1} & 0 & 0 & \cdots & a_{n}
\end{array}\right),
$$

where $a_{j}, b_{j} \in \mathbb{R}$.
This class of matrices appears in certain symmetric inverse eigenvalue and inverse SturmLiouville problems, which arise in many applications, including control theory and vibration analysis [1-4].

We denote as I_{j} the identity matrix of order j; as A_{j} the $j \times j$ leading principal submatrix of A; as $P_{j}(\lambda)$ the characteristic polynomial of A_{j} and as $\lambda_{1}^{(j)} \leqslant \lambda_{2}^{(j)} \leqslant \cdots \leqslant \lambda_{j}^{(j)}$ the eigenvalues of A_{j}.

Our work is motivated by the results in [4]. There, the authors introduced two inverse eigenvalue problems, where a special spectral information is considered. An inverse eigenvalue problem for tridiagonal matrices with the same spectral information is also considered in [5]. One of the problems in [4], Problem I, is of our interest here:

Problem I [4]. For $2 n-1$ given real numbers $\lambda_{1}^{(n)}<\lambda_{1}^{(n-1)}<\cdots<\lambda_{1}^{(2)}<\lambda_{1}^{(1)}<\lambda_{2}^{(2)}<\cdots<$ $\lambda_{n}^{(n)}$, find an $n \times n$ matrix A of the form (1), with the a_{i} all distinct for $i=2,3, \ldots, n$ and the b_{i} all positive, such that $\lambda_{1}^{(j)}$ and $\lambda_{j}^{(j)}$ are, respectively, the minimal and the maximal eigenvalue of A_{j} for all $j=1,2, \ldots, n$.

In [4, Theorem 1] is said that there is a unique solution of Problem I if and only if

$$
\begin{equation*}
\widetilde{h}_{j}=(-1)^{j-1}\left[P_{j-1}\left(\lambda_{1}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)-P_{j-1}\left(\lambda_{j}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right)\right]>0 \tag{2}
\end{equation*}
$$

We observe that the condition (2) is always satisfied under the hyphotesis of Problem I. Moreover, the formulae to compute the a_{i} and the b_{i}, given in [4, Theorem 1] may lead us to a matrix, which does not satisfy the requirements: the given real numbers $\lambda_{1}^{(4)}=1, \lambda_{1}^{(3)}=2, \lambda_{1}^{(2)}=3, \lambda_{1}^{(1)}=4$, $\lambda_{2}^{(2)}=5, \lambda_{3}^{(3)}=6, \lambda_{4}^{(4)}=7$, satisfy the condition (2). However, the resulting matrix is

$$
A=\left(\begin{array}{cccc}
4 & 1 & \sqrt{3} & \sqrt{5} \tag{3}\\
1 & 4 & 0 & 0 \\
\sqrt{3} & 0 & 4 & 0 \\
\sqrt{5} & 0 & 0 & 4
\end{array}\right)
$$

where the diagonal entries are not distinct.
In this paper, we consider the following more general problem:
Problem II. Given the $2 n-1$ real numbers $\lambda_{1}^{(j)}$ and $\lambda_{j}^{(j)}, j=1,2, \ldots, n$, find an $n \times n$ matrix A of the form (1) such that $\lambda_{1}^{(j)}$ and $\lambda_{j}^{(j)}$ are, respectively, the minimal and the maximal eigenvalue of $A_{j}, j=1,2, \ldots, n$.

The paper is organized as follows: In Section 2, we solve Problem II by giving a necessary and sufficient condition for the existence of the matrix A in (1) and also solve the case in which the matrix A, in Problem II, is required to have all its entries b_{i} positive. In Section 3, we discuss Problem I in [4] and give a sufficient condition for its solution. In Section 4, we study the nonnegative case by giving a necessary and sufficient condition for the existence of a nonnegative matrix A of the form (1) such that $\lambda_{1}^{(j)}$ and $\lambda_{j}^{(j)}$ are, respectively, the minimal and the maximal eigenvalue of A_{j} for all $j=1,2, \ldots, n$. Finally, in Section 5 we show some examples to illustrate the results.

2. Solution of Problem II

We start this section by recalling the following lemmas:
Lemma 1. Let A be a matrix of the form (1). Then the sequence of characteristic polynomials $\left\{P_{j}(\lambda)\right\}_{j=1}^{n}$ satisfies the recurrence relation:

$$
\begin{align*}
& P_{1}(\lambda)=\left(\lambda-a_{1}\right) \\
& P_{2}(\lambda)=\left(\lambda-a_{2}\right) P_{1}(\lambda)-b_{1}^{2} \tag{4}\\
& P_{j}(\lambda)=\left(\lambda-a_{j}\right) P_{j-1}(\lambda)-b_{j-1}^{2} \prod_{i=2}^{j-1}\left(\lambda-a_{i}\right), \quad j=3,4, \ldots, n
\end{align*}
$$

Lemma 2. Let $P(\lambda)$ be a monic polynomial of degree n with all real zeroes. If λ_{1} and λ_{n} are, respectively, the minimal and the maximal zero of $P(\lambda)$, then

1. If $\mu<\lambda_{1}$, we have that $(-1)^{n} P(\mu)>0$.
2. If $\mu>\lambda_{n}$, we have that $P(\mu)>0$.

Proof. Let $P(\lambda)=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \cdots\left(\lambda-\lambda_{n}\right)$. Thus, if $\mu<\lambda_{1}$ and n is odd then $P(\mu)<0$. If $\mu<\lambda_{1}$ and n is even then $P(\mu)>0$. Hence, $(-1)^{n} P(\mu)>0$. If $\mu>\lambda_{n}$, then clearly $P(\mu)>$ 0 .

Observe that from the Cauchy interlacing property, the minimal and the maximal eigenvalue, $\lambda_{1}^{(j)}$ and $\lambda_{j}^{(j)}$, respectively, of each leading principal submatrix $A_{j}, j=1,2, \ldots, n$, of the matrix A in (1) satisfy the relations:

$$
\begin{equation*}
\lambda_{1}^{(n)} \leqslant \cdots \leqslant \lambda_{1}^{(3)} \leqslant \lambda_{1}^{(2)} \leqslant \lambda_{1}^{(1)} \leqslant \lambda_{2}^{(2)} \leqslant \lambda_{3}^{(3)}<\cdots \leqslant \lambda_{n}^{(n)} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{1}^{(j)} \leqslant a_{i} \leqslant \lambda_{j}^{(j)}, \quad i=1, \ldots, j ; \quad j=1, \ldots, n \tag{6}
\end{equation*}
$$

Lemma 3. Let $\left\{P_{j}(\lambda)\right\}_{j=1}^{n}$ be the polynomials defined in (4), whose minimal and maximal zeroes, $\lambda_{1}^{(j)}$ and $\lambda_{j}^{(j)}, j=1,2, \ldots, n$, respectively, satisfy the relation (5). Then

$$
\begin{align*}
\widetilde{h}_{j} & =(-1)^{j-1}\left[P_{j-1}\left(\lambda_{1}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)-P_{j-1}\left(\lambda_{j}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right)\right] \geqslant 0 \\
& j=2,3, \ldots, n \tag{7}
\end{align*}
$$

Proof. From Lemma 2, we have

$$
\begin{equation*}
(-1)^{j-1} P_{j-1}\left(\lambda_{1}^{(j)}\right) \geqslant 0 \quad \text { and } \quad P_{j-1}\left(\lambda_{j}^{(j)}\right) \geqslant 0 \tag{8}
\end{equation*}
$$

Moreover, from (6)

$$
\begin{equation*}
\prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right) \geqslant 0 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
(-1)^{j-1} \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right) \leqslant 0 . \tag{10}
\end{equation*}
$$

Clearly $\widetilde{h}_{j} \geqslant 0$ follows from (8)-(10).
The following theorem solves Problem II. In particular the theorem shows that the condition (5) is necessary and sufficient for the existence of the matrix A in (1).

Theorem 1. Let the real numbers $\lambda_{1}^{(j)}$ and $\lambda_{j}^{(j)}, j=1,2, \ldots, n$, be given. Then there exists an $n \times n$ matrix A of the form (1), such that $\lambda_{1}^{(j)}$ and $\lambda_{j}^{(j)}$ are, respectively, the minimal and the maximal eigenvalue of its leading principal submatrix $A_{j}, j=1,2, \ldots, n$, if and only if

$$
\begin{equation*}
\lambda_{1}^{(n)} \leqslant \cdots \leqslant \lambda_{1}^{(3)} \leqslant \lambda_{1}^{(2)} \leqslant \lambda_{1}^{(1)} \leqslant \lambda_{2}^{(2)} \leqslant \lambda_{3}^{(3)} \leqslant \cdots \leqslant \lambda_{n}^{(n)} . \tag{11}
\end{equation*}
$$

Proof. Let $\lambda_{1}^{(j)}$ and $\lambda_{j}^{(j)}, j=1,2, \ldots, n$, satisfying (11). Observe that

$$
A_{1}=\left[a_{1}\right]=\left[\lambda_{1}^{(1)}\right]
$$

and $P_{1}(\lambda)=\lambda-a_{1}$. To show the existence of $A_{j}, j=2,3, \ldots, n$ with $\lambda_{1}^{(j)}$ and $\lambda_{j}^{(j)}$ as its minimal and maximal eigenvalues, respectively, is equivalent to show that the system of equations

$$
\left.\begin{array}{l}
P_{j}\left(\lambda_{1}^{(j)}\right)=\left(\lambda_{1}^{(j)}-a_{j}\right) P_{j-1}\left(\lambda_{1}^{(j)}\right)-b_{j-1}^{2} \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right)=0 \\
P_{j}\left(\lambda_{j}^{(j)}\right)=\left(\lambda_{j}^{(j)}-a_{j}\right) P_{j-1}\left(\lambda_{j}^{(j)}\right)-b_{j-1}^{2} \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)=0 \tag{12}
\end{array}\right\}
$$

has real solutions a_{j} and $b_{j-1}, j=2,3, \ldots, n$. If the determinant

$$
\begin{equation*}
h_{j}=P_{j-1}\left(\lambda_{1}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)-P_{j-1}\left(\lambda_{j}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right) \tag{13}
\end{equation*}
$$

of the coefficients matrix of the system (12) is nonzero then the system has unique solutions a_{j} and $b_{j-1}^{2}, j=2,3, \ldots, n$. In this case, from Lemma 3 we have $\widetilde{h}_{j}>0$. By solving the system (12) we obtain

$$
\begin{equation*}
a_{j}=\frac{\lambda_{1}^{(j)} P_{j-1}\left(\lambda_{1}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)-\lambda_{j}^{(j)} P_{j-1}\left(\lambda_{j}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right)}{h_{j}} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{j-1}^{2}=\frac{\left(\lambda_{j}^{(j)}-\lambda_{1}^{(j)}\right) P_{j-1}\left(\lambda_{1}^{(j)}\right) P_{j-1}\left(\lambda_{j}^{(j)}\right)}{h_{j}} \tag{15}
\end{equation*}
$$

Since

$$
(-1)^{j-1}\left(\lambda_{j}^{(j)}-\lambda_{1}^{(j)}\right) P_{j-1}\left(\lambda_{1}^{(j)}\right) P_{j-1}\left(\lambda_{j}^{(j)}\right) \geqslant 0
$$

then b_{j-1} is a real number and therefore, there exists A with the spectral properties required.
Now we will show that if $h_{j}=0$, the system (12) still has a solution. We do this by induction by showing that the rank of the coefficients matrix is equal to the rank of the augmented matrix.

Let $j=2$. If $h_{2}=0$ then

$$
\begin{aligned}
\widetilde{h}_{2} & =(-1)^{1} h_{2} \\
& =(-1)^{1}\left[P_{1}\left(\lambda_{1}^{(2)}\right)-P_{1}\left(\lambda_{2}^{(2)}\right)\right]=0,
\end{aligned}
$$

which, from Lemma 2, is equivalent to

$$
P_{1}\left(\lambda_{1}^{(2)}\right)=0 \quad \wedge \quad P_{1}\left(\lambda_{2}^{(2)}\right)=0
$$

and therefore

$$
\begin{equation*}
\lambda_{1}^{(2)}=\lambda_{1}^{(1)} \wedge \quad \lambda_{1}^{(1)}=\lambda_{2}^{(2)} \tag{16}
\end{equation*}
$$

In this case the augmented matrix is

$$
\left[\begin{array}{ll|l}
P_{1}\left(\lambda_{1}^{(2)}\right) & 1 & \lambda_{1}^{(2)} P_{1}\left(\lambda_{1}^{(2)}\right) \\
P_{1}\left(\lambda_{2}^{(2)}\right) & 1 & \lambda_{2}^{(2)} P_{1}\left(\lambda_{2}^{(2)}\right)
\end{array}\right]
$$

and the ranks of both matrices, the coefficient matrix and the augmented matrix, are equal. Hence A_{2} exists and has the form

$$
A_{2}=\left[\begin{array}{cc}
\lambda_{1}^{(1)} & 0 \\
0 & \lambda_{1}^{(1)}
\end{array}\right]
$$

Now we consider $j \geqslant 3$. If $h_{j}=0$ then

$$
\begin{aligned}
\widetilde{h}_{j} & =(-1)^{j-1} h_{j} \\
& =(-1)^{j-1}\left[P_{j-1}\left(\lambda_{1}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)-P_{j-1}\left(\lambda_{j}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right)\right]=0 .
\end{aligned}
$$

From Lemma 2

$$
P_{j-1}\left(\lambda_{1}^{(j)}\right)=0 \quad \vee \quad \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)=0
$$

and

$$
P_{j-1}\left(\lambda_{j}^{(j)}\right)=0 \quad \vee \quad \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right)=0
$$

Then $h_{j}=0$ leads us to the following cases:
(i) $\lambda_{1}^{(j)}=\lambda_{1}^{(j-1)} \wedge \quad \lambda_{j-1}^{(j-1)}=\lambda_{j}^{(j)}$,
(ii) $\lambda_{1}^{(j)}=\lambda_{1}^{(j-1)} \wedge \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right)=0$,
(iii) $\prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)=0 \wedge \quad \lambda_{j-1}^{(j-1)}=\lambda_{j}^{(j)}$,
(iv) $\prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)=0 \wedge \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right)=0$
and the augmented matrix is

$$
\left[\begin{array}{ll|l}
P_{j-1}\left(\lambda_{1}^{(j)}\right) & \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right) & \lambda_{1}^{(j)} P_{j-1}\left(\lambda_{1}^{(j)}\right) \tag{17}\\
P_{j-1}\left(\lambda_{j}^{(j)}\right) & \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right) & \lambda_{j}^{(j)} P_{j-1}\left(\lambda_{j}^{(j)}\right)
\end{array}\right]
$$

By replacing conditions (i)-(iii) in (17), it is clear that the coefficients matrix and the augmented matrix have the same rank. From condition (iv), the system of equations (12) becomes

$$
\left.\begin{array}{r}
P_{j-1}\left(\lambda_{1}^{(j)}\right) a_{j}=\lambda_{1}^{(j)} P_{j-1}\left(\lambda_{1}^{(j)}\right) \\
P_{j-1}\left(\lambda_{j}^{(j)}\right) a_{j}=\lambda_{j}^{(j)} P_{j-1}\left(\lambda_{j}^{(j)}\right)
\end{array}\right\} .
$$

If $P_{j-1}\left(\lambda_{1}^{(j)}\right) \neq 0$ and $P_{j-1}\left(\lambda_{j}^{(j)}\right) \neq 0$ then $a_{j}=\lambda_{1}^{(j)}=\lambda_{j}^{(j)}$ and from (11)

$$
\lambda_{1}^{(j)}=\lambda_{1}^{(j-1)}=\cdots=\lambda_{1}^{(1)}=\cdots=\lambda_{j-1}^{(j-1)}=\lambda_{j}^{(j)} .
$$

Thus, $P_{j-1}\left(\lambda_{1}^{(j)}\right)=P_{j-1}\left(\lambda_{j}^{(j)}\right)=0$, which is a contradiction. Hence, under condition (iv) $P_{j-1}\left(\lambda_{1}^{(j)}\right)=0$ or $P_{j-1}\left(\lambda_{j}^{(j)}\right)=0$ and therefore, the coefficients matrix and the augmented matrix have also the same rank. By taking $b_{j-1}^{2} \geqslant 0$, there exists a $j \times j$ matrix A_{j} with the required spectral properties. The necessity comes from the Cauchy interlacing property.

We have seen in the proof of Theorem 1 that if the determinant h_{j} of the coefficients matrix of the system (12) is nonzero, then the Problem II has a unique solution except for the sign of the b_{i} entries.

Now we solve the Problem II in the case that the b_{i} entries are required to be positive. We need the following Lemma:

Lemma 4. Let A be a matrix of the form (1) with $b_{i} \neq 0, i=1, \ldots, n-1$. Let $\lambda_{1}^{(j)}$ and $\lambda_{j}^{(j)}$, respectively, be the minimal and the maximal eigenvalue of the leading principal submatrix A_{j}, $j=1,2, \ldots, n$, of A. Then

$$
\begin{equation*}
\lambda_{1}^{(j)}<\cdots<\lambda_{1}^{(3)}<\lambda_{1}^{(2)}<\lambda_{1}^{(1)}<\lambda_{2}^{(2)}<\lambda_{3}^{(3)}<\cdots<\lambda_{j}^{(j)} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{1}^{(j)}<a_{i}<\lambda_{j}^{(j)}, \quad i=2,3, \ldots, j \tag{19}
\end{equation*}
$$

for each $j=2,3, \ldots, n$.
Proof. For $j=2$, we have from (4)

$$
\begin{aligned}
P_{2}(\lambda) & =\left(\lambda-a_{2}\right) P_{1}(\lambda)-b_{1}^{2} \\
& =\left(\lambda-a_{2}\right)\left(\lambda-\lambda_{1}^{(1)}\right)-b_{1}^{2} .
\end{aligned}
$$

As $b_{1} \neq 0$, then $P_{2}\left(\lambda_{1}^{(1)}\right) \neq 0$ and from (5), we have

$$
\lambda_{1}^{(2)}<\lambda_{1}^{(1)}<\lambda_{2}^{(2)}
$$

If $\lambda_{1}^{(2)}=a_{2}$ or $\lambda_{2}^{(2)}=a_{2}$ then

$$
0=P_{2}\left(a_{2}\right)=\left(a_{2}-a_{2}\right) P_{1}\left(a_{2}\right)-b_{1}^{2}=-b_{1}^{2}
$$

contradicts $b_{1} \neq 0$ and from (6) we have

$$
\begin{equation*}
\lambda_{1}^{(2)}<a_{2}<\lambda_{2}^{(2)} \tag{20}
\end{equation*}
$$

Let $j=3$. Then from (4)

$$
\begin{aligned}
P_{3}\left(\lambda_{1}^{(2)}\right) & =\left(\lambda_{1}^{(2)}-a_{3}\right) P_{2}\left(\lambda_{1}^{(2)}\right)-b_{2}^{2}\left(\lambda_{1}^{(2)}-a_{2}\right) \\
& =-b_{2}^{2}\left(\lambda_{1}^{(2)}-a_{2}\right) \neq 0
\end{aligned}
$$

In the same way $P_{3}\left(\lambda_{2}^{(2)}\right) \neq 0$. Hence, $\lambda_{1}^{(2)}$ and $\lambda_{2}^{(2)}$ are not zeroes of $P_{3}(\lambda)$ and from (5)

$$
\begin{equation*}
\lambda_{1}^{(3)}<\lambda_{1}^{(2)}<\lambda_{1}^{(1)}<\lambda_{2}^{(2)}<\lambda_{3}^{(3)} \tag{21}
\end{equation*}
$$

Now, suppose that $\lambda_{1}^{(3)}=a_{3}$. Then

$$
\begin{aligned}
0 & =P_{3}\left(a_{3}\right)=\left(a_{3}-a_{3}\right) P_{2}\left(a_{3}\right)-b_{2}^{2}\left(a_{3}-a_{2}\right) \\
& =-b_{2}^{2}\left(a_{3}-a_{2}\right)=-b_{2}^{2}\left(\lambda_{1}^{(3)}-a_{2}\right)
\end{aligned}
$$

contradicts the inequalities (20) and (21). Same occurs if we assume that $\lambda_{3}^{(3)}=a_{3}$. Then from (6) we have

$$
\lambda_{1}^{(3)}<a_{i}<\lambda_{3}^{(3)}, \quad i=2,3 .
$$

Now, suppose that (18) and (19) hold for $4 \leqslant j \leqslant n-1$ and consider

$$
P_{j+1}(\lambda)=\left(\lambda-a_{j+1}\right) P_{j}(\lambda)-b_{j}^{2} \prod_{i=2}^{j}\left(\lambda-a_{i}\right)
$$

Since $\quad b_{j} \neq 0 \quad$ and $\quad \lambda_{1}^{(j)}<a_{i}<\lambda_{j}^{(j)}, i=2,3, \ldots, j, \quad$ then $\quad \prod_{i=2}^{j}\left(\lambda_{1}^{(j)}-a_{i}\right) \neq 0 \quad$ and $\prod_{i=2}^{j}\left(\lambda_{j}^{(j)}-a_{i}\right) \neq 0$. Hence $\lambda_{1}^{(j)}$ nor $\lambda_{j}^{(j)}$ are zeroes of $P_{j+1}(\lambda)$. Then from (5) we have

$$
\begin{equation*}
\lambda_{1}^{(j+1)}<\lambda_{1}^{(j)}<\cdots<\lambda_{1}^{(2)}<\lambda_{1}^{(1)}<\lambda_{2}^{(2)}<\cdots<\lambda_{j}^{(j)}<\lambda_{j+1}^{(j+1)} . \tag{22}
\end{equation*}
$$

Finally, if $\lambda_{1}^{(j+1)}=a_{j+1}$ then

$$
\begin{aligned}
0 & =P_{j+1}\left(a_{j+1}\right)=\left(a_{j+1}-a_{j+1}\right) P_{j}\left(a_{j+1}\right)-b_{j}^{2} \prod_{i=2}^{j}\left(a_{j+1}-a_{i}\right) \\
& =-b_{j}^{2} \prod_{i=2}^{j}\left(a_{j+1}-a_{i}\right)=-b_{j}^{2} \prod_{i=2}^{j}\left(\lambda_{1}^{(j+1)}-a_{i}\right)
\end{aligned}
$$

contradicts (22). Then from (6)

$$
\lambda_{1}^{(j+1)}<a_{i}<\lambda_{j+1}^{(j+1)}, \quad i=2,3, \ldots, j+1
$$

The following corollary solves Problem II with $b_{j}>0$.
Corollary 1. Let the real numbers $\lambda_{1}^{(j)}$ and $\lambda_{j}^{(j)}, j=1,2, \ldots, n$, be given. Then there exists a unique $n \times n$ matrix A of the form (1), with $a_{j} \in \mathbb{R}$ and $b_{j}>0$, such that $\lambda_{1}^{(j)}$ and $\lambda_{j}^{(j)}$ are, respectively, the minimal and the maximal eigenvalue of the leading principal submatrix A_{j}, $j=1, \ldots, n$, of A, if and only if

$$
\begin{equation*}
\lambda_{1}^{(n)}<\cdots<\lambda_{1}^{(3)}<\lambda_{1}^{(2)}<\lambda_{1}^{(1)}<\lambda_{2}^{(2)}<\lambda_{3}^{(3)}<\cdots<\lambda_{n}^{(n)} . \tag{23}
\end{equation*}
$$

Proof. The proof is quite similar to the proof of Theorem 1: Let $\lambda_{1}^{(j)}$ and $\lambda_{j}^{(j)}, j=2, \ldots, n$, satisfying (23). To show the existence of $A_{j}, j=2,3, \ldots, n$, with the required spectral properties, is equivalent to show that the system of equations (12) has real solutions a_{j} and b_{j-1}, with $b_{j-1}>0, j=2,3, \ldots, n$. To do this it is enough to show that the determinant of the coefficients matrix

$$
\begin{equation*}
h_{j}=P_{j-1}\left(\lambda_{1}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)-P_{j-1}\left(\lambda_{j}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right) \tag{24}
\end{equation*}
$$

be nonzero.
From Lemmas 3 and 4 it follows that $\widetilde{h}_{j}=(-1)^{1} h_{j}>0$. Hence $h_{j} \neq 0$ and the system (12) has real and unique solutions:

$$
\begin{equation*}
a_{j}=\frac{\lambda_{1}^{(j)} P_{j-1}\left(\lambda_{1}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)-\lambda_{j}^{(j)} P_{j-1}\left(\lambda_{j}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right)}{h_{j}} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{j-1}^{2}=\frac{\left(\lambda_{j}^{(j)}-\lambda_{1}^{(j)}\right) P_{j-1}\left(\lambda_{1}^{(j)}\right) P_{j-1}\left(\lambda_{j}^{(j)}\right)}{h_{j}} \tag{26}
\end{equation*}
$$

where

$$
(-1)^{j-1}\left(\lambda_{j}^{(j)}-\lambda_{1}^{(j)}\right) P_{j-1}\left(\lambda_{1}^{(j)}\right) P_{j-1}\left(\lambda_{j}^{(j)}\right)>0
$$

Then it is clear that $b_{j-1}^{2}>0$. Therefore, the b_{j-1} can be chosen positive and then there exists a unique matrix A_{j} with the required spectral properties. The necessity of the result comes from Lemma 4.

3. Partial solution to Problem I

As it was observed in Section 1, Problem I in [4] has not been solved. In fact, the matrix A in (3) shows that to apply the formulae in [4, Theorem 1] may lead us to a matrix, which does not satisfy the requirements. In this section, we give a sufficient condition to solve Problem I. Previously, we give conditions under which we may construct a matrix of the form (1) with $a_{i}=a \in \mathbb{R}$, $i=1, \ldots, n$ and $b_{i} \neq 0$. We start with the following:

Lemma 5. Let A be a matrix of the form

$$
\widetilde{A}=\left(\begin{array}{ccccc}
0 & b_{1} & b_{2} & \cdots & b_{n-1} \tag{27}\\
b_{1} & 0 & 0 & \cdots & 0 \\
b_{2} & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
b_{n-1} & 0 & 0 & \cdots & 0
\end{array}\right) \quad \text { with } b_{j} \neq 0, \quad 1 \leqslant j \leqslant n-1
$$

Let $\widetilde{P}_{j}(\lambda)$ be the characteristic polynomial of the leading principal submatrix $\widetilde{\sim}_{j}$ of $\widetilde{A}, j=$ $1, \ldots, n$. Then, if j is even, $\widetilde{P}_{j}(\lambda)$ is an even polynomial and if j is odd, $\widetilde{P}_{j}(\lambda)$ is a odd polynomial.

Proof. If $a_{j}=0, j=1,2, \ldots, n$, then the recurrence relation (4) become

$$
\begin{align*}
& \widetilde{P}_{1}(\lambda)=\lambda \\
& \widetilde{P}_{2}(\lambda)=\lambda^{2}-b_{1}^{2} \tag{28}\\
& \widetilde{P}_{j}(\lambda)=\lambda \widetilde{P}_{j-1}(\lambda)-b_{j-1}^{2}(\lambda)^{j-2}, \quad j=3, \ldots, n
\end{align*}
$$

Clearly, $\widetilde{P}_{1}(\lambda)$ is a odd polynomial, while $\widetilde{P}_{2}(\lambda)$ is an even polynomial. Now, suppose that $\widetilde{P}_{j}(\lambda)$ is even for an even j and that $\widetilde{P}_{j}(\underset{\sim}{\mathcal{P}})$ is odd for a odd j. Let $j+1$ be even. Then j is odd with $\widetilde{P}_{j}(\lambda)$ odd and $j-1$ is even with $\widetilde{P}_{j-1}(\lambda)$ even. From (4), we have

$$
\begin{aligned}
\widetilde{P}_{j+1}(-\lambda) & =-\lambda \widetilde{P}_{j}(-\lambda)-b_{j}^{2}(-\lambda)^{j-1} \\
& =\lambda \widetilde{P}_{j}(\lambda)-b_{j}^{2}(\lambda)^{j-1} \\
& =\widetilde{P}_{j+1}(\lambda)
\end{aligned}
$$

Hence $\widetilde{P}_{j+1}(\lambda)$ is an even polynomial. Analogously if $j+1$ is odd, $\widetilde{P}_{j+1}(-\lambda)=-\widetilde{P}_{j+1}(\lambda)$.
Definition 1. We say that $\Gamma=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ is a balanced set if $\lambda_{i}=-\lambda_{n-i+1}$ with $\lambda_{\frac{n+1}{2}}=0$ for odd n.

Thus, if $\lambda_{1}^{(1)}=0$ and $\lambda_{1}^{(j)}=-\lambda_{j}^{(j)}, j=2,3, \ldots, n$, then the minimal and maximal eigenvalues $\left\{\lambda_{1}^{(j)}, \lambda_{j}^{(j)}\right\}$ of all leading principal submatrices \tilde{A}_{j} of \tilde{A} form a balanced set.

Corollary 2. Let $\lambda_{1}^{(j)}$ and $\lambda_{j}^{(j)}, j=1,2, \ldots, n$, be real numbers satisfying (23). Then there exists a unique $n \times n$ matrix $A=\widetilde{A}+a I, a \in \mathbb{R}$, where \widetilde{A} is of the form (27), such that $\lambda_{1}^{(j)}$ and
$\lambda_{j}^{(j)}$ are, respectively, the minimal and the maximal eigenvalue of the leading principal submatrix A_{j} of A, if and only if

$$
\begin{equation*}
\lambda_{1}^{(j)}+\lambda_{j}^{(j)}=2 \lambda_{1}^{(1)}, \quad j=2, \ldots, n . \tag{29}
\end{equation*}
$$

Proof. Let $\lambda_{1}^{(j)}+\lambda_{j}^{(j)}=2 \lambda_{1}^{(1)}, j=2, \ldots, n$. It is enough to prove the result for a balanced set, that is, for $\lambda_{1}^{(1)}=0$. Otherwise, if $\lambda_{1}^{(1)} \neq 0$, then define $\mu_{i}^{(j)}=\lambda_{i}^{(j)}-\lambda_{1}^{(1)}, j=1,2, \ldots, n, i=1, j$ to obtain $\mu_{1}^{(1)}=0, \mu_{1}^{(j)}=-\mu_{j}^{(j)}, j=2, \ldots, n$. Hence, if there exists a unique matrix \widetilde{A} of the form (27) such that $\mu_{1}^{(j)}$ and $\mu_{j}^{(j)}$ are, respectively, the minimal and the maximal eigenvalue of the leading principal submatrix $\widetilde{A}_{j}, j=1, \ldots, n$, of \widetilde{A}, then $A=\widetilde{A}+\lambda_{1}^{(1)} I$ is the unique symmetric bordered diagonal matrix with the required spectral properties.

Let $\lambda_{1}^{(1)}=0$ and $\lambda_{1}^{(j)}=-\lambda_{j}^{(j)}, j=2, \ldots, n$. Since (23) holds, then from Corollary 1 there exists a unique matrix A of the form (1) with the required spectral properties. It only remains to show that $a_{j}=0, j=1,2, \ldots, n$.

Clearly, $a_{1}=\lambda_{1}^{(1)}=0$ and $a_{1}+a_{2}=a_{2}=\lambda_{1}^{(2)}+\lambda_{2}^{(2)}=0$. Suppose that $a_{k}=0, k=1$, $2, \ldots, j ; j<n$. Let $k+1$ be even. Then from Lemma $5, P_{k}(\lambda)$ is odd and the numerator in (25) is

$$
\begin{aligned}
& \lambda_{1}^{(k+1)} P_{k}\left(\lambda_{1}^{(k+1)}\right)\left(\lambda_{k+1}^{(k+1)}\right)^{k-1}-\lambda_{k+1}^{(k+1)} P_{k}\left(\lambda_{k+1}^{(k+1)}\right)\left(\lambda_{1}^{(k+1)}\right)^{k-1} \\
& \quad=-\lambda_{k+1}^{(k+1)} P_{k}\left(-\lambda_{k+1}^{(k+1)}\right)\left(\lambda_{k+1}^{(k+1)}\right)^{k-1}-\lambda_{k+1}^{(k+1)} P_{k}\left(\lambda_{k+1}^{(k+1)}\right)\left(-\lambda_{k+1}^{(k+1)}\right)^{k-1} \\
& \quad=\lambda_{k+1}^{(k+1)} P_{k}\left(\lambda_{k+1}^{(k+1)}\right)\left(\lambda_{k+1}^{(k+1)}\right)^{k-1}-\lambda_{k+1}^{(k+1)} P_{k}\left(\lambda_{k+1}^{(k+1)}\right)\left(\lambda_{k+1}^{(k+1)}\right)^{k-1} \\
& \quad=0
\end{aligned}
$$

from where $a_{k+1}=0$. Similarly, it can be shown that $a_{k+1}=0$ when $k+1$ is odd.
Now, let A be the unique $n \times n$ matrix of the form (1) with $a_{j}=a, j=1,2, \ldots, n, b_{j} \neq$ 0 , such that $\lambda_{1}^{(j)}$ and $\lambda_{j}^{(j)}$ are, respectively, the minimal and the maximal eigenvalue of the leading principal submatrix $A_{j}, j=1,2, \ldots, n$, of A. Then $A=\widetilde{A}+a I$, with $a=\lambda_{1}^{(1)}$ and \widetilde{A} of the form (27) having leading principal submatrices \widetilde{A}_{j} with characteristic polynomials $\widetilde{P}_{j}(\lambda), j=1,2, \ldots, n$. Since $\widetilde{P}_{j}(\lambda)$ even or $\widetilde{P}_{j}(\lambda)$ odd imply $\widetilde{P}_{j}(-\lambda)=0$, then the eigenvalues $\mu_{1}^{(j)}<\mu_{2}^{(j)}<\cdots<\mu_{j-1}^{(j)}<\mu_{j}^{(j)}$ of \widetilde{A}_{j} satisfy the relation $\mu_{i}^{(j)}+\mu_{j-i+1}^{(j)}=0$. It is clear that the minimal and maximal eigenvalues of \tilde{A}_{j} are, respectively, $\lambda_{1}^{(j)}-\lambda_{1}^{(1)}$ and $\lambda_{j}^{(j)}-$ $\lambda_{1}^{(1)}, j=1,2, \ldots, n$. Hence $\left(\lambda_{1}^{(j)}-\lambda_{1}^{(1)}\right)+\left(\lambda_{j}^{(j)}-\lambda_{1}^{(1)}\right)=0$ and consequently, $\lambda_{1}^{(j)}+\lambda_{j}^{(j)}=$ $2 \lambda_{1}^{(1)}, j=1,2, \ldots, n$. The proof is completed.

The following result gives a sufficient condition in order Problem I to have a solution.
Theorem 2. Let $\lambda_{1}^{(j)}$ and $\lambda_{j}^{(j)}, j=1,2, \ldots, n$, be real numbers satisfying

$$
\begin{equation*}
\lambda_{1}^{(n)}<\cdots<\lambda_{1}^{(3)}<\lambda_{1}^{(2)}<\lambda_{1}^{(1)}<\lambda_{2}^{(2)}<\lambda_{3}^{(3)}<\cdots<\lambda_{n}^{(n)} . \tag{30}
\end{equation*}
$$

Then, there exists a unique $n \times n$ matrix A of the form (1), with $a_{i} \neq a_{j}$ for $i \neq j$ ($i, j=$ $1,2, \ldots, n)$ and $b_{i}>0$, such that $\lambda_{1}^{(j)}$ and $\lambda_{j}^{(j)}$ are, respectively, the minimal and the maximal eigenvalue of the leading principal submatrix $A_{j}, j=1,2, \ldots, n$, of A if

$$
\begin{equation*}
\lambda_{1}^{(2)}+\lambda_{2}^{(2)} \neq 2 \lambda_{1}^{(1)} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\lambda_{j-1}^{(j-1)}-\lambda_{j}^{(j)}}{\lambda_{j-1}^{(j-1)}-\lambda_{1}^{(j)}}>\frac{P_{j-1}\left(\lambda_{1}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)}{P_{j-1}\left(\lambda_{j}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right)} \tag{32}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\lambda_{1}^{(j-1)}-\lambda_{j}^{(j)}}{\lambda_{1}^{(j-1)}-\lambda_{1}^{(j)}}<\frac{P_{j-1}\left(\lambda_{1}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)}{P_{j-1}\left(\lambda_{j}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right)} \tag{33}
\end{equation*}
$$

$j=3,4, \ldots, n$.
Proof. From Corollary 1, condition (30) guarantees the existence of a unique matrix A of the form (1) with $b_{i}>0$ and the required spectral properties, and from Corollary 2, condition (31) is necessary and sufficient in order that $a_{1} \neq a_{2}$. Now, let

$$
u_{j}=P_{j-1}\left(\lambda_{1}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)
$$

and

$$
v_{j}=P_{j-1}\left(\lambda_{j}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right)
$$

$j=3,4, \ldots, n$ (the numerator and the denominator in the right side of (32)). Suppose that (32) holds for $j=3$, that is

$$
\frac{\lambda_{2}^{(2)}-\lambda_{3}^{(3)}}{\lambda_{2}^{(2)}-\lambda_{1}^{(3)}}>\frac{(-1)^{2} u_{3}}{(-1)^{2} v_{3}} .
$$

Then

$$
(-1)^{2}\left[\lambda_{1}^{(3)} u_{3}-\lambda_{3}^{(3)} v_{3}\right]>\lambda_{2}^{(2)}(-1)^{2}\left[u_{3}-v_{3}\right]
$$

and

$$
a_{3}=\frac{(-1)^{2}\left[\lambda_{1}^{(3)} u_{3}-\lambda_{3}^{(3)} v_{3}\right]}{(-1)^{2}\left[u_{3}-v_{3}\right]}>\lambda_{2}^{(2)}
$$

From Lemma 4, we have $\lambda_{1}^{(2)}<a_{1}, a_{2}<\lambda_{2}^{(2)}$. Hence, $a_{3} \neq a_{2} \neq a_{1}$.
Similarly, if (33) holds for $j=3$, then $a_{3}<\lambda_{1}^{(2)}$, and therefore, $a_{3} \neq a_{2} \neq a_{1}$.
Now, suppose that the a_{i} are all different, $i=1, \ldots, j-1$ and (32) holds, that is

$$
\frac{\lambda_{j-1}^{(j-1)}-\lambda_{j}^{(j)}}{\lambda_{j-1}^{(j-1)}-\lambda_{1}^{(j)}}>\frac{(-1)^{j-1} u_{j}}{(-1)^{j-1} v_{j}}
$$

Then

$$
(-1)^{j-1}\left[\lambda_{1}^{(j)} u_{j}-\lambda_{j}^{(j)} v_{j}\right]>\lambda_{j-1}^{(j-1)}(-1)^{j-1}\left[u_{j}-v_{j}\right]
$$

and therefore

$$
a_{j}=\frac{(-1)^{j-1}\left[\lambda_{1}^{(j)} u_{j}-\lambda_{j}^{(j)} v_{j}\right]}{(-1)^{j-1}\left[u_{j}-v_{j}\right]}>\lambda_{j-1}^{(j-1)} .
$$

From Lemma 4, we have $\lambda_{1}^{(j-1)}<a_{i}<\lambda_{j-1}^{(j-1)}, i=1, \ldots, j-1$ and then $a_{j} \neq a_{j-1} \neq \cdots \neq$ $a_{2} \neq a_{1}$. Similarly if (33) holds then we obtain $a_{j}<\lambda_{1}^{(j-1)}$ and then $a_{j} \neq a_{j-1} \neq \cdots \neq a_{2} \neq a_{1}$ again.

We observe that a sufficient condition for Problem I can be obtained from (30) together with (32) or (33).

4. The nonnegative case

In this section, we look for conditions for the existence of a matrix A of the form (1) with $a_{j} \geqslant 0, b_{j} \geqslant 0$ and such that the given real numbers $\lambda_{1}^{(j)}, \lambda_{j}^{(j)}, j=1,2, \ldots, n$, are, respectively, the minimal and the maximal eigenvalue of the leading principal submatrix $A_{j}, j=1,2, \ldots, n$, of A. We start by giving a necessary and sufficient condition for the existence of such a matrix, when $\lambda_{1}^{(j)}, \lambda_{j}^{(j)}$ are all distinct.

Corollary 3. Let $\lambda_{1}^{(j)}$ and $\lambda_{j}^{(j)}, j=1,2, \ldots, n$, be real numbers satisfying

$$
\begin{equation*}
\lambda_{1}^{(n)}<\cdots<\lambda_{1}^{(3)}<\lambda_{1}^{(2)}<\lambda_{1}^{(1)}<\lambda_{2}^{(2)}<\lambda_{3}^{(3)}<\cdots<\lambda_{n}^{(n)} . \tag{34}
\end{equation*}
$$

Then, there exists a unique $n \times n$ nonnegative matrix A of the form (1), such that $\lambda_{1}^{(j)}$ and $\lambda_{j}^{(j)}$ are, respectively, the minimal and the maximal eigenvalue of the leading principal submatrix A_{j}, $j=1,2, \ldots, n$, of A if and only if

$$
\begin{equation*}
\lambda_{1}^{(1)} \geqslant 0 \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\lambda_{1}^{(j)}}{\lambda_{j}^{(j)}} \geqslant \frac{P_{j-1}\left(\lambda_{j}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right)}{P_{j-1}\left(\lambda_{1}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)}, \quad j=2,3, \ldots, n . \tag{36}
\end{equation*}
$$

Proof. Corollary 1 guarantees the existence of a unique matrix A of the form (1) with $b_{i}>0$, $i=1, \ldots, n-1$. It remains to show that the diagonal elements a_{i} are nonnegative. From (35), $a_{1}=\lambda_{1}^{(1)} \geqslant 0$ and from (36)

$$
\frac{\lambda_{1}^{(j)}}{\lambda_{j}^{(j)}} \geqslant \frac{(-1)^{j-1} P_{j-1}\left(\lambda_{j}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right)}{(-1)^{j-1} P_{j-1}\left(\lambda_{1}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)}, \quad j=2,3, \ldots, n .
$$

Since $0 \leqslant \lambda_{1}^{(1)}<\lambda_{j}^{(j)}$ then from Lemmas 2 and 3

$$
(-1)^{j-1} P_{j-1}\left(\lambda_{1}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)>0 .
$$

Then

$$
\lambda_{1}^{(j)}(-1)^{j-1} P_{j-1}\left(\lambda_{1}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right) \geqslant \lambda_{j}^{(j)}(-1)^{j-1} P_{j-1}\left(\lambda_{j}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right)
$$

or

$$
\begin{aligned}
\widetilde{g}_{j}= & (-1)^{j-1}\left[\lambda_{1}^{(j)} P_{j-1}\left(\lambda_{1}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)\right. \\
& \left.-\lambda_{j}^{(j)} P_{j-1}\left(\lambda_{j}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right)\right] \geqslant 0
\end{aligned}
$$

Hence, from the proof of Corollary 1, we obtain

$$
a_{j}=\frac{\tilde{g}_{j}}{\tilde{h}_{j}} \geqslant 0
$$

Now, let us assume that there exists a unique $n \times n$ nonnegative matrix A of the form (1) with $b_{i}>0, \lambda_{1}^{(j)}, \lambda_{j}^{(j)}, j=1, \ldots, n$, satisfying (34) and being the minimal and the maximal eigenvalue of each leading principal submatrix A_{j} of A. From Lemma 4 the condition (30) is satisfied. Moreover, from the proof of Corollary 1, the diagonal elements of A are of the form

$$
\begin{aligned}
a_{j} & =\frac{\left[\lambda_{1}^{(j)} P_{j-1}\left(\lambda_{1}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)-\lambda_{j}^{(j)} P_{j-1}\left(\lambda_{j}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right)\right]}{h_{j}} \\
& =\frac{(-1)^{j-1}\left[\lambda_{1}^{(j)} P_{j-1}\left(\lambda_{1}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)-\lambda_{j}^{(j)} P_{j-1}\left(\lambda_{j}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right)\right]}{\widetilde{h}_{j}} \\
& \geqslant 0 .
\end{aligned}
$$

with $\tilde{h}_{j}>0$. Then

$$
(-1)^{j-1} \lambda_{1}^{(j)} P_{j-1}\left(\lambda_{1}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right) \geqslant(-1)^{j-1} \lambda_{j}^{(j)} P_{j-1}\left(\lambda_{j}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right),
$$

that is

$$
\begin{aligned}
\frac{\lambda_{1}^{(j)}}{\lambda_{j}^{(j)}} & \geqslant \frac{(-1)^{j-1} P_{j-1}\left(\lambda_{j}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right)}{(-1)^{j-1} P_{j-1}\left(\lambda_{1}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)} \\
& =\frac{P_{j-1}\left(\lambda_{j}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right)}{P_{j-1}\left(\lambda_{1}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)}
\end{aligned}
$$

and the proof is completed.
Now we discuss the case in which some of the given real numbers $\lambda_{1}^{(j)}, \lambda_{j}^{(j)}, j=1,2, \ldots, n$, are equal. It is clear that if $\lambda_{1}^{(n)}=\lambda_{n}^{(n)}=\alpha$, then $\lambda_{1}^{(j)}=\lambda_{j}^{(j)}=\alpha, j=1,2, \ldots, n$, and therefore, $A=\alpha I$.

Suppose that the determinant h_{j} of the coefficients matrix of the system (12) is nonzero, that is

$$
h_{j}=P_{j-1}\left(\lambda_{1}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)-P_{j-1}\left(\lambda_{j}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right) \neq 0 .
$$

In this case the solution matrix A is unique, except for the sign of b_{j-1}, which we may choose as nonnegative. Then we examine conditions for the nonnegativity of

$$
a_{j}=\frac{\left[\lambda_{1}^{(j)} P_{j-1}\left(\lambda_{1}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)-\lambda_{j}^{(j)} P_{j-1}\left(\lambda_{j}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right)\right]}{P_{j-1}\left(\lambda_{1}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)-P_{j-1}\left(\lambda_{j}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right)} .
$$

Since $h_{j} \neq 0$, from Lemma $3 \tilde{h}_{j}=(-1)^{j-1} h_{j}>0$. Then from Lemma 2 we have the following cases:
(i) $P_{j-1}\left(\lambda_{1}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right) \neq 0 \quad$ and $\quad P_{j-1}\left(\lambda_{j}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right)=0$. Then $a_{j}=\lambda_{1}^{(j)}$ and $a_{j} \geqslant 0$ if $\lambda_{1}^{(j)} \geqslant 0$.
(ii) $P_{j-1}\left(\lambda_{1}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)=0 \quad$ and $\quad P_{j-1}\left(\lambda_{j}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right) \neq 0$.

Then $a_{j}=\lambda_{j}^{(j)}$ and $a_{j} \geqslant 0$ always occurs since $\lambda_{1}^{(1)} \leqslant \lambda_{j}^{(j)}$ and $0 \leqslant \lambda_{1}^{(1)}$ is a necessary condition:
(iii) $P_{j-1}\left(\lambda_{1}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right) \neq 0 \quad$ and $\quad P_{j-1}\left(\lambda_{j}^{(j)}\right) \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right) \neq 0$.

Then $\lambda_{1}^{(j)}<\lambda_{1}^{(j-1)}$ and $\lambda_{j-1}^{(j-1)}<\lambda_{j}^{(j)}$ and a necessary and sufficient condition for $a_{j} \geqslant 0$ is given by (35) and (36) of Corollary 3.

Now, suppose that $h_{j}=0$. From Lemma 2 we have the following cases:
(i) $\lambda_{1}^{(j)}=\lambda_{1}^{(j-1)} \quad$ and $\quad \lambda_{j-1}^{(j-1)}=\lambda_{j}^{(j)}$.

From (12) a_{j} can take any real value. Then we may choose $a_{j} \geqslant 0$. On the other hand

$$
b_{j-1}^{2}=0 \vee\left(\prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right)=0 \wedge \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)=0\right)
$$

Thus $b_{j-1}=0$ or b_{j-1} can be chosen as nonnegative.

$$
\text { (ii) } \lambda_{1}^{(j)}=\lambda_{1}^{(j-1)} \wedge \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right)=0
$$

If $P_{j-1}\left(\lambda_{j}^{(j)}\right)=0$, then a_{j} can take any real value. In particular, $a_{j} \geqslant 0$ and $b_{j-1}=0$ or $b_{j-1} \geqslant 0$. If $P_{j-1}\left(\lambda_{j}^{(j)}\right) \neq 0$, then

$$
a_{j}=\frac{\lambda_{j}^{(j)} P_{j-1}\left(\lambda_{j}^{(j)}\right)-\prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right) b_{j-1}^{2}}{P_{j-1}\left(\lambda_{j}^{(j)}\right)}
$$

From Lemma 2, $P_{j-1}\left(\lambda_{j}^{(j)}\right)>0$, and from (6), $\prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right) \geqslant 0$. Moreover, if $b_{j-1} \geqslant 0$, then $a_{j} \geqslant 0$ if

$$
\begin{aligned}
& \lambda_{j}^{(j)} \geqslant \frac{\prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right) b_{j-1}^{2}}{P_{j-1}\left(\lambda_{j}^{(j)}\right)} \\
& \text { (iii) } \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)=0 \wedge \lambda_{j-1}^{(j-1)}=\lambda_{j}^{(j)} .
\end{aligned}
$$

If $P_{j-1}\left(\lambda_{1}^{(j)}\right)=0, a_{j}$ can be taken as nonnegative. Moreover, $b_{j-1}=0$ or $b_{j-1} \geqslant 0$. If $P_{j-1}\left(\lambda_{1}^{(j)}\right) \neq 0$, then

$$
a_{j}=\frac{\lambda_{1}^{(j)} P_{j-1}\left(\lambda_{1}^{(j)}\right)-\prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right) b_{j-1}^{2}}{P_{j-1}\left(\lambda_{1}^{(j)}\right)}
$$

FromLemma $2,(-1)^{j-1} P_{j-1}\left(\lambda_{1}^{(j)}\right)>0$, and from $(6),(-1)^{j-1} \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right) \geqslant 0$. Moreover, if $b_{j-1} \geqslant 0$, then $a_{j} \geqslant 0$ if

$$
\begin{aligned}
& \lambda_{1}^{(j)} \geqslant \frac{\prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right) b_{j-1}^{2}}{P_{j-1}\left(\lambda_{1}^{(j)}\right)} \\
& \text { (iv) } \prod_{i=2}^{j-1}\left(\lambda_{j}^{(j)}-a_{i}\right)=0 \wedge \prod_{i=2}^{j-1}\left(\lambda_{1}^{(j)}-a_{i}\right)=0
\end{aligned}
$$

In this case the system (12) reduces to

$$
\left.\begin{array}{l}
P_{j-1}\left(\lambda_{1}^{(j)}\right) a_{j}+0 b_{j-1}^{2}=\lambda_{1}^{(j)} P_{j-1}\left(\lambda_{1}^{(j)}\right) \\
P_{j-1}\left(\lambda_{j}^{(j)}\right) a_{j}+0 b_{j-1}^{2}=\lambda_{j}^{(j)} P_{j-1}\left(\lambda_{j}^{(j)}\right)
\end{array}\right\}
$$

We assume that $b_{j-1} \geqslant 0$. Then, if $P_{j-1}\left(\lambda_{1}^{(j)}\right)=0$ and $P_{j-1}\left(\lambda a_{j}^{(j)}\right)=0$, we may choose $a_{j} \geqslant$ 0. If $P_{j-1}\left(\lambda_{1}^{(j)}\right)=0$ and $P_{j-1}\left(\lambda_{j}^{(j)}\right) \neq 0$, then $a_{j}=\lambda_{j}^{(j)} \geqslant \lambda_{1}^{(1)} \geqslant 0$. If $P_{j-1}\left(\lambda_{1}^{(j)}\right) \neq 0$ and $P_{j-1}\left(\lambda_{j}^{(j)}\right)=0$, then $a_{j}=\lambda_{1}^{(j)} \geqslant 0$ if $\lambda_{1}^{(j)} \geqslant 0$. Finally, the case $P_{j-1}\left(\lambda_{1}^{(j)}\right) \neq 0$ and $P_{j-1}\left(\lambda_{j}^{(j)}\right) \neq$ 0 cannot occur.

5. Examples

Example 1. The following numbers:

satisfy the sufficient conditions (30)-(32) of the Theorem 2. Then the bordered diagonal matrix with $b_{i}>0$ and $a_{i} \neq a_{j}, i \neq j$ is

$$
A=\left(\begin{array}{ccccc}
-6.0043 & 3.0584 & 5.2453 & 2.9624 & 1.2602 \\
3.0584 & -5.4011 & & & \\
5.2453 & & -2.3357 & & \\
2.9624 & & & 7.6429 & \\
1.2602 & & & & 10.2504
\end{array}\right)
$$

Example 2. We modify the previous example, in order that some given eigenvalues be equal:

These numbers satisfy (11). One solution of Problem II is the matrix

$$
A=\left(\begin{array}{ccccc}
-6.0043 & 0 & 6.2090 & 0 & 3.2977 \\
0 & -8.7760 & & & \\
6.2090 & & -3.0531 & & \\
0 & & & 8.4266 & \\
3.2977 & & & & 9.5989
\end{array}\right)
$$

Example 3. The numbers

satisfy relations (30)-(32), and relations (35) and (36). Then we obtain the nonnegative bordered diagonal matrix

$$
A=\left(\begin{array}{lllll}
0.2233 & 3.2354 & 4.6803 & 0.5594 & 3.3490 \\
3.2354 & 4.2950 & & & \\
4.6803 & & 6.3405 & & \\
0.5594 & & & 11.6505 & \\
3.3490 & & & & 14.4225
\end{array}\right)
$$

with the required spectral properties.

References

[1] Daniel Boley, G. Golub, A survey of matrix inverse eigenvalue problem, Inverse Problems 3 (1987) 595-622.
[2] M.T. Chu, G.H. Golub, Inverse Eigenvalue Problems: Theory, Algorithms and Applications, Oxford University Press, New York, 2005.
[3] G.M.L. Gladwell, N.B. Willms, The construction of a tridiagonal system from its frequency response at an interior point, Inverse Problems 4 (1988) 1013-1024.
[4] J. Peng, X.Y. Hu, L. Zhang, Two inverse eigenvalue problems for a special kind of matrices, Linear Algebra Appl. 416 (2006) 336-347.
[5] H. Pickmann, R. Soto, J. Egaña, M. Salas, An inverse problem for symmetric tridiagonal matrices, Comput. Math. Appl. 54 (5) (2007) 699-708.

[^0]: * Supported by Fondecyt 1050026, Mecesup UCN0202, Chile and Project DGIP-UCN.
 * Corresponding author. Fax: +56 55355599.

 E-mail addresses: jegana@ucn.cl (J. Egaña), hpickmann@ucn.cl (H. Pickmann), rsoto@ucn.cl (R.L. Soto).

