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Abstract

The following inverse eigenvalue problem was introduced and discussed in [J. Peng, X.Y. Hu, L. Zhang,
Two inverse eigenvalue problems for a special kind of matrices, Linear Algebra Appl. 416 (2006) 336—
347]: to construct a real symmetric bordered diagonal matrix A from the minimal and maximal eigenvalues
of all its leading principal submatrices. However, the given formulae in [4, Theorem 1] to compute the
matrix A may lead us to a matrix, which does not satisfy the requirements of the problem. In this paper,
we rediscuss the problem to give a sufficient condition for the existence of such a matrix and necessary and
sufficient conditions for the existence of a nonnegative such a matrix. Results are constructive and generate
an algorithmic procedure to construct the matrices.
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1. Introduction

In this paper, we consider the problem of constructing a symmetric bordered diagonal matrix
of the form:

ai by by - by
by a 0 ... 0

A=]| b2 0 a - 01, (1)
b,y 0 0 .- a,

where a;, b; € R.

This class of matrices appears in certain symmetric inverse eigenvalue and inverse Sturm-
Liouville problems, which arise in many applications, including control theory and vibration
analysis [1-4].

We denote as /; the identity matrix of order j; as A; the j x j leading principal submatrix of
A; as Pj()) the characteristic polynomial of A and as )\Y ) < )L;] V<. g )»5.] ) the eigenvalues
of A j*

Our work is motivated by the results in [4]. There, the authors introduced two inverse eigenvalue
problems, where a special spectral information is considered. An inverse eigenvalue problem for
tridiagonal matrices with the same spectral information is also considered in [5]. One of the
problems in [4], Problem I, is of our interest here:

Problem I [4]. For 2n — 1 given real numbers A(ln) < A(ln_l) << Aiz) < A(ll) < )ng) <<
A" find ann x n matrix A of the form (1), with the a; all distinct fori = 2,3, ..., n and the b;

all positive, such that kgj ) and )LY ) are, respectively, the minimal and the maximal eigenvalue of
Ajforall j =1,2,...,n.

In [4, Theorem 1] is said that there is a unique solution of Problem I if and only if
j—1 j—1

iy =i P GO T (Y —a) = P BV [T (W —ai) [ = 0. @

1= 1=
We observe that the condition (2) is always satisfied under the hyphotesis of Problem I. Moreover,
the formulae to compute the a; and the b;, given in [4, Theorem 1] may lead us to a matrix, which

does not satisfy the requirements: the given real numbers A§4) =1, )»23) =2, )»52) =3, kgl) =4,
)ng) =35, Ag3) =6, )»ff) = 7, satisfy the condition (2). However, the resulting matrix is

4 1 /3 5
1 4 0 0

A=ﬁ04 E 3)
5 0 0 4

where the diagonal entries are not distinct.
In this paper, we consider the following more general problem:

Problem II. Given the 2n — 1 real numbers Agj) and A(].j), j=1,2,...,n, find an n x n matrix

A of the form (1) such that )»gj ) and )\Ej ) are, respectively, the minimal and the maximal eigenvalue
of Aj,j=1,2,...,n.
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The paper is organized as follows: In Section 2, we solve Problem II by giving a necessary and
sufficient condition for the existence of the matrix A in (1) and also solve the case in which the
matrix A, in Problem II, is required to have all its entries b; positive. In Section 3, we discuss Prob-
lem I'in [4] and give a sufficient condition for its solution. In Section 4, we study the nonnegative
case by giving a necessary and sufficient condition for the existence of a nonnegative matrix A of

the form (1) such that )ng ) and 1Y are, respectively, the minimal and the maximal eigenvalue of
Ajforall j =1,2,...,n. Finally, in Section 5 we show some examples to illustrate the results.

2. Solution of Problem II
We start this section by recalling the following lemmas:

Lemma 1. Let A be a matrix of the form (1). Then the sequence of characteristic polynomials
{P; ()\)}’}=1 satisfies the recurrence relation:

Pi() = —ay),
P,(A) = (A —ax) Pi(A) — b3, )
Pj(x)z(,\—aj)Pj,l(A)— ]‘[f Z(A—a, j=3,4,...n.

Lemma 2. Let P(X) be a monic polynomial of degree n with all real zeroes. If A1 and A, are,
respectively, the minimal and the maximal zero of P()\), then

1. If w < A1, we have that (—1)" P(u) > O.
2. If u > Ay, we have that P(u) > 0.

Proof. Let P(A) = (A — A1)(A — A2) - - - (A — Ap). Thus, if 4 < A and n is odd then P(u) < O.
If w < X1 and nis even then P(u) > 0. Hence, (—1)" P(n) > 0.If u > A,, thenclearly P(u) >
0. O

Observe that from the Cauchy interlacing property, the minimal and the maximal eigenvalue,

)\gj ) and )»;.j ), respectively, of each leading principal submatrix A;, j = 1,2, ..., n, of the matrix
A in (1) satisfy the relations:
3 2 1 2 3
AW <P P Gl afP Gl <o <aW 5)
and
Aﬁf')gaig)\§.1>, i=1,....j: j=1,....n. (©6)

Lemma 3. Let {P; ()»)};":1 be the polynomials defined in (4), whose minimal and maximal zeroes,

)»Ej) and A;j), j=1,2,...,n, respectively, satisfy the relation (5). Then

Jj—1

=it o) 1—[ (,\”) ) _ (x(”) I1 (Agn —ai)

i=2

WV
e

j=23,...,n. @)
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Proof. From Lemma 2, we have

DI P (A7) 20 and P (2) >0, @®)
Moreover, from (6)
-
[1(+-a)>0 ©)
i=2
and
-1
D] (,\5” - a,~> <o0. (10)
i=2

Clearly n j = 0 follows from (8)-(10). [

The following theorem solves Problem II. In particular the theorem shows that the condition
(5) is necessary and sufficient for the existence of the matrix A in (1).

Theorem 1. Let the real numbers )ng) and )LY), j=1,2,...,n, be given. Then there exists an

n X n matrix A of the form (1), such that )ng ) and 1Y are, respectively, the minimal and the
maximal eigenvalue of its leading principal submatrix A, j = 1,2, ..., n, if and only if

W <P Pl G <P < an
Proof. Let A%j) and A(/.j), j=1,2,...,n,satisfying (11). Observe that
1
Ay = [ar] = [A{"]

and P (L) = A — a;. Toshow theexistenceof Aj, j =2,3,...,n With)»ij) and )\;j) asits minimal
and maximal eigenvalues, respectively, is equivalent to show that the system of equations

; ; . Jj—1 ;
Pj (A.(ll])) = ()\.(1]) - aj> Pj,] (XE”) - b%—l 1_[ ()\.ij) - ai) =0
’ i=2

i—1
) ) () 2 %)
Pj (A.j] ) = ()"j] —aj> Pj,] ()\.jj ) _bj—l i];lz ()\.jj —ai) =0

has real solutions a; and b1, j = 2,3, ..., n. If the determinant

12)

hy =P (1) j}‘[ (A —a) = P (1Y) h (" —a) (13)

i= i=

of the coefficients matrix of the system (12) is nonzero then the system has unique solutions a;
and b?_l, J =2,3,...,n. In this case, from Lemma 3 we have i; > 0. By solving the system
(12) we obtain

() DY -1 (10) ) DY 111 (L)
WP (W) TS (2 = ai) =2 P (A TS (3 - @)

a; =
J )
hj

(14)
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b] ]= (k;j) _)‘(lj)) P; h<k(j)) P;_ (A(j)). s
J

and

Since

then b;_ is a real number and therefore, there exists A with the spectral properties required.
Now we will show that if #; = 0, the system (12) still has a solution. We do this by induction

by showing that the rank of the coefficients matrix is equal to the rank of the augmented matrix.
Let j = 2.1If hp = 0 then

hy=(=1)'hy
— 0! [ (1) - 1 ()] =

which, from Lemma 2, is equivalent to

P(xP)=0 A P(3P)=0
and therefore

AD 0 A 0 0 (16)
In this case the augmented matrix is

P(3P) 1] AP Pe?)

Py (Agz)) 1 Agz)Pl(kéz))

and the ranks of both matrices, the coefficient matrix and the augmented matrix, are equal. Hence
A» exists and has the form

L[ o
=10 )

Now we consider j > 3.If h; = 0 then

Hj=(=1)7""h;
— 0 e ) T ) = i () TT 69 -) | =0

i=2 i=2

From Lemma 2

P (xﬁf')) -0 v j]_[ (x}” —a,-) =0

and

P () =0 v TI(9 -a)=0
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Then & j = 0 leads us to the following cases:

B 30 _ 56D G=D _ )
) A =4 AT =08,

1
)2 =27 A [T -a) =0,
i=2

j-1
) 0\ G=D _ ()
(111)1_[<Aj —a,>—0 A )‘j—l —Aj,
i=2

Jj—1 j—1
@ [] ()\;J) - ai> =0 A ] (xﬁ” - ai) —0
i=2 i=2
and the augmented matrix is
. J .
i) )

1
. j

()
Pa(y)

By replacing conditions (i)—(iii) in (17), it is clear that the coefficients matrix and the augmented
matrix have the same rank. From condition (iv), the system of equations (12) becomes

P (1) =2 Py (31
(") () ()
P (1)) as =25 Pt (2)

If Pjo1 () # 0and Pjy (1) # 0 then a; = A{" = 3/ and from (11)

RAE A7)
)

D G- _ () 5 G=D )
W =2 = =af = =D =00

Thus, P;_ (A(lj )> =Pj4 ()L;j )> = 0, which is a contradiction. Hence, under condition (iv)

Pi_4 (kij )> =0or Pj_ ()\;j )) = 0 and therefore, the coefficients matrix and the augmented

matrix have also the same rank. By taking b?_l = 0, there exists a j x j matrix A; with the
required spectral properties. The necessity comes from the Cauchy interlacing property. [

We have seen in the proof of Theorem 1 that if the determinant £ ; of the coefficients matrix
of the system (12) is nonzero, then the Problem II has a unique solution except for the sign of the
b; entries.

Now we solve the Problem II in the case that the b; entries are required to be positive. We need
the following Lemma:

Lemma 4. Let A be a matrix of the form (1) with b; #0,i =1,...,n — 1. Let )‘Y) and k;j),
respectively, be the minimal and the maximal eigenvalue of the leading principal submatrix A,
J=12,...,n,0f A Then

)L(lj) << )L?) < )\52) < )Lil) < )Léz) < )L?) << Xﬁj) (18)



262 H. Pickmann et al. / Linear Algebra and its Applications 427 (2007) 256-271
and

W <a < ,\j.f), i=2,3,...j (19)
foreach j =2,3,...,n.

Proof. For j = 2, we have from (4)
Py(0) = (A —a)P1(3) — b}
= (h—a)(.— 1Py — b
As by # 0, then Pz(kﬁl)) #+ 0 and from (5), we have
AG) <50 0.
If A(lz) =ap or )ng) = a) then
0= Py(ar) = (a2 — @) P1(az) — b} = —b7
contradicts b1 # 0 and from (6) we have
A2 < ay <2 Q. (20)
Let j = 3. Then from (4)

Py (3) = (37 =) P () = 3 (A — @)

b3 (A = az) #0.

In the same way P3 ()»;2)) =+ 0. Hence, )\(12) and A;z) are not zeroes of P3()\) and from (5)
AWV <a® < <P <. 1)
Now, suppose that )L?) = a3. Then
0= P3(a3) = (a3 — a3) Pa(a3) — b3(a3 — a»)
3
= —b%(a3 —apy) = —b% ()\E ) _ az)

contradicts the inequalities (20) and (21). Same occurs if we assume that A§3) = a3. Then from
(6) we have

W <a <2y, =23
Now, suppose that (18) and (19) hold for 4 < j < n — 1 and consider
J
Piyi(0) = —ajs)Pj) = b3 [ [ — an).
i=2
Since b; #0 and A <a <2{.i=23...j, ten [T_,(*"-a)#0 and
{:2 ()»E.j) — a,-) #+ 0. Hence )»Ej) nor Ajj) are zeroes of Pj11(A). Then from (5) we have

AYH) < )ng) << )»52) < Ail) < Agz) << )\5,].) < A;ﬂ_ﬁl). (22)
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Finally, if Y*" = a4 then

J
0= Pj1(aj1) = (ajr1 —ajs1) Pi(aj) — b3 [ [@j1 — an)

i=2
J J -
= —b? H(aj+1 —a;) = —b?l_[ ()»(IH_ ) a,-)
i=2 i=2
contradicts (22). Then from (6)
i+1 +1 . ;
W <ap <a¥50 i=23 0+ O

The following corollary solves Problem II with b; > 0.

Corollary 1. Let the real numbers kij) and )L;.j), j=1,2,...,n, be given. Then there exists a

unique n X n matrix A of the form (1), with a; € R and bj > 0, such that )\ij) and X;j) are,
respectively, the minimal and the maximal eigenvalue of the leading principal submatrix Aj,
j=1,...,n,0of A, ifand only if

k(ln) << )‘(13) < )ng) < )\(11) < A;z) < A§3) <. < ASL"). (23)
Proof. The proof is quite similar to the proof of Theorem 1: Let )»gj ) and A;j ), j=2,...,n,
satisfying (23). To show the existence of A, j = 2, 3, ..., n, with the required spectral properties,
is equivalent to show that the system of equations (12) has real solutions a; and b;_, with
bj—1>0,j=2,3,...,n Todo this it is enough to show that the determinant of the coefficients
matrix

hj=Pj_y (Aﬁ“) (A —a)-p (A“)) (" —a) (24)

=2 =2
be nonzero.

From Lemmas 3 and 4 it follows that i[j = (—=1)'h; > 0. Hence h; # 0 and the system (12)
has real and unique solutions:

WP (x“’) - (km ) A(nP - (M”) - ()Lm )

aj = W (25)
and
biil _ (Aij) _ﬁj)) P; h(;\(/)) P ()L(])>’ o6
J
where

(—1)/~1 (A;J) k(])) Pi_ ()L(J)> Pj_i (;6_/')) - 0.

Then it is clear that bz._1 > 0. Therefore, the b;_1 can be chosen positive and then there exists
a unique matrix A; with the required spectral properties. The necessity of the result comes from
Lemma4. O
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3. Partial solution to Problem I

As it was observed in Section 1, Problem I in [4] has not been solved. In fact, the matrix A in (3)
shows that to apply the formulae in [4, Theorem 1] may lead us to a matrix, which does not satisfy
the requirements. In this section, we give a sufficient condition to solve Problem I. Previously,
we give conditions under which we may construct a matrix of the form (1) with a; =a € R,
i=1,...,nand b; # 0. We start with the following:

Lemma S. Let A be a matrix of the form

0 by by - by
by 0 0 -~ 0

A=|b2 0 0 - 0 withb; 0, 1<j<n—1. 27)
but O O -0

Let P (1) be the characteristic polynomial of the leading principal submatrix A of A, j=
1,...,n.Then,if j is even, P (A) is an even polynomial and if j is odd, P x) zsaoddpolynomzal

Proof. If a; =0, j = 1,2, ..., n, then the recurrence relation (4) become
Pivy =1,
Py(0) = A2 — b2, (28)

Pi()) =P () —b3_ ()72 =3, .0

Clearly, Py (4) is a odd polynomial, while P, (A) is an even polynomial. Now, suppose that P )
is even for an even j and that P (1) is odd for a odd j. Let j + 1 be even. Then j is odd Wlth
P (A) odd and j — 1 is even w1th P, 1(A) even. From (4), we have

Pii(=0)==2Pj(=1) = b3 (=)™
=AP;(1) — b5 (07!
=P ().

Hence Pj+1(k) is an even polynomial. Analogously if j + 1 is odd, Pj_H (=r) =-— ~j+1 ». O

Definition 1. We say that I' = {11, A2, ..., A, }isabalanced setif A; = —X,_;+1 with )\% =0
for odd n.

Thus, if )»51) = 0and )»ij ) A(j ) ,J =2,3, ..., n,then the minimal and maximal eigenvalues

{AY ), A;j )} of all leading principal submatrices Aj of A form a balanced set.

Corollary 2. Let )»Ej) and )»E.j), j=1,2,...,n, be real numbers satisfying (23). Then there
exists a unique n X n matrix A = A +al, a € R, where Ais of the form (27), such that )L(lj) and
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AW are, respectively, the minimal and the maximal eigenvalue of the leading principal submatrix
Aj of A, if and only if

. . 1 .

Proof. Letk(lj ) + )\;j ) = ZA(II), Jj =2,..., n.Itisenough to prove the result for a balanced set, that

is, for 2{" = 0. Otherwise, if 1{" % 0, then define u) =29 =2V j=1,2,... n,i=1,;]

to obtain ugl) =0, ng) = _ng)’ Jj =2,...,n. Hence, if there exists a unique matrix A of the

form (27) such that u(lj ) and p,;j ) are, respectively, the minimal and the maximal eigenvalue of the

leading principal submatrix A j.»j=1,...,n,0f A~, then A = A + )\51) I is the unique symmetric
bordered diagonal matrix with the required spectral properties.

Let )»El) =0 and )»Y) = —)»5.]), Jj =2,...,n. Since (23) holds, then from Corollary 1 there
exists a unique matrix A of the form (1) with the required spectral properties. It only remains to
show thata; =0, j =1,2,...,n.

Clearly, a; = )»51) =0and a1 +ay; =a; = )\52) + )\f) = 0. Suppose that a; =0, k =1,
2,...,j; J<n.Letk+ 1 be even. Then from Lemma 5, Px(}) is odd and the numerator in
(25) is

k-1 k=1
(k+1) (k+1) (k+1) (k1) (k+1) (k+1)
A P ()‘1 ) <)‘k+1 ) ~ Mg P (Ak+1 ) ()“1 )

k—1 k-1
RN (ZS5)) (k+1) (k+1) (k+1) (k+1) (k+1)
= _)‘k+1 Py (_)‘kﬂ ) ()‘k+1 ) - )‘k+1 Py <)‘k+1 ) <_kk+1 )

k—1 k—1
_ 4 kD) (k+1) (k+1) (k+1) (k+1) (k+1)
_)‘k—H Py (Ak+1 )()‘k+1 ) _)‘k+1 Py ()‘k+1 )()‘k+1 )

=0

from where a1 = 0. Similarly, it can be shown that ax4; = 0 when k 4 1 is odd.

Now, let A be the unique n x n matrix of the form (1) witha; =a, j=1,2,...,n, b; #
0, such that )»gj ) and )\E] ) are, respectively, the minimal and the maximal eigenvalue of the
lsading principal submatrix A;, j =1,2,...,n, of A. Thezl A= X—i— al, with a = )\gl) and
A of the form (27) having leading principal submatrices A; with characteristic polynomials
P;(»), j=1,2,...,n. Since P;(1) even or P;(A) odd imply P;(—A) =0, then the eigen-
values ui]) < ng) << /,L;-]_)l < ,u;])
clear that the minimal and maximal eigenvalues of A j are, respectively, )\ij ) )Lgl) and A;j ) _

A%l),j =1,2,...,n.Hence (A%j) — )»5”) + ()»jj) — Ail)) = 0 and consequently, )»ij) + A;j) =

of Xj satisfy the relation w4 “5']214-1 =0. It is

i

2)»51), j=1,2,...,n. The proof is completed. [J

The following result gives a sufficient condition in order Problem I to have a solution.

Theorem 2. Let )LY) and k;j), j=1,2,...,n, be real numbers satisfying
A(ln) <. < A(13) < A(IQ) < A(ll) < )»éz) < A§3) <oo<AW, (30)

Then, there exists a unique n x n matrix A of the form (1), with a; #aj fori #j (i,j =

1,2,...,n) and b; > 0, such that A(lj ) and A(.j ) are, respectively, the minimal and the maximal
eigenvalue of the leading principal submatrix Aj, j =1,2,...,n, of Aif
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@) | 3@ 49y (D
AP+ # 248

and
- , . L
D0 () ()
>
G-D_ .0 WA
A A Pi_y (/\J/ )]‘[{:2 (Alj —ai)
or
i1 ; D\ 11i=1 (+ ()
)“Ej ) _)\5]) Pj,] ()\-1 )1_[[:2 ()\.j _ai)
G- _,0 = D\ i1 (1) ’
W= (AW TS () - @)

j=3,4,...,n.

&1V

(32)

(33)

Proof. From Corollary 1, condition (30) guarantees the existence of a unique matrix A of the
form (1) with b; > 0 and the required spectral properties, and from Corollary 2, condition (31) is

necessary and sufficient in order that a; # az. Now, let

Jj—1

uj = Pj_ (AY)) l_[ (A;j) —al->

1=
and
j—1

Uj = Pj—l (}»5-”) l_[ <)\§j) - a,‘) :

i=

Jj =3,4, ..., n (the numerator and the denominator in the right side of (32)). Suppose that (32)

holds for j = 3, that is
2 3
AP =) _ D
AP 2P (=D
Then
D2 [4u3 = 2803 | = 28 =)z = v3]

and
3 3
o ED0 e =8 v
3 =
(=1)2[u3 — v3]
From Lemma 4, we have A(lz) <ai,ay < )\52). Hence, a3 # a> # aj.

Similarly, if (33) holds for j = 3, then a3 < A'®, and therefore, a3 # a» # a;.
Now, suppose that the a; are all different,i = 1, ..., j — 1 and (32) holds, that is

()
> )‘2 .

(=1 ) -
Aol A J e luj

G=D W 7 (=il
Aj_l — XA J

Then
CrG . - -
(-1 l[ng)uj —A§”u,-] > A0 17wy — v
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and therefore

(_])j*l [ (]) )\(]) :I
(—1)’_1[14]' —vj]

From Lemma 4, we have )»gj_l) <a; < )»E.j:ll), i=1,...,j—1landthena; #aj#---#

a3 # aj. Similarly if (33) holds then we obtaina; < 2" andthena; #£a; 1 # - # @ #a
again. [l

_ (-1
aj = > Aj_l .

We observe that a sufficient condition for Problem I can be obtained from (30) together with
(32) or (33).

4. The nonnegative case

In this section, we look for conditions for the existence of a matrix A of the form (1) with
aj 2 0, b; > 0and such that the given real numbers k(lj), )\.(41), j=1,2,...,n,are, respectively,
the minimal and the maximal eigenvalue of the leading principal submatrix A;, j = 1,2, ..., n,
of A. We start by giving a necessary and sufficient condition for the existence of such a matrix,

when )»ij ), )»;j ) are all distinct.

Corollary 3. Let A(lj) and )»E-j), j=1,2,...,n, be real numbers satisfying
AP << <aa® <l < <l <<, (34)

Then, there exists a unique n x n nonnegative matrix A of the form (1), such that kgj ) and )»ﬁ.j )
are, respectively, the minimal and the maximal eigenvalue of the leading principal submatrix A j,
j=12,...,n,of A ifand only if

and
A Pj-1 !
1_> ( ) ( ) i =2,3,....n. (36)

. k] ] -
) =
)‘jj ( (/))1—1 ( (/) ai)

Proof. Corollary 1 guarantees the existence of a unique matrix A of the form (1) with b; > 0,
i=1,...,n— 1. It remains to show that the diagonal elements a; are nonnegative. From (35),

a; = )»51) > 0 and from (36)
NG »_ 1 ’

(1) ()
)‘1 < Aj

Since 0 < then from Lemmas 2 and 3

(_1)]*1[)._1 (ng)) jl_[ (k;j) — a,-) > 0.

i=2
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Then
) A ) ) A )
MWD (VT (Y @) 2 2P i e () T (Y - )

i=2

S}

or

Hence, from the proof of Corollary 1, we obtain

aj = %—/ > 0.
hj
Now, let us assume that there exists a unique n X n nonnegative matrix A of the form (1)
with b; > 0, )Lij), A(-]), j=1,...,n, satisfying (34) and being the minimal and the maximal

eigenvalue of each leading principal submatrix A; of A. From Lemma 4 the condition (30) is
satisfied. Moreover, from the proof of Corollary 1, the diagonal elements of A are of the form

) M\ i1 () ) ) (30
70 () 4 ) 450 () V4 40
hj

( 1)J-1 [k(J)P]_ (A(j)) l—[j 1 (A(’) ) . )»;j)Pj—l ( (/)) 1—11 1 (k(]) )]
3

aj =

>0.
with i[j > (. Then
0L Dp.  GIYTT (9 _ i1, D p. ONTT/ (G
(=D A P ( )Hizz (Aj “1)2( DA P ()‘j )l_[z 2('\ a’)’
that is
,\Y) (=DJI7tP;y

ks ; ( )
1 =it (A

and the proof is completed. [

Now we discuss the case in which some of the given real numbers )ng)’ A;j), j=12,...,n,
are equal. It is clear that ifk(ln) = kfl") = «, then Aij) = As.j) =u«,j=1,2,...,n, and therefore,

A=ual.
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Suppose that the determinant /; of the coefficients matrix of the system (12) is nonzero, that
is

b= Py ()ng))jl_[ (19 —a) = P (Aﬁj))jl_[( 0 —a) £0.

In this case the solution matrix A is unique, except for the sign of b;_1, which we may choose as
nonnegative. Then we examine conditions for the nonnegativity of

I:)L(J)P] . <)L(J)> l—[J 1 (A(J) ) )L(J)P B (A(’)> 1—[] 1 (Am )]
Pi_ (A(])> 1—[1 1 (A(]) _al_> — P ()L(J)> l—[] 1 ()L(J) _ai> '

Since h1j # 0, from Lemma 3 4; = (—1)/~'h; > 0. Then from Lemma 2 we have the following
cases:

aj_

Jj—1 j—1
@ Pt (M) T (A —a) #0 and Py () [T (3 = ai) =o0.
i=2 i=2
Thena; = A\ anda; > 0if 2\ > 0.
j—1
(i) Pj_y (x(”) ]_[ (W) ) =0 and P, (,\(f’) I1 (x“) ) £ 0.
i= i=2
Thena; = k(.'/ 'anda; j = 0always occurs since A(l) A(/ Jand 0 < A El) is a necessary condition:

(iii) P (A(J)> ]_[ (,\”) a,) #£0 and Pj_ (A(’)) ]_[ (A(’) ,-) £ 0.

i= i=
Then AY ) < Agj D and )»(.j:ll) < )Ly ) anda necessary and sufficient condition fora; > 0is given
by (35) and (36) of Corollary 3.
Now, suppose that /2; = 0. From Lemma 2 we have the following cases:
(i) )»(j) — )»(j_l) and A(j_l) — )\('j).
From (12) a; can take any real value. Then we may choose a; > 0. On the other hand

j—1 j—1

B =0V J]_[(,\(lf)—ai)zo A J]_[(,\j.f)—a,-)=o

i=2 i=2
Thus b1 = 0 or b;_1 can be chosen as nonnegative.
. . -t
i) 2 =27 AT] (xﬁ” - a,») = 0.
i=2

If Pj,l(kj.j)) = 0, then a; can take any real value. In particular,a; > Oandb;_1 = Oorb;_; > 0.
If R;_l(kj:’)) + 0, then

) D\ _ 1/ () 2
WPy (87) =TS () - @) 2

aj = -
ijl ()LS]))
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From Lemma 2, P.,'_l()»;j)) > 0, and from (6), ]_[{;21 ()\3:/) —a;) 2 0. Moreover, if bj_; >0,
thena; > 0if

]—[ (A(/) ) b?ﬁ]

)\(/)

=1/ () A\ _ G- _ ()
i [T, (Aj —a,)_omj_1 =14,
If Pj_l()\ij)) =0, a; can be taken as nonnegative. Moreover, b;_1 =0 or b;j_1 > 0. If
Pj_1(»\") # 0, then
) () L, () 2
P (37) ~THS (W) - @) 2
. (Aﬁ”)

FromLemma?2, (—l)j_lRi_l(k(lj)) > 0, and from (6), (—1)/'_1]_[{:_21 ()»gj) - a,-) > 0. Moreover,
ifbj_1 >0, thena; > 0if

J=1 () _ 2
[ (W - ) 5.
Pj_ <)»§J)>
Jj—1 -
. () N — I~ 0 _ ) —
(iv) 11 (Xj —a,) = O/\l_[i:2 ()‘1 a,) =0.
1=
In this case the system (12) reduces to
P (M) gy + 002 =2 Py (317)

) ) ()
Py (A7) @y + 002 =3Py ()

aj =

OFS
)‘1

We assume that b;_; > 0. Then, if P;_ 1(A(j)) =0and Pj_ 1(kam) = 0, we may choose a; >
) ) ( ) (1) ()
0.If Pji—1 (%) =0 and P;_1(2}") #0, then a; = 2" > A,” > 0. If Pj_1(%;”) # 0 and

Pi1(1) = 0.thena; = A{” > 0if2}” > 0. Finally, the case P;_1 (r{) # Oand P;,_; (\\)) #
0 cannot occur.

5. Examples

Example 1. The following numbers:

)»55) k§4) A(13) Agz) Agl) Af)
—11.2369 —11.1921 —10.9106 —8.7760 —6.0043 —2.6295

213 2@ NS

3 4 5

1.8532 8.4266 10.4020

satisfy the sufficient conditions (30)—(32) of the Theorem 2. Then the bordered diagonal matrix
withb; > O0and a; # aj,i # jis
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—6.0043  3.0584 5.2453  2.9624  1.2602
3.0584  —5.4011
A= 5.2453 —2.3357
2.9624 7.6429
1.2602 10.2504

Example 2. We modify the previous example, in order that some given eigenvalues be equal:

/\55) A(14) k§3) )»52) Ail) )»éz)
—11.2369 —10.9106 —10.9106 —8.7760 —6.0043 —6.0043
13 2@ NS
3 4 5

1.8532 8.4266 10.4020

These numbers satisfy (11). One solution of Problem II is the matrix

—6.0043 0 6.2090 0 3.2977
0 —8.7760
A =] 6.2090 —3.0531
0 8.4266
3.2977 9.5989

Example 3. The numbers

Af) A(14) )L?) )ng) )Lil) Aéz)
—3.8467 —3.4048 —3.3900 —1.5635 0.2233 6.0818
33 2@ S

3 4 5

9.4090 11.7029  15.3806

satisfy relations (30)—(32), and relations (35) and (36). Then we obtain the nonnegative bordered
diagonal matrix

0.2233  3.2354 4.6803 0.5594  3.3490
3.2354 4.2950
A = |4.6803 6.3405
0.5594 11.6505
3.3490 14.4225

with the required spectral properties.
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