Extremal inverse eigenvalue problem for bordered diagonal matrices

Hubert Pickmann, Juan Egaña*, Ricardo L. Soto

Departamento de Matemáticas, Universidad Católica del Norte, Antofagasta, Chile

Received 29 January 2007; accepted 26 July 2007
Available online 14 September 2007
Submitted by R.A. Brualdi

Abstract

The following inverse eigenvalue problem was introduced and discussed in [J. Peng, X.Y. Hu, L. Zhang, Two inverse eigenvalue problems for a special kind of matrices, Linear Algebra Appl. 416 (2006) 336–347]: to construct a real symmetric bordered diagonal matrix A from the minimal and maximal eigenvalues of all its leading principal submatrices. However, the given formulae in [4, Theorem 1] to compute the matrix A may lead us to a matrix, which does not satisfy the requirements of the problem. In this paper, we rediscuss the problem to give a sufficient condition for the existence of such a matrix and necessary and sufficient conditions for the existence of a nonnegative such a matrix. Results are constructive and generate an algorithmic procedure to construct the matrices.

© 2007 Elsevier Inc. All rights reserved.

AMS classification: 65F15; 65F18; 15A18

Keywords: Symmetric bordered diagonal matrices; Matrix inverse eigenvalue problem

* Supported by Fondecyt 1050026, Mecesup UCN0202, Chile and Project DGIP-UCN.
* Corresponding author. Fax: +56 55 355599.
E-mail addresses: jegana@ucn.cl (J. Egaña), hpickmann@ucn.cl (H. Pickmann), rsoto@ucn.cl (R.L. Soto).
1. Introduction

In this paper, we consider the problem of constructing a symmetric bordered diagonal matrix of the form:

\[
A = \begin{pmatrix}
a_1 & b_1 & b_2 & \cdots & b_{n-1} \\
b_1 & a_2 & 0 & \cdots & 0 \\
b_2 & 0 & a_3 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
b_{n-1} & 0 & 0 & \cdots & a_n
\end{pmatrix},
\]
\((1) \)

where \(a_j, b_j \in \mathbb{R} \).

This class of matrices appears in certain symmetric inverse eigenvalue and inverse Sturm-Liouville problems, which arise in many applications, including control theory and vibration analysis [1–4].

We denote as \(I_j \) the identity matrix of order \(j \); as \(A_j \) the \(j \times j \) leading principal submatrix of \(A \); as \(P_j(\lambda) \) the characteristic polynomial of \(A_j \) and as \(\lambda^{(j)}_1 \leq \lambda^{(j)}_2 \leq \cdots \leq \lambda^{(j)}_j \) the eigenvalues of \(A_j \).

Our work is motivated by the results in [4]. There, the authors introduced two inverse eigenvalue problems, where a special spectral information is considered. An inverse eigenvalue problem for tridiagonal matrices with the same spectral information is also considered in [5]. One of the problems in [4], Problem I, is of our interest here:

Problem I [4]. For \(2n-1 \) given real numbers \(\lambda^{(n)}_1 < \lambda^{(n-1)}_1 < \cdots < \lambda^{(2)}_1 < \lambda^{(1)}_1 < \lambda^{(2)}_2 < \cdots < \lambda^{(n)}_n \), find an \(n \times n \) matrix \(A \) of the form (1), with the \(a_i \) all distinct for \(i = 2, 3, \ldots, n \) and the \(b_i \) all positive, such that \(\lambda^{(j)}_1 \) and \(\lambda^{(j)}_j \) are, respectively, the minimal and the maximal eigenvalue of \(A_j \) for all \(j = 1, 2, \ldots, n \).

In [4, Theorem 1] is said that there is a unique solution of Problem I if and only if

\[
\tilde{h}_j = (-1)^{j-1} \left[P_{j-1} \left(\lambda^{(j)}_1 \right) \prod_{i=2}^{j-1} \left(\lambda^{(j)}_j - a_i \right) - P_{j-1} \left(\lambda^{(j)}_j \right) \prod_{i=2}^{j-1} \left(\lambda^{(j)}_1 - a_i \right) \right] > 0. \tag{2}
\]

We observe that the condition (2) is always satisfied under the hypothesis of Problem I. Moreover, the formulae to compute the \(a_i \) and the \(b_i \), given in [4, Theorem 1] may lead us to a matrix, which does not satisfy the requirements: the given real numbers \(\lambda^{(4)}_1 = 1, \lambda^{(3)}_1 = 2, \lambda^{(2)}_1 = 3, \lambda^{(1)}_1 = 4, \lambda^{(2)}_2 = 5, \lambda^{(3)}_3 = 6, \lambda^{(4)}_4 = 7 \), satisfy the condition (2). However, the resulting matrix is

\[
A = \begin{pmatrix}
4 & 1 & \sqrt{3} & \sqrt{5} \\
1 & 4 & 0 & 0 \\
\sqrt{3} & 0 & 4 & 0 \\
\sqrt{5} & 0 & 0 & 4
\end{pmatrix},
\]
\((3) \)

where the diagonal entries are not distinct.

In this paper, we consider the following more general problem:

Problem II. Given the \(2n-1 \) real numbers \(\lambda^{(j)}_1 \) and \(\lambda^{(j)}_j \), \(j = 1, 2, \ldots, n \), find an \(n \times n \) matrix \(A \) of the form (1) such that \(\lambda^{(j)}_1 \) and \(\lambda^{(j)}_j \) are, respectively, the minimal and the maximal eigenvalue of \(A_j \), \(j = 1, 2, \ldots, n \).
The paper is organized as follows: In Section 2, we solve Problem II by giving a necessary and sufficient condition for the existence of the matrix A in (1) and also solve the case in which the matrix A, in Problem II, is required to have all its entries b_i positive. In Section 3, we discuss Problem I in [4] and give a sufficient condition for its solution. In Section 4, we study the nonnegative case by giving a necessary and sufficient condition for the existence of a nonnegative matrix A of the form (1) such that $\lambda(1)_{j}^{(j)}$ and λ_{j} are, respectively, the minimal and the maximal eigenvalue of A_j for all $j = 1, 2, \ldots, n$. Finally, in Section 5 we show some examples to illustrate the results.

2. Solution of Problem II

We start this section by recalling the following lemmas:

Lemma 1. Let A be a matrix of the form (1). Then the sequence of characteristic polynomials $\{P_j(\lambda)\}_{j=1}^{n}$ satisfies the recurrence relation:

$$
P_1(\lambda) = (\lambda - a_1),
$$
$$
P_2(\lambda) = (\lambda - a_2) P_1(\lambda) - b_1^2,
$$
$$
P_j(\lambda) = (\lambda - a_j) P_{j-1}(\lambda) - b_{j-1}^2 \prod_{i=2}^{j-1} (\lambda - a_i), \quad j = 3, 4, \ldots, n.
$$

Lemma 2. Let $P(\lambda)$ be a monic polynomial of degree n with all real zeroes. If λ_1 and λ_n are, respectively, the minimal and the maximal zero of $P(\lambda)$, then

1. If $\mu < \lambda_1$, we have that $(-1)^n P(\mu) > 0$.
2. If $\mu > \lambda_n$, we have that $P(\mu) > 0$.

Proof. Let $P(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)$. Thus, if $\mu < \lambda_1$ and n is odd then $P(\mu) < 0$. If $\mu < \lambda_1$ and n is even then $P(\mu) > 0$. Hence, $(-1)^n P(\mu) > 0$. If $\mu > \lambda_n$, then clearly $P(\mu) > 0$. □

Observe that from the Cauchy interlacing property, the minimal and the maximal eigenvalue, $\lambda_1^{(j)}$ and $\lambda_j^{(j)}$, respectively, of each leading principal submatrix A_j, $j = 1, 2, \ldots, n$, of the matrix A in (1) satisfy the relations:

$$
\lambda^{(n)}_1 \leq \cdots \leq \lambda_1^{(3)} \leq \lambda_1^{(2)} \leq \lambda_1^{(1)} \leq \lambda_2^{(2)} \leq \lambda_3^{(3)} < \cdots < \lambda^{(n)}_n \quad (5)
$$

and

$$
\lambda_1^{(j)} \leq a_i \leq \lambda_j^{(j)}, \quad i = 1, \ldots, j; \quad j = 1, \ldots, n. \quad (6)
$$

Lemma 3. Let $\{P_j(\lambda)\}_{j=1}^{n}$ be the polynomials defined in (4), whose minimal and maximal zeroes, $\lambda_1^{(j)}$ and $\lambda_j^{(j)}$, $j = 1, 2, \ldots, n$, respectively, satisfy the relation (5). Then

$$
\tilde{h}_j = (-1)^{j-1} \left[P_{j-1}(\lambda_1^{(j)}) \prod_{i=2}^{j-1} (\lambda_j^{(j)} - a_i) - P_{j-1}(\lambda_1^{(j)}) \prod_{i=2}^{j-1} (\lambda_1^{(j)} - a_i) \right] \geq 0,
$$

$$
j = 2, 3, \ldots, n.
$$

(7)
Proof. From Lemma 2, we have
\[(-1)^{-1} P_{j-1} \left(\lambda_1^{(j)} \right) \geq 0 \quad \text{and} \quad P_{j-1} \left(\lambda_j^{(j)} \right) \geq 0. \] (8)
Moreover, from (6)
\[\prod_{i=2}^{j-1} \left(\lambda_j^{(j)} - a_i \right) \geq 0 \] (9)
and
\[(-1)^{-1} \prod_{i=2}^{j-1} \left(\lambda_1^{(j)} - a_i \right) \leq 0. \] (10)
Clearly \(\tilde{h}_j \geq 0 \) follows from (8)–(10). □

The following theorem solves Problem II. In particular the theorem shows that the condition (5) is necessary and sufficient for the existence of the matrix \(A \) in (1).

Theorem 1. Let the real numbers \(\lambda_1^{(j)} \) and \(\lambda_j^{(j)} \), \(j = 1, 2, \ldots, n \), be given. Then there exists an \(n \times n \) matrix \(A \) of the form (1), such that \(\lambda_1^{(j)} \) and \(\lambda_j^{(j)} \) are, respectively, the minimal and the maximal eigenvalue of its leading principal submatrix \(A_j \), \(j = 1, 2, \ldots, n \), if and only if
\[\lambda_1^{(n)} \leq \cdots \leq \lambda_1^{(3)} \leq \lambda_1^{(2)} \leq \lambda_1^{(1)} \leq \lambda_2^{(3)} \leq \cdots \leq \lambda_n^{(n)}. \] (11)
Proof. Let \(\lambda_1^{(j)} \) and \(\lambda_j^{(j)} \), \(j = 1, 2, \ldots, n \), satisfying (11). Observe that
\[A_1 = [a_1] = \left[\lambda_1^{(1)} \right] \]
and \(P_1(\lambda) = \lambda - a_1 \). To show the existence of \(A_j \), \(j = 2, 3, \ldots, n \) with \(\lambda_1^{(j)} \) and \(\lambda_j^{(j)} \) as its minimal and maximal eigenvalues, respectively, is equivalent to show that the system of equations
\[
\begin{align*}
P_j \left(\lambda_1^{(j)} \right) &= \left(\lambda_1^{(j)} - a_j \right) P_{j-1} \left(\lambda_1^{(j)} \right) - b_{j-1}^2 \prod_{i=2}^{j-1} \left(\lambda_1^{(j)} - a_i \right) = 0 \\
P_j \left(\lambda_j^{(j)} \right) &= \left(\lambda_j^{(j)} - a_j \right) P_{j-1} \left(\lambda_j^{(j)} \right) - b_{j-1}^2 \prod_{i=2}^{j-1} \left(\lambda_j^{(j)} - a_i \right) = 0
\end{align*}
\]
has real solutions \(a_j \) and \(b_{j-1}, \ j = 2, 3, \ldots, n \). If the determinant
\[h_j = P_{j-1} \left(\lambda_1^{(j)} \right) \prod_{i=2}^{j-1} \left(\lambda_1^{(j)} - a_i \right) - P_{j-1} \left(\lambda_j^{(j)} \right) \prod_{i=2}^{j-1} \left(\lambda_j^{(j)} - a_i \right) \] (13)
of the coefficients matrix of the system (12) is nonzero then the system has unique solutions \(a_j \) and \(b_{j-1}, \ j = 2, 3, \ldots, n \). In this case, from Lemma 3 we have \(\tilde{h}_j > 0 \). By solving the system (12) we obtain
\[a_j = \frac{\lambda_j^{(j)} P_{j-1} \left(\lambda_1^{(j)} \right) \prod_{i=2}^{j-1} \left(\lambda_1^{(j)} - a_i \right) - \lambda_1^{(j)} P_{j-1} \left(\lambda_j^{(j)} \right) \prod_{i=2}^{j-1} \left(\lambda_j^{(j)} - a_i \right)}{h_j} \] (14)
and
\[b_{j-1}^2 = \left(\lambda_j^{(j)} - \lambda_j^{(j-1)} \right) \frac{\prod_{i=2}^{j-1} \left(\lambda_j^{(j)} - a_i \right)}{h_j}, \] (15)

Since
\[(-1)^{j-1} \left(\lambda_j^{(j)} - \lambda_j^{(j-1)} \right) \prod_{i=2}^{j-1} \left(\lambda_j^{(j)} - a_i \right) \geq 0, \]
then \(b_{j-1} \) is a real number and therefore, there exists \(A \) with the spectral properties required.

Now we will show that if \(h_j = 0 \), the system (12) still has a solution. We do this by induction by showing that the rank of the coefficients matrix is equal to the rank of the augmented matrix.

Let \(j = 2 \). If \(h_2 = 0 \) then
\[\tilde{h}_2 = (-1)^1 h_2 \]
\[= (-1)^1 \left[P_1 \left(\lambda_1^{(2)} \right) - P_1 \left(\lambda_2^{(2)} \right) \right] = 0, \]
which, from Lemma 2, is equivalent to
\[P_1 \left(\lambda_1^{(2)} \right) = 0 \quad \text{and} \quad P_1 \left(\lambda_2^{(2)} \right) = 0 \]
and therefore
\[\lambda_1^{(2)} = \lambda_1^{(1)} \quad \text{and} \quad \lambda_2^{(2)} = \lambda_2^{(1)}. \] (16)

In this case the augmented matrix is
\[\begin{bmatrix} P_1 \left(\lambda_1^{(2)} \right) & 1 & \lambda_1^{(2)} P_1 \left(\lambda_1^{(2)} \right) \\ P_1 \left(\lambda_2^{(2)} \right) & 1 & \lambda_2^{(2)} P_1 \left(\lambda_2^{(2)} \right) \end{bmatrix} \]

and the ranks of both matrices, the coefficient matrix and the augmented matrix, are equal. Hence \(A_2 \) exists and has the form
\[A_2 = \begin{bmatrix} \lambda_1^{(1)} & 0 \\ 0 & \lambda_1^{(1)} \end{bmatrix}. \]

Now we consider \(j \geq 3 \). If \(h_j = 0 \) then
\[\tilde{h}_j = (-1)^{j-1} h_j \]
\[= (-1)^{j-1} \left[P_{j-1} \left(\lambda_1^{(j)} \right) \prod_{i=2}^{j-1} \left(\lambda_j^{(j)} - a_i \right) - P_{j-1} \left(\lambda_j^{(j)} \right) \prod_{i=2}^{j-1} \left(\lambda_1^{(j)} - a_i \right) \right] = 0. \]

From Lemma 2
\[P_{j-1} \left(\lambda_1^{(j)} \right) = 0 \quad \text{and} \quad \prod_{i=2}^{j-1} \left(\lambda_j^{(j)} - a_i \right) = 0 \]
and
\[P_{j-1} \left(\lambda_j^{(j)} \right) = 0 \quad \text{and} \quad \prod_{i=2}^{j-1} \left(\lambda_1^{(j)} - a_i \right) = 0. \]
Then $h_j = 0$ leads us to the following cases:

(i) $\lambda_1^{(j)} = \lambda_1^{(j-1)} \land \lambda_j^{(j-1)} = \lambda_j^{(j)}$,

(ii) $\lambda_1^{(j)} = \lambda_1^{(j-1)} \land \prod_{i=2}^{j-1} (\lambda_1^{(j)} - a_i) = 0$,

(iii) $\prod_{i=2}^{j-1} (\lambda_j^{(j)} - a_i) = 0 \land \lambda_j^{(j-1)} = \lambda_j^{(j)}$,

(iv) $\prod_{i=2}^{j-1} (\lambda_j^{(j)} - a_i) = 0 \land \prod_{i=2}^{j-1} (\lambda_j^{(j)} - a_i) = 0$

and the augmented matrix is

\[
\begin{bmatrix}
P_j-1(\lambda_1^{(j)}) & \prod_{i=2}^{j-1} (\lambda_1^{(j)} - a_i) & P_j-1(\lambda_1^{(j)}) \\
P_j-1(\lambda_j^{(j)}) & \prod_{i=2}^{j-1} (\lambda_j^{(j)} - a_i) & P_j-1(\lambda_j^{(j)})
\end{bmatrix}
\]

(17)

By replacing conditions (i)–(iii) in (17), it is clear that the coefficients matrix and the augmented matrix have the same rank. From condition (iv), the system of equations (12) becomes

\[
\begin{aligned}
P_j-1(\lambda_1^{(j)}) a_j &= \lambda_1^{(j)} P_j-1(\lambda_1^{(j)}) \\
P_j-1(\lambda_j^{(j)}) a_j &= \lambda_j^{(j)} P_j-1(\lambda_j^{(j)})
\end{aligned}
\]

If $P_j-1(\lambda_1^{(j)}) \neq 0$ and $P_j-1(\lambda_j^{(j)}) \neq 0$ then $a_j = \lambda_1^{(j)} = \lambda_j^{(j)}$ and from (11)

\[
\lambda_1^{(j)} = \lambda_1^{(j-1)} = \cdots = \lambda_1^{(1)} = \cdots = \lambda_{j-1}^{(j-1)} = \lambda_j^{(j)}.
\]

Thus, $P_j-1(\lambda_1^{(j)}) = P_j-1(\lambda_j^{(j)}) = 0$, which is a contradiction. Hence, under condition (iv) $P_j-1(\lambda_1^{(j)}) = 0$ or $P_j-1(\lambda_j^{(j)}) = 0$ and therefore, the coefficients matrix and the augmented matrix have also the same rank. By taking $h_{j-1}^2 \geq 0$, there exists a $j \times j$ matrix A_j with the required spectral properties. The necessity comes from the Cauchy interlacing property. □

We have seen in the proof of Theorem 1 that if the determinant h_j of the coefficients matrix of the system (12) is nonzero, then the Problem II has a unique solution except for the sign of the b_i entries.

Now we solve the Problem II in the case that the b_i entries are required to be positive. We need the following Lemma:

Lemma 4. Let A be a matrix of the form (1) with $b_i \neq 0$, $i = 1, \ldots, n-1$. Let $\lambda_1^{(j)}$ and $\lambda_j^{(j)}$, respectively, be the minimal and the maximal eigenvalue of the leading principal submatrix A_j, $j = 1, 2, \ldots, n$, of A. Then

\[
\lambda_1^{(j)} < \cdots < \lambda_1^{(3)} < \lambda_1^{(2)} < \lambda_1^{(1)} < \lambda_2^{(2)} < \lambda_3^{(3)} < \cdots < \lambda_j^{(j)}
\]

(18)
and
\[\lambda^{(j)}_1 < a_i < \lambda^{(j)}_j, \quad i = 2, 3, \ldots, j \]
for each \(j = 2, 3, \ldots, n \).

Proof. For \(j = 2 \), we have from (4)
\[
P_2(\lambda) = (\lambda - a_2)P_1(\lambda) - b_1^2
= (\lambda - a_2)(\lambda - \lambda^{(1)}_1) - b_1^2.
\]
As \(b_1 \neq 0 \), then \(P_2(\lambda^{(1)}_1) \neq 0 \) and from (5), we have
\[\lambda^{(2)}_1 < \lambda^{(1)}_1 \leq \lambda^{(2)}_2. \]
If \(\lambda^{(2)}_1 = a_2 \) or \(\lambda^{(2)}_2 = a_2 \) then
\[0 = P_2(a_2) = (a_2 - a_2)P_1(a_2) - b_1^2 = -b_1^2 \]
contradicts \(b_1 \neq 0 \) and from (6) we have
\[\lambda^{(2)}_1 < a_2 < \lambda^{(2)}_j. \]

Let \(j = 3 \). Then from (4)
\[
P_3(\lambda^{(2)}_1) = (\lambda^{(2)}_1 - a_3)P_2(\lambda^{(2)}_1) - b_2^2(\lambda^{(2)}_1 - a_2)
= -b_2^2(\lambda^{(2)}_1 - a_2) \neq 0.
\]
In the same way \(P_3(\lambda^{(2)}_2) \neq 0 \). Hence, \(\lambda^{(2)}_1 \) and \(\lambda^{(2)}_2 \) are not zeroes of \(P_3(\lambda) \) and from (5)
\[\lambda^{(3)}_1 < \lambda^{(2)}_1 < \lambda^{(1)}_1 < \lambda^{(2)}_2 < \lambda^{(3)}_3. \]
Now, suppose that \(\lambda^{(3)}_1 = a_3 \). Then
\[
0 = P_3(a_3) = (a_3 - a_3)P_2(a_3) - b_2^2(a_3 - a_2)
= -b_2^2(a_3 - a_2) = -b_2^2(\lambda^{(3)}_1 - a_2)
\]
contradicts the inequalities (20) and (21). Same occurs if we assume that \(\lambda^{(3)}_3 = a_3 \). Then from (6) we have
\[\lambda^{(3)}_1 < a_i < \lambda^{(3)}_3, \quad i = 2, 3. \]
Now, suppose that (18) and (19) hold for \(4 \leq j \leq n - 1 \) and consider
\[
P_{j+1}(\lambda) = (\lambda - a_{j+1})P_j(\lambda) - b_j^2 \prod_{i=2}^j (\lambda - a_i).
\]
Since \(b_j \neq 0 \) and \(\lambda^{(j)}_1 < a_i < \lambda^{(j)}_j, i = 2, 3, \ldots, j \), then \(\prod_{i=2}^j (\lambda^{(j)}_i - a_i) \neq 0 \) and \(\prod_{i=2}^j (\lambda^{(j)}_j - a_i) \neq 0 \). Hence \(\lambda^{(j)}_1 \) nor \(\lambda^{(j)}_j \) are zeroes of \(P_{j+1}(\lambda) \). Then from (5) we have
\[
\lambda^{(j+1)}_1 < \lambda^{(j)}_1 < \cdots < \lambda^{(2)}_1 < \lambda^{(1)}_1 < \lambda^{(2)}_j < \cdots < \lambda^{(j)}_j < \lambda^{(j+1)}_j.
\]
Finally, if \(\lambda_1^{(j+1)} = a_{j+1} \) then

\[
0 = P_{j+1}(a_{j+1}) = (a_{j+1} - a_{j+1})P_j(a_{j+1}) - b_j^2 \prod_{i=2}^{j+1} (a_{j+1} - a_i)
\]

\[
= -b_j^2 \prod_{i=2}^{j+1} (a_{j+1} - a_i) = -b_j^2 \prod_{i=2}^{j+1} \left(\lambda_1^{(j+1)} - a_i \right)
\]

contradicts (22). Then from (6)

\[
\lambda_1^{(j+1)} < a_i < \lambda_j^{(j+1)}, \quad i = 2, 3, \ldots, j + 1.
\]

□

The following corollary solves Problem II with \(b_j > 0 \).

Corollary 1. Let the real numbers \(\lambda_1^{(j)} \) and \(\lambda_j^{(j)} \), \(j = 1, 2, \ldots, n \), be given. Then there exists a unique \(n \times n \) matrix \(A \) of the form (1), with \(a_j \in \mathbb{R} \) and \(b_j > 0 \), such that \(\lambda_1^{(j)} \) and \(\lambda_j^{(j)} \) are, respectively, the minimal and the maximal eigenvalue of the leading principal submatrix \(A_j \), \(j = 1, \ldots, n \), of \(A \), if and only if

\[
\lambda_1^{(n)} < \cdots < \lambda_1^{(3)} < \lambda_1^{(2)} < \lambda_2^{(2)} < \lambda_3^{(3)} < \cdots < \lambda_n^{(n)}.
\]

(23)

Proof. The proof is quite similar to the proof of Theorem 1: Let \(\lambda_1^{(j)} \) and \(\lambda_j^{(j)} \), \(j = 2, \ldots, n \), satisfying (23). To show the existence of \(A_j \), \(j = 2, 3, \ldots, n \), with the required spectral properties, is equivalent to show that the system of equations (12) has real solutions \(a_j \) and \(b_{j-1} \), with \(b_{j-1} > 0 \), \(j = 2, 3, \ldots, n \). To do this it is enough to show that the determinant of the coefficients matrix

\[
h_j = P_{j-1} \left(\lambda_1^{(j)} \right) \prod_{i=2}^{j-1} \left(\lambda_j^{(j)} - a_i \right) - P_{j-1} \left(\lambda_1^{(j)} \right) \prod_{i=2}^{j-1} \left(\lambda_1^{(j)} - a_i \right)
\]

be nonzero.

From Lemmas 3 and 4 it follows that \(\tilde{h}_j = (-1)^{j-1} h_j > 0 \). Hence \(h_j \neq 0 \) and the system (12) has real and unique solutions:

\[
a_j = \frac{\lambda_1^{(j)} P_{j-1} \left(\lambda_1^{(j)} \right) \prod_{i=2}^{j-1} \left(\lambda_j^{(j)} - a_i \right) - \lambda_j^{(j)} P_{j-1} \left(\lambda_1^{(j)} \right) \prod_{i=2}^{j-1} \left(\lambda_1^{(j)} - a_i \right)}{h_j}
\]

(25)

and

\[
b_{j-1}^2 = \frac{\left(\lambda_j^{(j)} - \lambda_1^{(j)} \right) P_{j-1} \left(\lambda_1^{(j)} \right) P_{j-1} \left(\lambda_j^{(j)} \right)}{h_j},
\]

(26)

where

\[
(-1)^{j-1} \left(\lambda_j^{(j)} - \lambda_1^{(j)} \right) P_{j-1} \left(\lambda_1^{(j)} \right) P_{j-1} \left(\lambda_j^{(j)} \right) > 0.
\]

Then it is clear that \(b_{j-1}^2 > 0 \). Therefore, the \(b_{j-1} \) can be chosen positive and then there exists a unique matrix \(A_j \) with the required spectral properties. The necessity of the result comes from Lemma 4. □
3. Partial solution to Problem I

As it was observed in Section 1, Problem I in [4] has not been solved. In fact, the matrix A in (3) shows that to apply the formulae in [4, Theorem 1] may lead us to a matrix, which does not satisfy the requirements. In this section, we give a sufficient condition to solve Problem I. Previously, we give conditions under which we may construct a matrix of the form (1) with $a_i = a \in \mathbb{R}$, $i = 1, \ldots, n$ and $b_i \neq 0$. We start with the following:

Lemma 5. Let A be a matrix of the form

$$
\tilde{A} = \begin{pmatrix}
0 & b_1 & b_2 & \cdots & b_{n-1} \\
b_1 & 0 & 0 & \cdots & 0 \\
b_2 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
b_{n-1} & 0 & 0 & \cdots & 0
\end{pmatrix}
$$

with $b_j \neq 0$, $1 \leq j \leq n - 1$. (27)

Let $\tilde{P}_j(\lambda)$ be the characteristic polynomial of the leading principal submatrix \tilde{A}_j of \tilde{A}, $j = 1, \ldots, n$. Then, if j is even, $\tilde{P}_j(\lambda)$ is an even polynomial and if j is odd, $\tilde{P}_j(\lambda)$ is a odd polynomial.

Proof. If $a_j = 0$, $j = 1, 2, \ldots, n$, then the recurrence relation (4) become

$$
\tilde{P}_1(\lambda) = \lambda, \\
\tilde{P}_2(\lambda) = \lambda^2 - b_1^2, \\
\tilde{P}_j(\lambda) = \lambda \tilde{P}_{j-1}(\lambda) - b_{j-1}^2(\lambda)^{j-2}, \quad j = 3, \ldots, n.
$$

Clearly, $\tilde{P}_1(\lambda)$ is a odd polynomial, while $\tilde{P}_2(\lambda)$ is an even polynomial. Now, suppose that $\tilde{P}_j(\lambda)$ is even for an even j and that $\tilde{P}_j(\lambda)$ is odd for a odd j. Let $j + 1$ be even. Then j is odd with $\tilde{P}_j(\lambda)$ odd and $j - 1$ is even with $\tilde{P}_{j-1}(\lambda)$ even. From (4), we have

$$
\tilde{P}_{j+1}(-\lambda) = -\lambda \tilde{P}_j(-\lambda) - b_j^2(-\lambda)^{j-1} \\
= \lambda \tilde{P}_j(\lambda) - b_j^2(\lambda)^{j-1} \\
= \tilde{P}_{j+1}(\lambda).
$$

Hence $\tilde{P}_{j+1}(\lambda)$ is an even polynomial. Analogously if $j + 1$ is odd, $\tilde{P}_{j+1}(-\lambda) = -\tilde{P}_{j+1}(\lambda)$. □

Definition 1. We say that $\Gamma = \{\lambda_1, \lambda_2, \ldots, \lambda_n\}$ is a balanced set if $\lambda_i = -\lambda_{n-i+1}$ with $\lambda_2 = 0$ for odd n.

Thus, if $\lambda_1^{(1)} = 0$ and $\lambda_j^{(j)} = -\lambda_j^{(j)}$, $j = 2, 3, \ldots, n$, then the minimal and maximal eigenvalues $\{\lambda_1^{(j)}, \lambda_j^{(j)}\}$ of all leading principal submatrices \tilde{A}_j of \tilde{A} form a balanced set.

Corollary 2. Let $\lambda_1^{(j)}$ and $\lambda_j^{(j)}$, $j = 1, 2, \ldots, n$, be real numbers satisfying (23). Then there exists a unique $n \times n$ matrix $A = \tilde{A} + aI$, $a \in \mathbb{R}$, where \tilde{A} is of the form (27), such that $\lambda_1^{(j)}$ and
Theorem 2. Let \(\lambda_j^{(i)} \) and \(\lambda_j^{(j)} \), \(i = 1, 2, \ldots, n \), be real numbers satisfying
\[
\lambda_1^{(i)} < \cdots < \lambda_1^{(3)} < \lambda_1^{(2)} < \lambda_1^{(1)} < \lambda_2^{(2)} < \lambda_3^{(3)} < \cdots < \lambda_n^{(n)}.
\]
(30)

Then, there exists a unique \(n \times n \) matrix \(A \) of the form (1), with \(a_i \neq a_j \) for \(i \neq j \) (i, \(j = 1, 2, \ldots, n \)) and \(b_i > 0 \), such that \(\lambda_1^{(i)} \) and \(\lambda_1^{(j)} \) are, respectively, the minimal and the maximal eigenvalue of the leading principal submatrix \(A_j \) of \(A \), if and only if
\[
\lambda_1^{(j)} + \lambda_j^{(j)} = 2\lambda_1^{(1)}, \quad j = 2, \ldots, n.
\]
(29)

Proof. Let \(\lambda_1^{(j)} + \lambda_j^{(j)} = 2\lambda_1^{(1)}, \ j = 2, \ldots, n \). It is enough to prove the result for a balanced set, that is, for \(\lambda_1^{(1)} = 0 \). Otherwise, if \(\lambda_1^{(1)} \neq 0 \), then define \(\mu_i^{(j)} = \lambda_i^{(j)} - \lambda_1^{(1)}, j = 1, 2, \ldots, n, i = 1, j \) to obtain \(\mu_1^{(1)} = 0, \mu_1^{(j)} = -\mu_j^{(j)}, j = 2, \ldots, n \). Hence, if there exists a unique matrix \(\tilde{A} \) of the form (27) such that \(\mu_1^{(j)} \) and \(\mu_j^{(j)} \) are, respectively, the minimal and the maximal eigenvalue of the leading principal submatrix \(\tilde{A}_j, j = 1, \ldots, n \), of \(\tilde{A} \), then \(A = \tilde{A} + \lambda_1^{(1)}I \) is the unique symmetric bordered diagonal matrix with the required spectral properties.

Let \(\lambda_1^{(1)} = 0 \) and \(\lambda_1^{(j)} = -\lambda_j^{(j)}, j = 2, \ldots, n \). Since (23) holds, then from Corollary 1 there exists a unique matrix \(A \) of the form (1) with the required spectral properties. It only remains to show that \(a_j = 1, 2, \ldots, n \).

Clearly, \(a_1 = \lambda_1^{(1)} = 0 \) and \(a_1 + a_2 = a_2 = \lambda_1^{(2)} + \lambda_2^{(2)} = 0 \). Suppose that \(a_k = 0, k = 1, 2, \ldots, j; j < n \). Let \(k + 1 \) be even. Then from Lemma 5, \(P_k(\lambda) \) is odd and the numerator in (25) is
\[
\lambda_1^{(k+1)} P_k \left(\lambda_1^{(k+1)} \right) \left(\lambda_2^{(k+1)} \right)^{k-1} - \lambda_2^{(k+1)} P_k \left(\lambda_2^{(k+1)} \right) \left(\lambda_1^{(k+1)} \right)^{k-1}
\]
\[
= -\lambda_2^{(k+1)} P_k \left(-\lambda_2^{(k+1)} \right) \left(\lambda_1^{(k+1)} \right)^{k-1} - \lambda_1^{(k+1)} P_k \left(\lambda_1^{(k+1)} \right) \left(\lambda_2^{(k+1)} \right)^{k-1}
\]
\[
= \lambda_1^{(k+1)} P_k \left(\lambda_1^{(k+1)} \right) \left(\lambda_1^{(k+1)} \right)^{k-1} - \lambda_2^{(k+1)} P_k \left(\lambda_2^{(k+1)} \right) \left(\lambda_1^{(k+1)} \right)^{k-1}
\]
\[
= -\lambda_1^{(k+1)} P_k \left(\lambda_1^{(k+1)} \right) \left(\lambda_1^{(k+1)} \right)^{k-1} - \lambda_2^{(k+1)} P_k \left(\lambda_2^{(k+1)} \right) \left(\lambda_1^{(k+1)} \right)^{k-1}
\]
\[
= 0
\]
from where \(a_{k+1} = 0 \). Similarly, it can be shown that \(a_{k+1} = 0 \) when \(k + 1 \) is odd.

Now, let \(A \) be the unique \(n \times n \) matrix of the form (1) with \(a_j = a, j = 1, 2, \ldots, n, b_j \neq 0 \), such that \(\lambda_1^{(j)} \) and \(\lambda_j^{(j)} \) are, respectively, the minimal and the maximal eigenvalue of the leading principal submatrix \(A_j, j = 1, 2, \ldots, n \), of \(A \). Then \(A = \tilde{A} + aI \), with \(a = \lambda_1^{(1)} \) and \(\tilde{A} \) of the form (27) having leading principal submatrices \(\tilde{A}_j \) with characteristic polynomials \(\tilde{P}_j(\lambda), j = 1, 2, \ldots, n \). Since \(\tilde{P}_j(\lambda) \) even or odd imply \(\tilde{P}_j(\lambda - 0) = 0 \), then the eigenvalues \(\mu_1^{(j)} < \mu_2^{(j)} < \cdots < \mu_j^{(j)} < \mu_j^{(j)} \) of \(\tilde{A}_j \) satisfy the relation \(\mu_1^{(j)} + \mu_j^{(j)} = 0 \). It is clear that the minimal and maximal eigenvalues of \(\tilde{A}_j \) are, respectively, \(\lambda_1^{(1)} - \lambda_1^{(1)} \) and \(\lambda_j^{(j)} - \lambda_1^{(1)} \), \(j = 1, 2, \ldots, n \). Hence \(\lambda_1^{(1)} - \lambda_1^{(1)} + \lambda_j^{(j)} - \lambda_1^{(1)} = 0 \) and consequently, \(\lambda_1^{(1)} + \lambda_j^{(j)} = 2\lambda_1^{(1)}, j = 1, 2, \ldots, n \). The proof is completed. \(\Box \)

The following result gives a sufficient condition in order Problem I to have a solution.

Theorem 2. Let \(\lambda_1^{(j)} \) and \(\lambda_j^{(j)} \), \(j = 1, 2, \ldots, n \), be real numbers satisfying
\[
\lambda_1^{(n)} < \cdots < \lambda_1^{(3)} < \lambda_1^{(2)} < \lambda_1^{(1)} < \lambda_2^{(2)} < \lambda_3^{(3)} < \cdots < \lambda_n^{(n)}.
\]
(30)
\[\lambda_1^{(2)} + \lambda_2^{(2)} \neq 2\lambda_1^{(1)} \tag{31} \]

and

\[\frac{\lambda_{j-1}^{(j-1)} - \lambda_j^{(j)}}{\lambda_1^{(j)} - \lambda_1^{(j)}} > \frac{P_{j-1}(\lambda_1^{(j)}) \prod_{i=2}^{j-1} (\lambda_j^{(j)} - a_i)}{P_{j-1}(\lambda_j^{(j)}) \prod_{i=2}^{j-1} (\lambda_1^{(j)} - a_i)} \tag{32} \]

or

\[\frac{\lambda_1^{(j-1)} - \lambda_j^{(j)}}{\lambda_1^{(j-1)} - \lambda_1^{(j)}} < \frac{P_{j-1}(\lambda_1^{(j)}) \prod_{i=2}^{j-1} (\lambda_j^{(j)} - a_i)}{P_{j-1}(\lambda_j^{(j)}) \prod_{i=2}^{j-1} (\lambda_1^{(j)} - a_i)} \tag{33} \]

\(j = 3, 4, \ldots, n. \)

Proof. From Corollary 1, condition (30) guarantees the existence of a unique matrix \(A \) of the form (1) with \(b_j > 0 \) and the required spectral properties, and from Corollary 2, condition (31) is necessary and sufficient in order that \(a_1 \neq a_2 \). Now, let

\[u_j = P_{j-1}(\lambda_1^{(j)}) \prod_{i=2}^{j-1} (\lambda_j^{(j)} - a_i) \]

and

\[v_j = P_{j-1}(\lambda_j^{(j)}) \prod_{i=2}^{j-1} (\lambda_1^{(j)} - a_i), \]

\(j = 3, 4, \ldots, n \) (the numerator and the denominator in the right side of (32)). Suppose that (32) holds for \(j = 3 \), that is

\[\frac{\lambda_2^{(2)} - \lambda_3^{(3)}}{\lambda_2^{(2)} - \lambda_1^{(3)}} > \frac{(-1)^2 u_3}{(-1)^2 v_3}. \]

Then

\[(-1)^2 \left[\lambda_1^{(3)} u_3 - \lambda_3^{(3)} v_3 \right] > \lambda_2^{(2)} (-1)^2 [u_3 - v_3] \]

and

\[a_3 = \frac{(-1)^2 [\lambda_1^{(3)} u_3 - \lambda_3^{(3)} v_3]}{(-1)^2 [u_3 - v_3]} > \lambda_2^{(2)}. \]

From Lemma 4, we have \(\lambda_1^{(2)} < a_1, a_2 < \lambda_2^{(2)} \). Hence, \(a_3 \neq a_2 \neq a_1 \).

Similarly, if (33) holds for \(j = 3 \), then \(a_3 < \lambda_1^{(2)} \), and therefore, \(a_3 \neq a_2 \neq a_1 \).

Now, suppose that the \(a_i \) are all different, \(i = 1, \ldots, j - 1 \) and (32) holds, that is

\[\frac{\lambda_{j-1}^{(j-1)} - \lambda_j^{(j)}}{\lambda_1^{(j)} - \lambda_1^{(j)}} > \frac{(-1)^{j-1} u_j}{(-1)^{j-1} v_j}. \]

Then

\[(-1)^{j-1} \left[\lambda_1^{(j)} u_j - \lambda_j^{(j)} v_j \right] > \lambda_{j-1}^{(j-1)} (-1)^{j-1} [u_j - v_j] \]
and therefore
\[a_j = \frac{(-1)^{j-1} \left(\lambda_1^{(j)} u_j - \lambda_j^{(j)} v_j \right)}{(-1)^{j-1}[u_j - v_j]} > \lambda_j^{(j-1)}. \]

From Lemma 4, we have \(\lambda_1^{(j-1)} < a_i < \lambda_j^{(j-1)}, \) \(i = 1, \ldots, j-1 \) and then \(a_j \neq a_{j-1} \neq \cdots \neq a_2 \neq a_1. \) Similarly if (33) holds then we obtain \(a_j < \lambda_1^{(j-1)} \) and then \(a_j \neq a_{j-1} \neq \cdots \neq a_2 \neq a_1 \) again. \(\square \)

We observe that a sufficient condition for Problem I can be obtained from (30) together with (32) or (33).

4. The nonnegative case

In this section, we look for conditions for the existence of a matrix \(A \) of the form (1) with \(a_j \geq 0, b_j \geq 0 \) and such that the given real numbers \(\lambda_1^{(j)}, \lambda_j^{(j)}, j = 1, 2, \ldots, n, \) are, respectively, the minimal and the maximal eigenvalue of the leading principal submatrix \(A_j, j = 1, 2, \ldots, n, \) of \(A. \) We start by giving a necessary and sufficient condition for the existence of such a matrix, when \(\lambda_1^{(j)}, \lambda_j^{(j)} \) are all distinct.

Corollary 3. Let \(\lambda_1^{(j)} \) and \(\lambda_j^{(j)} , j = 1, 2, \ldots, n, \) be real numbers satisfying
\[\lambda_1^{(n)} < \cdots < \lambda_1^{(3)} < \lambda_1^{(2)} < \lambda_2^{(2)} < \lambda_1^{(3)} < \cdots < \lambda_n^{(n)}. \] (34)

Then, there exists a unique \(n \times n \) nonnegative matrix \(A \) of the form (1), such that \(\lambda_1^{(j)} \) and \(\lambda_j^{(j)} \) are, respectively, the minimal and the maximal eigenvalue of the leading principal submatrix \(A_j, j = 1, 2, \ldots, n, \) of \(A. \) if and only if
\[\lambda_1^{(1)} \geq 0 \] (35)

and
\[\frac{\lambda_1^{(j)}}{\lambda_j^{(j)}} \geq \frac{P_{j-1}(\lambda_j^{(j)}) \prod_{i=2}^{j-1} (\lambda_1^{(j)} - a_i)}{P_{j-1}(\lambda_1^{(j)}) \prod_{i=2}^{j-1} (\lambda_j^{(j)} - a_i)}, \quad j = 2, 3, \ldots, n. \] (36)

Proof. Corollary 1 guarantees the existence of a unique matrix \(A \) of the form (1) with \(b_i > 0, \ i = 1, \ldots, n-1. \) It remains to show that the diagonal elements \(a_i \) are nonnegative. From (35), \(a_1 = \lambda_1^{(1)} \geq 0 \) and from (36)
\[\frac{\lambda_1^{(j)}}{\lambda_j^{(j)}} \geq \frac{(-1)^{j-1} P_{j-1}(\lambda_j^{(j)}) \prod_{i=2}^{j-1} (\lambda_1^{(j)} - a_i)}{(-1)^{j-1} P_{j-1}(\lambda_1^{(j)}) \prod_{i=2}^{j-1} (\lambda_j^{(j)} - a_i)}, \quad j = 2, 3, \ldots, n. \]

Since \(0 \leq \lambda_1^{(1)} < \lambda_j^{(j)} \) then from Lemmas 2 and 3
\[(-1)^{j-1} P_{j-1}(\lambda_1^{(j)}) \prod_{i=2}^{j-1} (\lambda_j^{(j)} - a_i) > 0. \]
Then
\[\lambda_{1}^{(j)}(-1)^{j-1}P_{j-1}\left(\lambda_{1}^{(j)}\prod_{i=2}^{j-1}(\lambda_{j}^{(j)}-a_{i})\right) \geq \lambda_{j}^{(j)}(-1)^{j-1}P_{j-1}\left(\lambda_{j}^{(j)}\prod_{i=2}^{j-1}(\lambda_{1}^{(j)}-a_{i})\right) \]
or
\[\tilde{g}_{j} = (-1)^{j-1}\left[\lambda_{1}^{(j)}P_{j-1}\left(\lambda_{1}^{(j)}\prod_{i=2}^{j-1}(\lambda_{j}^{(j)}-a_{i})\right) - \lambda_{j}^{(j)}P_{j-1}\left(\lambda_{j}^{(j)}\prod_{i=2}^{j-1}(\lambda_{1}^{(j)}-a_{i})\right) \right] \geq 0. \]

Hence, from the proof of Corollary 1, we obtain
\[a_{j} = \frac{\tilde{g}_{j}}{h_{j}} \geq 0. \]

Now, let us assume that there exists a unique \(n \times n \) nonnegative matrix \(A \) of the form (1) with \(b_{i} > 0, \lambda_{1}^{(j)}, \lambda_{j}^{(j)}, j = 1, \ldots, n \), satisfying (34) and being the minimal and the maximal eigenvalue of each leading principal submatrix \(A_{j} \) of \(A \). From Lemma 4 the condition (30) is satisfied. Moreover, from the proof of Corollary 1, the diagonal elements of \(A \) are of the form
\[a_{j} = \frac{\tilde{g}_{j}}{h_{j}} \geq 0. \]

with \(\tilde{h}_{j} > 0 \). Then
\[(-1)^{j-1}\lambda_{1}^{(j)}P_{j-1}\left(\lambda_{1}^{(j)}\prod_{i=2}^{j-1}(\lambda_{j}^{(j)}-a_{i})\right) \geq (-1)^{j-1}\lambda_{j}^{(j)}P_{j-1}\left(\lambda_{j}^{(j)}\prod_{i=2}^{j-1}(\lambda_{1}^{(j)}-a_{i})\right), \]

that is
\[\frac{\lambda_{1}^{(j)}}{\lambda_{j}^{(j)}} \geq \frac{(-1)^{j-1}P_{j-1}\left(\lambda_{1}^{(j)}\prod_{i=2}^{j-1}(\lambda_{1}^{(j)}-a_{i})\right)}{(-1)^{j-1}P_{j-1}\left(\lambda_{j}^{(j)}\prod_{i=2}^{j-1}(\lambda_{j}^{(j)}-a_{i})\right)} \]
\[= \frac{P_{j-1}\left(\lambda_{1}^{(j)}\prod_{i=2}^{j-1}(\lambda_{1}^{(j)}-a_{i})\right)}{P_{j-1}\left(\lambda_{j}^{(j)}\prod_{i=2}^{j-1}(\lambda_{j}^{(j)}-a_{i})\right)} \]
and the proof is completed. □

Now we discuss the case in which some of the given real numbers \(\lambda_{1}^{(j)}, \lambda_{j}^{(j)}, j = 1, 2, \ldots, n \), are equal. It is clear that if \(\lambda_{1}^{(n)} = \lambda_{n}^{(n)} = \alpha \), then \(\lambda_{1}^{(j)} = \lambda_{j}^{(j)} = \alpha, j = 1, 2, \ldots, n \), and therefore, \(A = \alpha I \).
Suppose that the determinant h_j of the coefficients matrix of the system (12) is nonzero, that is
\[h_j = P_{j-1}(\lambda_{1}^{(j)}) \prod_{i=2}^{j-1} (\lambda_{j}^{(j)} - a_i) - P_{j-1}(\lambda_{1}^{(j)}) \prod_{i=2}^{j-1} (\lambda_{1}^{(j)} - a_i) \neq 0. \]
In this case the solution matrix A is unique, except for the sign of b_{j-1}, which we may choose as nonnegative. Then we examine conditions for the nonnegativity of $\lambda(j)$ from Lemma 2 we have the following cases:

(i) $P_{j-1}(\lambda_{1}^{(j)}) \prod_{i=2}^{j-1} (\lambda_{j}^{(j)} - a_i) \neq 0$ and $P_{j-1}(\lambda_{1}^{(j)}) \prod_{i=2}^{j-1} (\lambda_{1}^{(j)} - a_i) = 0$.

Then $a_j = \lambda_{1}^{(j)}$ and $a_j \geq 0$ if $\lambda_{1}^{(j)} \geq 0$.

(ii) $P_{j-1}(\lambda_{1}^{(j)}) \prod_{i=2}^{j-1} (\lambda_{j}^{(j)} - a_i) = 0$ and $P_{j-1}(\lambda_{1}^{(j)}) \prod_{i=2}^{j-1} (\lambda_{1}^{(j)} - a_i) \neq 0$.

Then $a_j = \lambda_{j}^{(j)}$ and $a_j \geq 0$ always occurs since $\lambda_{1}^{(1)} \leq \lambda_{j}^{(j)}$ and $0 \leq \lambda_{1}^{(1)}$ is a necessary condition:

(iii) $P_{j-1}(\lambda_{1}^{(j)}) \prod_{i=2}^{j-1} (\lambda_{j}^{(j)} - a_i) \neq 0$ and $P_{j-1}(\lambda_{1}^{(j)}) \prod_{i=2}^{j-1} (\lambda_{1}^{(j)} - a_i) \neq 0$.

Then $\lambda_{1}^{(j)} < \lambda_{1}^{(j-1)}$ and $\lambda_{1}^{(j-1)} < \lambda_{1}^{(j)}$ and a necessary and sufficient condition for $a_j \geq 0$ is given by (35) and (36) of Corollary 3.

Now, suppose that $h_j = 0$. From Lemma 2 we have the following cases:

(i) $\lambda_{1}^{(j)} = \lambda_{1}^{(j-1)}$ and $\lambda_{j-1}^{(j-1)} = \lambda_{j}^{(j)}$.

From (12) a_j can take any real value. Then we may choose $a_j \geq 0$. On the other hand
\[b_{j-1}^2 = 0 \lor \left(\prod_{i=2}^{j-1} (\lambda_{1}^{(j)} - a_i) = 0 \land \prod_{i=2}^{j-1} (\lambda_{j}^{(j)} - a_i) = 0 \right). \]
Thus $b_{j-1} = 0$ or b_{j-1} can be chosen as nonnegative.

(ii) $\lambda_{1}^{(j)} = \lambda_{1}^{(j-1)} \land \prod_{i=2}^{j-1} (\lambda_{1}^{(j)} - a_i) = 0$.

If $P_{j-1}(\lambda_{j}^{(j)}) = 0$, then a_j can take any real value. In particular, $a_j \geq 0$ and $b_{j-1} = 0$ or $b_{j-1} \geq 0$.

If $P_{j-1}(\lambda_{j}^{(j)}) \neq 0$, then
\[a_j = \frac{\lambda_{j}^{(j)} P_{j-1}(\lambda_{j}^{(j)}) - \prod_{i=2}^{j-1} (\lambda_{j}^{(j)} - a_i) b_{j-1}^2}{P_{j-1}(\lambda_{j}^{(j)})}. \]
From Lemma 2, \(P_{j-1}(\lambda_j^{(j)}) > 0 \), and from (6), \(\prod_{i=2}^{j-1} (\lambda_j^{(j)} - a_i) \geq 0 \). Moreover, if \(b_{j-1} \geq 0 \), then \(a_j \geq 0 \) if
\[
\lambda_j^{(j)} \geq \frac{\prod_{i=2}^{j-1} (\lambda_j^{(j)} - a_i) b_j^2}{P_{j-1}(\lambda_j^{(j)})}.
\]
(iii) \(\prod_{i=2}^{j-1} (\lambda_j^{(j)} - a_i) = 0 \) \(\wedge \lambda_{j-1}^{(j-1)} = \lambda_j^{(j)} \).

If \(P_{j-1}(\lambda_1^{(j)}) = 0 \), \(a_j \) can be taken as nonnegative. Moreover, \(b_{j-1} = 0 \) or \(b_{j-1} \geq 0 \). If \(P_{j-1}(\lambda_1^{(j)}) \neq 0 \), then
\[
a_j = \frac{\lambda_1^{(j)} P_{j-1}(\lambda_1^{(j)}) - \prod_{i=2}^{j-1} (\lambda_1^{(j)} - a_i) b_j^2}{P_{j-1}(\lambda_1^{(j)})}.
\]

From Lemma 2, \((-1)^{j-1} P_{j-1}(\lambda_1^{(j)}) > 0 \), and from (6), \((-1)^{j-1} \prod_{i=2}^{j-1} (\lambda_1^{(j)} - a_i) \geq 0 \). Moreover, if \(b_{j-1} \geq 0 \), then \(a_j \geq 0 \) if
\[
\lambda_1^{(j)} \geq \frac{\prod_{i=2}^{j-1} (\lambda_1^{(j)} - a_i) b_j^2}{P_{j-1}(\lambda_1^{(j)})}.
\]
(iv) \(\prod_{i=2}^{j-1} (\lambda_1^{(j)} - a_i) = 0 \) \(\wedge \prod_{i=2}^{j-1} (\lambda_1^{(j)} - a_i) = 0 \).

In this case the system (12) reduces to
\[
\begin{align*}
P_{j-1}(\lambda_1^{(j)}) a_j + 0b_{j-1}^2 &= \lambda_1^{(j)} P_{j-1}(\lambda_1^{(j)}) \quad \text{and} \\
P_{j-1}(\lambda_1^{(j)}) a_j + 0b_{j-1}^2 &= \lambda_1^{(j)} P_{j-1}(\lambda_1^{(j)}) \quad \text{if} \\
\end{align*}
\]

We assume that \(b_{j-1} \geq 0 \). Then, if \(P_{j-1}(\lambda_1^{(j)}) = 0 \) and \(P_{j-1}(\lambda_1^{(j)}) = 0 \), we may choose \(a_j \geq 0 \). If \(P_{j-1}(\lambda_1^{(j)}) = 0 \) and \(P_{j-1}(\lambda_1^{(j)}) \neq 0 \), then \(a_j = \lambda_1^{(j)} \geq \lambda_1^{(1)} \geq 0 \). If \(P_{j-1}(\lambda_1^{(j)}) \neq 0 \) and \(P_{j-1}(\lambda_1^{(j)}) = 0 \), then \(a_j = \lambda_1^{(j)} \geq 0 \) if \(\lambda_1^{(1)} \geq 0 \). Finally, the case \(P_{j-1}(\lambda_1^{(j)}) \neq 0 \) and \(P_{j-1}(\lambda_1^{(j)}) \neq 0 \) cannot occur.

5. Examples

Example 1. The following numbers:

\[
\begin{align*}
\lambda_1^{(5)} &= -11.2369 \quad \lambda_1^{(4)} &= -11.1921 \quad \lambda_1^{(3)} &= -10.9106 \quad \lambda_1^{(2)} &= -8.7760 \quad \lambda_1^{(1)} &= -6.0043 \quad \lambda_2^{(2)} = -2.6295 \\
\lambda_2^{(3)} &= \lambda_1^{(4)} \quad \lambda_3^{(5)} &= \lambda_5^{(5)} \\
1.8532 &= 8.4266 \quad 10.4020 \\
\end{align*}
\]

satisfy the sufficient conditions (30)–(32) of the Theorem 2. Then the bordered diagonal matrix with \(b_i > 0 \) and \(a_i \neq a_j, i \neq j \) is
Example 2. We modify the previous example, in order that some given eigenvalues be equal:

\[
\begin{pmatrix}
\lambda_1^{(5)} & \lambda_1^{(4)} & \lambda_1^{(3)} & \lambda_1^{(2)} & \lambda_1^{(1)} & \lambda_2^{(2)} \\
1.8532 & 8.4266 & 10.4020 \\
\end{pmatrix}
\]

These numbers satisfy (11). One solution of Problem II is the matrix

\[
\begin{pmatrix}
-6.0043 & 0 & 6.2090 & 0 & 3.2977 \\
0 & -8.7760 & 0 \\
3.2977 & 8.4266 & 9.5989 \\
\end{pmatrix}
\]

Example 3. The numbers

\[
\begin{pmatrix}
\lambda_1^{(5)} & \lambda_1^{(4)} & \lambda_1^{(3)} & \lambda_1^{(2)} & \lambda_1^{(1)} & \lambda_2^{(2)} \\
-3.8467 & -3.4048 & -3.3900 & -1.5635 & 0.2233 & 6.0818 \\
1.8532 & 8.4266 & 10.4020 \\
\end{pmatrix}
\]

satisfy relations (30)–(32), and relations (35) and (36). Then we obtain the nonnegative bordered diagonal matrix

\[
\begin{pmatrix}
0.2233 & 3.2354 & 4.6803 & 0.5594 & 3.3490 \\
3.2354 & 4.2950 \\
0.5594 & 11.6505 \\
3.3490 & 14.4225 \\
\end{pmatrix}
\]

with the required spectral properties.

References