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SUMMARY

The mechanistic target of rapamycin complex 1
(mTORC1) senses diverse signals to regulate cell
growth and metabolism. It has become increasingly
clear that mTORC1 activity is regulated in time
and space inside the cell, but direct interrogation
of such spatiotemporal regulation is challenging.
Here, we describe a genetically encoded mTORC1
activity reporter (TORCAR) that exhibits a change in
FRET in response to phosphorylation by mTORC1.
Co-imaging mTORC1 activity and calcium dynamics
revealed that a growth-factor-induced calcium
transient contributes to mTORC1 activity. Dynamic
activity maps generated with the use of subcellularly
targeted TORCAR uncovered mTORC1 activity not
only in cytosol and at the lysosome but also in the nu-
cleus and at the plasma membrane. Furthermore, a
wide distribution of activities was observed upon
growth factor stimulation, whereas leucine ester, an
amino acid surrogate, induces more compartmental-
ized activities at the lysosome and in the nucleus.
Thus, mTORC1 activities are spatiotemporally regu-
lated in a signal-specific manner.

INTRODUCTION

The mechanistic target of rapamycin (mTOR) is a highly

conserved serine/threonine protein kinase. mTOR is the key cat-

alytic component of two structurally and functionally distinct

complexes named mTORC1 (mTOR complex 1) and mTORC2

(mTOR complex 2). The rapamycin-sensitive mTORC1 is

composed of three essential components: the kinase mTOR,

the signature subunit Raptor (regulatory associated protein of

mTOR), and the mLST8 subunit (mammalian lethal with sec13

protein 8) that is also present in the rapamycin-insensitive

mTORC2. As a critical signaling hub, mTORC1 senses diverse

signals, such as growth factors (GFs), amino acids (AAs), stress,

oxygen, and changes in energy levels.When activated, mTORC1

promotes protein and lipid synthesis and inhibits autophagy to
Cell
control cell growth and cell metabolism. Because of its pivotal

role in a large number of cellular processes, aberrant regulation

of mTORC1 has been shown to be associated with human can-

cers, cardiovascular disease, and metabolic disorders such as

type 2 diabetes (Dibble and Manning, 2013).

The activation of mTORC1 is exquisitely regulated in response

to distinct upstream cues. GF activates mTORC1 via the PI3K/

Akt pathway and the Erk/RSK pathway at the level of the Tuber-

ous Sclerosis Complex 2 (TSC2) (Dibble and Manning, 2013).

Within the TSC complex (TSC1/TSC2/TBC1D7), TSC2 functions

as a gatekeeper for mTOR activity by acting as a GTPase-acti-

vating protein (GAP) toward Rheb GTPase, thus promoting

GTP hydrolysis and inhibiting Rheb. GTP-bound Rheb is an

essential and direct upstream activator of mTORC1 (Dibble

and Manning, 2013). Akt and Erk, as well as RSK downstream

of Erk, phosphorylate the TSC2 and thereby allow Rheb to acti-

vate mTORC1. Unlike GFs, AAs communicate to mTORC1

through the Rag GTPase complex and the Ragulator complex

that anchors the Rags to the lysosome (Bar-Peled et al., 2012;

Kim et al., 2008; Sancak et al., 2008, 2010). In response to

AAs, the Rag GTPase complex is activated and subsequently re-

cruits mTORC1 to the lysosome, where the Rheb GTPase is also

present. Therefore, the close proximity of mTORC1 and Rheb at

the lysosome allows the immediate activation of the complex,

assuming Rheb is loaded with GTP and active. When AAs are

absent, the Rag GAP complex (GATOR1) inactivates the Rag

GTPases and leads to the dissociation ofmTORC1 from the lyso-

somal surface (Bar-Peled et al., 2013).

Given that both GF and AA signals specifically impinge on

mTORC1, an intriguing question is how this signaling specificity

is achieved inside the cell. Spatial compartmentalization may be

a key mechanism. Indeed, mTOR has been shown to be local-

ized to several distinct subcellular compartments, including the

lysosome, mitochondria, plasma membrane, endoplasmic retic-

ulum, and nucleus, although in some cases the evidence is

disputable (Betz and Hall, 2013). At the lysosome, the best char-

acterized site of mTORC1 activation, Menon et al. (2014) have

recently shown that GF signaling pathways directly activate

mTORC1, independent of AA signaling, by promoting the

release of the inhibitory TSC complex from lysosomes. It has

also been reported in a parallel study that Rag GTPase recruits

TSC2 to the lysosomal surface upon AA removal to inactivate
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Figure 1. Domain Structures of TORCAR Candidate Constructs
(A) Domain structures of candidate constructs based on a generalizedmodular

design. The top construct used a fragment of Ulk1 as the substrate motif

and the WW domain as the PAABD, and the bottom constructs used the

consensus substrate motifs from peptide positioning screening studies.

(B) Domain structures of candidate constructs based on putative conforma-

tional change in full-lengthor fragmentsof 4EBP1uponphosphorylation. -, <5%

response; +, 5%–10% response; ++, 10%–15% response; +++, >15%

response. See also Figure S1.
mTORC1 (Demetriades et al., 2014). Therefore, both the activa-

tion and inactivation of mTORC1may be intricately regulated in a

signal- and location-specific manner. However, aside from the

lysosome, the activity of mTORC1 at various other cellular loca-

tions has not been well characterized.

To shed light on compartmentalized mTORC1 signaling, we

generated and characterized a genetically encoded mTORC1

activity reporter (TORCAR) to enable the characterization of

mTORC1 signaling dynamics in single living cells. By co-imaging

TORCAR along with a calcium probe, we uncovered that a tran-

sient intracellular calcium increase induced by platelet-derived

growth factor (PDGF) contributes to mTORC1 activity. To reveal

the spatial regulation of mTORC1, TORCARwas then targeted to

distinct subcellular locations, including lysosome, the plasma
1768 Cell Reports 10, 1767–1777, March 17, 2015 ª2015 The Author
membrane, and the nucleus. Surprisingly, we detected GF-

stimulated mTORC1 activity at all the examined locations,

including the nuclear site in dispute, whereas leucine ester-

induced mTORC1 activity only occurs at the lysosome and in

the nucleus, indicating that AA sensing and signaling to mTOR

are rather local.

RESULTS

Development of mTORC1 Activity Reporters
To monitor mTORC1 activity in living cells, we designed a series

of biosensor candidate constructs based on different strategies

for generating a FRET (fluorescence resonance energy transfer)-

based kinase activity biosensor (Ni et al., 2006; Zhou et al.,

2012). In general, such biosensors consist of a kinase activity-

dependent molecular switch sandwiched between a FRET-

capable fluorescent protein (FP) pair. Our first strategy utilized

an engineered molecular switch flanked with a cyan FP (CFP)/

yellow FP (YFP) FRET pair. An engineered molecular switch is

constructed by coupling a sensing domain, which usually is a

peptide substrate that can be recognized and phosphorylated

by a kinase of interest, to a domain that specifically binds

to phosphoamino acids (phosphoamino acid-binding domain

[PAABD]). When phosphorylated, the substrate falls into the

binding pocket of the PAABD, and this engineered conforma-

tional change in the molecular switch can be read out as a

change in FRET. Thus, by analogy to the previously engineered

PKA activity reporter (AKAR) (Zhang et al., 2001), PKC activity re-

porter (CKAR) (Violin et al., 2003), and AMPK activity reporter

(AMPKAR) (Tsou et al., 2011), we designed several candidate

constructs based on the mTORC1 substrate consensus motifs

identified by a study using positional peptide screening (Hsu

et al., 2011). The designed mTORC1 substrate sequences

were further modified to accommodate the binding preference

of FHA1, a phosphothreonine binding domain, to prompt a phos-

phorylation-dependent conformational change (Figure 1A). Simi-

larly, a candidate biosensor using a fragment of Ulk1 containing

the mTORC1-specific phosphorylation site Ser757 (Kim et al.,

2011) and the phosphoserine/phosphothreonine binding WW

domain was also constructed (Figure 1A). However, when tested

in living cells, these candidate biosensors did not show any re-

sponses when mTORC1 activity was stimulated.

As an alternative strategy, any naturally existing conformation-

ally responsive element can be used as the switch when con-

structing a biosensor (Calleja et al., 2007). To test this strategy,

we designed biosensors using full-length or truncated fragments

of 4EBP1 (eIF4Ebinding protein 1) sandwichedbetweenCFPand

YFP (Figures 1B and S1A). The phosphorylation of 4EBP1 is

thought to induce a conformational change that leads to its

release from eIF4E, thereby relieving its repression of translation

(Fletcher and Wagner, 1998; Gosselin et al., 2011). In addition,

another well-characterized mTORC1 substrate (Burnett et al.,

1998), p70 S6K, was tested in a similar format (Figure S1B).

Among these constructs, the one containing full-length 4EBP1

sandwiched between Cerulean and Venus was shown to be

responsive (Figure1B).Serum-andAA-starved (hereafter referred

to as double starved [DS] and the starvation condition used if

not otherwise indicated) NIH 3T3 fibroblasts expressing this
s
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Figure 2. Characterization of TORCAR

(A) Domain structure of TORCAR and TORCAR (T37/46A).

(B) Image of an NIH 3T3 cell expressing TORCAR. Scale bar represents

10 mm.

(C) Representative time course of the TORCAR response to PDGF. Double

Starved (Serum- and Amino acid-starved, referred to as DS) NIH 3T3 cells

expressing TORCAR (blue trace, mean response ± SEM as 13.3% ± 6.0%,

Cell
construct showed a consistent increase in the cyan-over-yellow

(C/Y) emission ratio in response to PDGF stimulation, reflecting

a decrease in energy transfer efficiency due to the putative phos-

phorylation-induced conformational change in 4EBP1. To im-

prove the dynamic range of the biosensor, we tested various

combinations of FPs as FRET pairs (Figure 1B). The biosensor

with Cerulean/YPet as the FRET pair showed the largest increase

in emission ratio (C/Y) in response to PDGF stimulation.

Characterization of TORCAR
NIH 3T3 cells expressing the biosensor containing full-length

4EBP1 flanked by Cerulean and YPet (Figure 2A) exhibited uni-

form cyan and yellow fluorescence throughout the cell, suggest-

ing that the reporter is distributed evenly in both the cytosol and

nucleus (Figure 2B). PDGF addition induced a 13.3% ± 6.0% in-

crease in emission ratio (C/Y) with a t1/2 of 12.2 ± 3.2 min (Fig-

ure 2C, blue trace, n = 33). To examine whether the increase in

the ratio (C/Y) is indicative of an increase in mTOR kinase activity,

we added torin1, a potent mTOR inhibitor, following PDGF

stimulation. Torin1 addition immediately reversed the reporter

response (Figure 2D, n = 8). In addition, pretreating NIH 3T3 cells

with torin1 abolished the response to PDGF (Figure 2E, n = 6),

suggesting that the reporter response reflects the mTOR kinase

activity. Addition of torin1 to nonstarved 3T3 cells expressing

this reporter also led to a rapid decrease in emission ratio, indi-

cating the presence of basal activity (n = 6, Figure S2A).We further

examinedwhether the TORCAR response is specific tomTORC1.

In these experiments, the addition of rapamycin, a selective

inhibitor for mTORC1, following PDGF stimulation, reversed the

PDGF-induced response (Figure S2B, n = 8). Pretreatment with

rapamycinalsoblockedthePDGF-inducedresponse (FigureS2C,

n = 4). Taken together, these results indicate that this biosensor

specifically detects mTORC1 activity in cells; therefore, we

named it TORCAR (mTORC1 Activity Reporter).

We then asked whether the FRET ratio change is dependent

on the phosphorylation of the reporter by mTORC1. 4EBP1 is

known to be phosphorylated at multiple sites, including T37,

T46, S65, T70, S83, and S112 (Fadden et al., 1997; Heesom

et al., 1998). Phosphorylation at T37 and T46 was shown to be

mTORC1 specific (Gingras et al., 1999; Thoreen et al., 2009). A

mutant TORCAR containing T37A and T46A in the 4EBP region
mean t1/2 ± SEM as 12.2 ± 3.3 min, n = 33) or TORCAR-T37/46A (red trace, n =

10) were stimulated with 50-ng/ml PDGF.

(D) PDGF-induced TORCAR response was reversed upon addition of torin1

(1 mM) (n = 8).

(E) Pretreatment with torin1 (200 nM) abolished the PDGF-induced TORCAR

response (n = 6).

(F) Immunoblots showing the time course for the phosphorylation levels of

TORCAR, endogenous 4EBP1 (p-T37/46), and p70 S6K1 (p-T389) (n = 3). DS

NIH 3T3 cells expressing TORCAR were stimulated with PDGF (50 ng/ml) for

the indicated times.

(G) Representative time course of the TORCAR FRET response to Leucine

methyl ester. DS NIH 3T3 cells expressing TORCAR (blue trace, n = 6) or

TORCAR-T37/46A (red trace, n = 5) were stimulated with 7.5 mM LeuOMe.

(H) Immunoblots showed the time course for the phosphorylation levels of

TORCAR, endogenous 4EBP1 (p-T37/46), and p70 S6K1 (p-T389) (n = 3). DS

NIH 3T3 cells expressing TORCAR were stimulated with LeuOMe (7.5 mM) for

the indicated times. See also Figure S2.
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failed to respond to PDGF and torin1 addition (Figure 2C, red

trace, n = 10). Consistent with these data, the time course for

PDGF-induced phosphorylation at T37/46 of 4EBP1 in TORCAR,

as well as endogenous 4EBP1 (T37/46) and p70 S6K1 (T389),

correlated with the emission ratio change (Figure 2F). We next

examined whether TORCAR is able to detect mTORC1 activity

in other cell types. Similar to the response in NIH 3T3 cells, insulin

induced an increase in the C/Y emission ratio in DS HeLa cells

(Figure S2D, n = 4) and 3T3-L1 adipocytes (Figure S2E, n = 10)

expressing TORCAR, suggesting that TORCAR also provides a

selective FRET readout for mTORC1 in these cell types.

AAs, especially leucine, have been shown to activatemTORC1

(Dodd and Tee, 2012; Jewell and Guan, 2013). Indeed, TORCAR

responded to a complete AA mixture with an emission ratio

change of 11.2% ± 3.0% (n = 4, Figure S2F) and 4.2% ± 2.2%

(n = 10, Figure S2G) in DS 3T3 cells and AA-starved 3T3 cells,

respectively. Compared with a total AA mixture, leucine ap-

peared to be a weaker stimulus of mTORC1 activity, indicated

by both the TORCAR response (Figures S2H and S2I) and the

phosphorylation of mTORC1 substrates (Figure S2J). To further

characterize TORCAR, we treated NIH 3T3 cells with leucine

O-methyl ester (LeuOMe), which bypasses AA transporters

and diffuses freely across membranes, after which it is hydro-

lyzed to native leucine (Reeves, 1979; Zoncu et al., 2011). The

addition of leucine ester also induced an increase in the C/Y

emission ratio (Figure 2G, blue trace, n = 6) that was dependent

on the presence of T37 and T46 (Figure 2G, red trace, n = 5).

Parallel WB analysis confirmed that leucine ester induces the

phosphorylation of T37/46 in both TORCAR and endogenous

4EBP1 (T37/46) and p70 S6K1 (T389) (Figure 2H). Furthermore,

stimulation with PDGF and AAs showed additive effects on the

TORCAR response (Figures S2K and S2L) and phosphorylation

(Figure S2M). Consistent with previous studies (Roux et al.,

2004; Tee et al., 2003), the phorbol ester PMA also induced a

specific response (Figures S2N and S2O), presumably via the

ERK/RSK pathway.

PDGF-Induced Calcium Transient Contributes to
mTORC1 Activity
Previous studies indicated that the intracellular calcium plays a

role in mTORC1 activation. For example, the leucine-induced

activation of S6K1 has been shown to require the mobilization

of intracellular Ca2+ in skeletal myoblasts, which is mediated

by the SHP-2/PLC b4/IP3 pathway (Mercan et al., 2013). It has

also been suggested that AAs or insulin treatment in HeLa cells

induced a rise in intracellular Ca2+, which triggered mTORC1

activation (Gulati et al., 2008). We therefore asked whether cal-

cium contributes to GF-stimulated TORC1 activity. To test the

involvement of calcium, we co-expressed a calcium probe,

RCaMP, with TORCAR in NIH 3T3 cells to simultaneously track

calcium dynamics and mTORC1 activity changes. RCaMP con-

sists of a red FP (RFP, cp-mRuby) flanked by calmodulin (CaM)

and the Ca2+/CaM-binding peptide M13 (Figure 3A) (Akerboom

et al., 2013). When Ca2+ binds to CaM in RCaMP, it induces a

conformational change that leads to an increase in RFP intensity.

Co-imaging TORCAR and RCaMP revealed a transient peak of

intracellular calcium inNIH 3T3 cells upon PDGF stimulation (Fig-

ure 3B, red trace), which occurs right before the onset of the
1770 Cell Reports 10, 1767–1777, March 17, 2015 ª2015 The Author
TORCAR response (Figure 3B, blue trace, 13.2% ± 6.9%, n =

25). Removing the extracellular calcium using EGTA in cal-

cium-free medium did not prevent the PDGF-induced calcium

transient, suggesting that this calcium increase originates from

intracellular store (Figure S3A, n = 4). To examine whether this

PDGF-induced intracellular calcium increase contributes to

mTORC1 activity, we treated cells with a cell-permeant calcium

chelator, BAPTA-AM, before PDGF stimulation. BAPTA-AM

treatment abolished the calcium increase and decreased the

amplitude of the TORCAR response by approximately 40%

(7.7% ± 2.9%, n = 18, p < 0.0001), suggesting that calcium plays

a significant role in mTORC1activity (Figure 3C). Consistent with

this observation, WB analysis confirmed that the PDGF-induced

phosphorylation of TORCAR at 4EBP T37/46 was reduced by

BAPTA-AM (Figure 3D). In addition, BAPTA alone also caused

a slight decrease in the TORCAR emission ratio (Figures 3C

and S3B), as well as a slight reduction in the phosphorylation

of TORCAR (Figures 3D and S3C), suggesting that both basal

calcium and the PDGF-induced calcium spike may contribute

to mTORC1 activity.

We further asked whether BAPTA-AM impairs PDGF-induced

Akt activity. Previously, we developed the Akt activity reporter

(AktAR) to allow the real-time tracking of intracellular Akt activity

(Gao and Zhang, 2008). A new version of AktAR with an

enhanced dynamic range was generated then by replacing the

Cerulean of AktAR with Cerulean3, a brighter variant of CFP

(Markwardt et al., 2011) (Figures S3D–S3F). Imaging with this

improved Akt activity reporter, AktAR2, showed that pretreat-

ment with BAPTA-AM reduced the PDGF-stimulated AktAR2

response (2.8% ± 2.9%, n = 8, Figure S3G) compared with the

response without BAPTA-AM pretreatment (9% ± 6%, n = 10,

p < 0.01, Figure S3H) in these DS cells. Of note, AA starvation

(Figures S3H and S3I) significantly lowered PDGF-induced Akt

activity compared with control cells (Figure S3F), implying that

AAs deprivation suppressed PDGF-stimulated Akt activity (Fig-

ure S3J) (Tato et al., 2011). Furthermore, whereas the PDGF-

induced phosphorylation of Akt T308 was not significantly

altered, the phosphorylation of Akt S473, which is targeted by

mTORC2,was attenuated byBAPTA-AM (Figure 3D). In addition,

BAPTA pretreatment also lowered the phosphorylation of S422

SGK1, another mTORC2 target (Figure 3D), suggesting that

mTORC2 activity is affected. These data suggest that both

mTORC1 and mTORC2 activities are affected by calcium.

Lysosomal Akt Activity during GF-Induced mTORC1
Activation
Lysosomal mTORC1activity has remained an important point of

interest. In response to AAs, the Rag complex recruits mTOR

from a poorly characterized cytoplasmic location to the lyso-

somal surface (Zoncu et al., 2011), suggesting that lysosomes

act as a signaling platform for mTORC1 regulation and function.

To detect mTORC1 activity at the lysosome, we generated a

lysosome-targeted TORCAR (Lyso-TORCAR) by attaching

LAMP1 (lysosome associated membrane protein 1) to the N ter-

minus of TORCAR (Figure 4A). NIH 3T3 cells expressing Lyso-

TORCAR exhibited fluorescence in small punctate structures

that can be co-stained with LysoTracker Red, a red lysosomal

marker (Figure 4B).
s
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Figure 3. Calcium Plays a Role in GF-

Induced mTORC1 Activity

(A) Domain structures of TORCAR and RCaMP.

(B) DS NIH 3T3 cells co-expressing TORCAR and

RCaMP responded to PDGF with a calcium tran-

sient and an increase in FRET ratio (C/Y) (mean

response ± SEM as 13.2% ± 6.9%, n = 25).

(C) Pretreatment with BAPTA-AM, an intracellular

calcium chelator, antagonized the calcium peak

and lowered the TORCAR response to PDGF

(mean response ± SEM as 7.7% ± 2.9%, n = 18,

p < 0.0001 by two-tailed t test).

(D) Immunoblots showed the phosphorylation

levels of TORCAR, endogenous 4EBP1 (p-T37/

46), p70 S6K1 (p-T389), phospho-Akt, and total

Akt upon different treatments (n = 3). Control: no

drug added. PDGF: PDGF (50 ng/ml) was added at

time 0, and cells were collected after 30 min.

BAPTA+PDGF: BAPTA-AM (20 mM) was added at

time 0, and PDGF (50 ng/ml) was added after

15 min; cells were collected 30 min after PDGF

addition. BAPTA: BAPTA-AM (20 mM) was added,

and cells were collected after 15 min. See also

Figure S3.
We first tested the response of Lyso-TORCAR to leucine

methyl ester, which diffuses freely across membranes and is

hydrolyzed to native leucine within lysosomes. Consistent with
Cell Reports 10, 1767–1777
the notion that leucine activates

mTORC1 at the lysosome, a 4.6% ±

2.5% response was observed in DS

NIH 3T3 cells (Figure 4C, n = 5).

The negative control, Lyso-TORCAR-TA

(T37/46A) (Figure S4A), failed to respond

to leucine ester, suggesting that the

response is phosphorylation dependent

(Figure S4B, n = 4). Lyso-TORCAR also

responded to a total AA mixture and

leucine in DS or AA-starved 3T3 cells

(Figures S4C–S4F).

In contrast to the mechanisms of

activation by AAs, which involves the

Rag complex, GFs activate mTORC1

largely via Akt/TSC/Rheb signaling (Lap-

lante and Sabatini, 2009). Recently, it

has been shown that the TSC com-

plex localizes to the lysosome (Deme-

triades et al., 2014; Dibble et al., 2012;

Menon et al., 2014), where subpopula-

tions of Rheb and mTOR are also

present (Ohsaki et al., 2010; Sancak

et al., 2010). We then asked whether

Lyso-TORCAR could detect GF-induced

mTORC1 activity at this location. As

shown in Figure 4D, PDGF treatment

indeed stimulated a 6.8% ± 2.1%

response in DS NIH 3T3 cells ex-

pressing Lyso-TORCAR (n = 8), indi-

cating PDGF induced mTORC1 activity
on the lysosomal outer membrane. The T-to-A mutation,

Lyso-TORCAR-TA (T37/46A), abolished the response (Fig-

ure S4G, n = 3).
, March 17, 2015 ª2015 The Authors 1771
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Figure 4. mTORC1 Activity at the Lyso-

somal Membrane

(A) Domain structures of lysosome-targeted

TORCAR (Lyso-TORCAR).

(B) Image ofNIH3T3 cells expressing Lyso-

TORCAR, co-stained with LysoTracker Red. Scale

bar represents 10 mm.

(C) Lyso-TORCAR responded to LeuOMe (mean

response ± SEM as 4.6% ± 2.5%, n = 5).

(D) PDGF addition induced a Lyso-TORCAR

response (mean response ± SEM as 6.8% ± 2.1%,

n = 8).

(E) Pretreating DS NIH 3T3 cells with the Akt in-

hibitor, 10-DEBC (30 mM, 5 min), abolished the

PDGF-induced Lyso-TORCAR response (n = 4).

See also Figure S4.
ThisGF-induced lysosomalmTORC1activity could result either

from the translocation of mTORC1 activated elsewhere or from a

subpool of lysosome-residentmTORC1beingactivated locally via

theAkt/TSC1/2/Rhebpathway. To testwhether lysosomal Akt ac-

tivity is contributing to local mTORC1 activity, we monitored Akt

activity on the lysosomal membrane using a lysosomal targeted

AktAR, Lyso-AktAR2 (Figure S4A). Lyso-AktAR2was constructed

by tagging LAMP1 to the N terminus of the improved AktAR,

AktAR2. When expressed, Lyso-AktAR2 exhibited punctate fluo-

rescence in the cytosol that co-localized with LysoTracker Red

(Figure S4H). PDGF stimulated a 6.0% ± 2.6% response from
1772 Cell Reports 10, 1767–1777, March 17, 2015 ª2015 The Authors
the lysosomal Akt reporter (Figure S4I,

n = 4), whereas the T/A negative control

of the lysosomal Akt reporter showed no

response (Figure S4J, n = 3), suggesting

thatPDGF inducedAkt activity on the lyso-

somal surface. Pretreatment with an Akt

specific inhibitor, 10-DEBC at the concen-

tration of 30 mM, inhibited the lysosomal

Akt activity induced by PDGF (Figure S4K,

n = 3). Importantly, the PDGF-induced

Lyso-TORCAR response was largely in-

hibited aswell (Figure 4E, n = 4). Similar re-

sultswerealsoobservedwhenanotherAkt

inhibitor, SH-5,was used (FiguresS4L and

S4M). Collectively, these results implied

that GFs efficiently and acutely induced

mTORC1 activity increases at the lyso-

someand that these increasesare, at least

inpart,mediatedby lysosomalAkt activity.

These data are consistent with the newly

identified role of Akt in phosphorylating

TSC2, leading to the dissociation of the

TSC complex from the lysosome and the

activation of mTORC1 at this location

(Menon et al., 2014).

GF Induced mTORC1 Activity at the
Plasma Membrane
Upon GF stimulation, Akt is recruited to

the plasma membrane through the spe-
cific binding of its PH domain to the accumulating PIP3 at the

membrane, and this translocation event has been shown to be

critical for Akt activation. Hence, we asked whether GF specif-

ically stimulatedmTORC1 activity at the plasmamembrane. Pre-

viously, subcellular fractionation of endothelial cells revealed the

presence of mTOR and Raptor in plasmamembrane rafts (Parto-

vian et al., 2008), which are cholesterol-rich, detergent-insoluble

microdomains known to function as pivotal signaling platforms

(Hanzal-Bayer and Hancock, 2007). Whereas TSC2 may be

present at the plasma membrane (Wienecke et al., 1995), the

plasma membrane localization of the proximal activator of
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Figure 5. mTORC1 Activity at the Plasma

Membrane

(A) Domain structures of plasma membrane-tar-

geted TORCAR.

(B) Confocal image of an NIH 3T3 cell expressing

PM-TORCAR. Line scans showed the intensity

of PM-TORCAR across the plasma membrane

(n = 3). Scale bar represents 10 mm.

(C) PM-TORCAR responded to PDGF (mean

response ± SEM as 7.6% ± 3.3%, n = 30).

(D) PM-TORCAR showed no response to leucine

ester (n = 3).

See also Figure S5 and Movie S1.
mTORC1, Rheb, is unclear. Rheb has been suggested to localize

throughout the endomembrane system but not at the plasma

membrane due to its lack of either palmitoylation sites or

polybasic-rich sequences for plasma membrane targeting

(Takahashi et al., 2005). On the other hand, an earlier study

reported that Rheb is associated with the plasma membrane

in NIH 3T3 cells and enriched in the apparent membrane ruffle

regions (Clark et al., 1997). We also found Rheb in membrane

raft fractions from either plasma membrane or endomembrane

(Figure S5A). To address whether the mTORC1 activity is pre-

sent at the plasma membrane, we constructed TORCAR tar-

geted to the plasma membrane (PM-TORCAR) by fusing the

Lyn-targeting motif to the N terminus of TORCAR (Gao and

Zhang, 2008) (Figure 5A). When expressed in cells, PM-

TORCAR is properly targeted to the plasma membrane, with

the majority of fluorescence detected at the cell membrane (Fig-

ure 5B). Upon PDGF stimulation, PM-TORCAR showed a robust

response (7.6% ± 3.3%, n = 30) (Figure 5C), whereas the T-to-A

mutant of PM-TORCAR (Figure S5B) showed no response (Fig-

ure S5C, n = 3). Whereas it is still unclear if the TSC/Rheb

pathway mediates the plasma membrane mTORC1 activity, it
Cell Reports 10, 1767–1777
is noteworthy that another player, Ral

GTPase, has been recently suggested

to regulate the serum-induced transloca-

tion of mTORC1 to the plasma mem-

brane (Martin et al., 2014), providing a

possible mechanism underlying plasma

membrane mTORC1 activity. Interest-

ingly, PM-TORCAR showed no response

to leucine methyl ester (Figure 5D, n = 3),

indicating that the mTORC1activity de-

tected at the plasma membrane is GF

specific.

mTORC1 Activity Is Present in the
Nucleus
Many reports have suggested the pres-

ence of mTOR and Raptor (mTORC1),

as well as the downstream effector S6K

in the nucleus (Betz and Hall, 2013). In

addition, the functional relevance of the

nuclear mTORC1 has also been indicated

(Workman et al., 2014). However, it is
unclear whether functional endogenous mTORC1 exists in the

nucleus. In fact, mTORC1 is considered to be non-nuclear, and

the major function of mTORC1 signaling is largely considered

to be the result of mTOR kinase activity toward cytoplasmic

substrates (Betz and Hall, 2013; Rosner and Hengstschläger,

2012). To probe the nuclear mTORC1 activity, we constructed

a nuclear-targeted TORCAR (TORCAR-NLS) by tagging a nu-

clear localization sequence (NLS) to the C terminus of TORCAR

(Ananthanarayanan et al., 2005) (Figure 6A). TORCAR-NLS is

localized exclusively in the nucleus when expressed in NIH 3T3

cells, as indicated by co-staining with Nuclear-ID Red (Fig-

ure 6B). PDGF induced a 10% ± 4% response with a t1/2 of

13.3 ± 2.6 min (n = 11), suggesting that there is a pool of

mTORC1 activity in nucleus (Figure 6C). Pretreatment with torin1

abolished the PDGF-induced response, indicating that the

response is mTOR-specific (Figure 6D, n = 4). Curiously, leucine

ester induced a similar response to that of PDGF (Figure 6E,

8.2% ± 1.8%, n = 7). These data suggested that both GF and

AA signaling can induce mTORC1 activity in the nucleus, with

kinetics on par with the cytosolic accumulation of mTORC1

activity.
, March 17, 2015 ª2015 The Authors 1773
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Figure 6. Nuclear mTORC1 Activity

(A) Domain structures of nuclear-targeted TORCAR (TORCAR-NLS).

(B) Image of anNIH3T3 cell expressing TORCAR-NLS. Scale bar represents

10 mm.

(C) TORCAR-NLS responded to PDGF with a mean response ± SEM as

10.2% ± 4.1% and mean t1/2 ± SEM as 13.3 ± 2.6 min (n = 11).

(D) Pretreating cells with torin1 (1mM, 10 min) abolished the PDGF-induced

TORCAR-NLS response (n = 4).
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DISCUSSION

Distinct upstream signals impinge on mTORC1, which controls

cell growth and metabolism. A critical question is how this com-

plex senses these different inputs and transduces the specific

signals to precisely control cell growth. The lysosomal activation

of mTORC1 highlighted the signal- and location-specific regula-

tion of mTORC1 and prompted us to examine the spatial regula-

tion of mTORC1 activity. To achieve this goal, we needed a

molecular tool that allowed for sensitive detection of the activity

of the intact complex at different subcellular locations in live

cells. We therefore developed a first-generation mTORC1 activ-

ity reporter, TORCAR. When expressed in cells, TORCAR

responded to different stimuli, such as GF, total AA mixture,

leucine, and PMA, suggesting that TORCAR can be used as

a molecular tool to monitor endogenous mTORC1 activity.

TORCAR offers several unique advantages. TORCAR can be

genetically targeted to any specific subcellular location and is

not restricted by the localization of endogenous substrates,

thus allowing amore comprehensivemapping of mTORC1 activ-

ity. Genetic targeting also helps achieve high spatial resolution

and specific detection of mTORC1 activities in subcellular re-

gions, some of which may not be easily distinguished by stan-

dard microscopy (Mehta and Zhang, 2011), for example,

signaling domains such as membrane microdomains and multi-

protein complexes. In addition, TORCAR provides high temporal

resolution in detecting the activity. In the co-imaging experi-

ments, we showed that a PDGF-induced calcium spike immedi-

ately precedes the onset of TORC1 activity; this kind of temporal

information is difficult to obtain using conventional approaches

such as immunostaining. With a ratiometric readout of TORCAR,

variations in illumination and cell thickness, etc., can also be

cancelled out to provide more quantitative data, which allows

us to compare the activities stimulated by different signals.

Last but not least, TORCAR allows dynamic information to be

obtained from the contexts of living cells, which avoids potential

artifacts introduced by cell fixation. In summary, TORCAR com-

plements the current approaches based on phosphorylation-

specific antibodies and should be of great value to the field.

Future efforts will further enhance TORCAR for example by

improving its dynamic range, as shown in the case of other ki-

nase activity reporters (Depry et al., 2011; Gao and Zhang, 2008).

There is a long-standing interest in investigating the link be-

tween calcium signaling and mTORC1 activation (Altamirano

et al., 2009; Ghislat et al., 2012; Gulati et al., 2008; Mercan

et al., 2013). Many possible links have been suggested, yet the

exact role of calcium in mTORC1 activation remains to be

elucidated. Downstream of calcium, several potential mTORC1

regulators and mechanisms have been proposed, including

Ca2+/CaM, PI(3)P/hVps34, PA/PLD, PI(3,5)P2/PIKFYVE, and

PI3K-C2a. For example, it has been suggested in HeLa cells

that AAs induced an intracellular calcium increase, which acti-

vates calmodulin and in turn promotes its binding to hVps34, a

class III PI3K. The binding of Ca2+/CaM to hVps34 enhances
(E) LeuOMe induced a TORCAR-NLS response (mean response ± SEM as

8.2% ± 1.8%, n = 7).

See also Movie S2.
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the production of PI-3-phosphate, which is required formTORC1

activation (Gulati et al., 2008). It has also been indicated that cal-

ciummay regulate the activity of phospholipase D (PLD), thereby

providing positive inputs to mTOR (Fang et al., 2001; Razmara

et al., 2013). By co-imaging TORCAR with a calcium probe, we

demonstrated that in DS NIH 3T3 cells, PDGF induced a tran-

sient calcium spike that most likely originates from intracellular

calcium stores and partially contributes to the mTORC1 activity.

Upstream of mTORC1, Akt activity appeared to be largely

dependent on calcium as well. We show that intracellular cal-

cium chelation attenuated the phosphorylation of Akt S473,

but had no effect on the phosphorylation of Akt T308, which is

consistent with previous findings (Farrer et al., 2013; Razmara

et al., 2013). It has been shown that the S473 phosphorylation

is less critical for regulating Akt activity toward TSC2 (Jacinto

et al., 2006), which may explain the reduced effect of chelation

of intracellular calcium on mTORC1 activity (40% reduction)

compared with the effect on Akt activity (70% reduction).

TORCAR was successfully targeted to various subcellular

locations, including the lysosome, plasma membrane, and

nucleus, where it detected multiple pools of mTORC1 activity.

It appears that membrane compartments serve as specific

signaling platforms for mTORC1 activation, as the direct and

potent mTORC1 activator, Rheb, localizes to most endomem-

branes and anchors itself by farnesylation (Buerger et al., 2006;

Takahashi et al., 2005). In many such locations, TSC1/2 is also

present (Wienecke et al., 1995), implying that the Akt/TSC/

Rheb axis may exist and spatially regulate mTORC1 signaling.

Particularly at the lysosome, we detected Akt activity in response

to PDGF, and blockade of this Akt activity significantly dimin-

ished lysosomal mTORC1 activity. This suggests that Akt, which

either localized to the lysosomal surface or translocated there

upon PDGF stimulation, is an indispensable signal to fully acti-

vatemTORC1. Recently, Menon et al. (2014) reported that the in-

sulin-induced dissociation of the TSC complex from lysosomes

requires Akt-mediated TSC2 phosphorylation. Our finding pro-

vides evidence that increased lysosomal Akt activity is critical

for GF-induced lysosomal mTORC1 activity. It remains unclear

whether GF signaling recruits Akt to the lysosome or a pool of

lysosomal Akt is poised in situ to activate mTORC1.

We detected mTORC1 activity in the plasma membrane upon

GF stimulation. Although there are still conflicting data on the

presence of Rheb in the plasma membrane, a recent study sug-

gested that Ral GTPase may also regulate mTORC1 signaling at

the plasma membrane (Martin et al., 2014). This study showed

that serum-inducedmTOR recruitment to the plasmamembrane

is dependent on RalB GTPase and that suppression of the RalB

GTPase signaling at the plasma membrane reduced the serum-

induced mTOR translocation to plasma membrane and mTOR-

dependent phosphorylation of S6K. Although plasmamembrane

mTORC1 activity was not directly probed in this study, the

importance of a plasma membrane pool of RalB in regulating

mTOR membrane translocation and substrate phosphorylation

may suggest an alternative model of mTORC1 activation,

which could account for the mTORC1 activity in the plasma

membrane observed in our study. Further studies would

examine the mechanisms underlying the plasma membrane

mTORC1 activity, whether the TSC complex dissociates from
Cell
the plasma membrane upon the phosphorylation of TSC2 by

Akt, as does lysosomal mTORC1 (Menon et al., 2014), and

whether the Ral GAP/Ral pathway contributes to the plasma

membrane mTORC1 activity.

This study also identified the nucleus as a new location where

both GF and AA stimulation can induce an increase in mTORC1

activity. Whether mTORC1 is functional and present in the nu-

clear compartment was a topic of debate. For instance, it has

been suggested that there is little intact mTORC1 in the nucleus

due to low affinity of nuclear raptor to mTOR than cytoplasmic

raptor (Rosner and Hengstschläger, 2008). On the other hand,

nuclear mTORC1 signaling has been suggested to play a role

in some cellular processes, including promoting the transcription

of metabolic genes for ribosome biogenesis, lipid formation, and

mitochondrial function (Back and Kim, 2011; Workman et al.,

2014). For instance, it has been shown that mTOR binds to

TFIIIC, a transcription factor that binds to pol III promoters, lead-

ing to enhanced protein synthesis in response to nutrients and

GFs (Kantidakis et al., 2010). As we have shown, both GF and

AA stimulation can lead to the accumulation of mTORC1 activity

in the nucleus, highlighting the presence of functional mTORC1

in this location. However, the similar kinetics between nuclear

TORCAR and diffusible TORCAR does not allow us to distinguish

between the two models of nuclear mTORC1 activation—

mTORC1 could either be activated in the nucleus as an

independent pool, or it could be translocated to the nucleus after

activation in the cytosol or another location.

Notably, whereas GF widely stimulates mTORC1 activity

across different subcellular locations, including the plasma

membrane, lysosome, and nucleus, leucine ester-induced

mTORC1 activity is more restricted to the lysosome and nucleus.

This signal-specific pattern has important implications. First, it

suggests that Akt, which is also widely distributed throughout

the cell, may mediate the GF-sensitive pathway, whereas the

AA-sensing machinery, which has been characterized for the

lysosome but has not been explored at other locations, is

restricted to specific subcellular compartments. Furthermore, it

has been suggested that the intracellular nutrients contribute

to the basal activation ofmTORC1, but further activation requires

GF (Dibble and Manning, 2013; Hara et al., 1998). Our results

suggested that such basal activation may occur in a subset of

compartments, whereas GF-stimulated further activation in-

duces more global effects. Intriguingly, the lysosome and nu-

cleus appear to be the sites where the two pathways converge,

underscoring the importance of the mTORC1 signaling control

within these two compartments. Further delineation of the mo-

lecular mechanisms by which mTORC1 is regulated by specific

signals will advance our understanding of this signaling network

and facilitate the identification of potential targets for treating hu-

man diseases that involve aberrant mTORC1 signaling.

EXPERIMENTAL PROCEDURES

Detailed experimental procedures are provided in the Supplemental Experi-

mental Procedures.

Constructs

TORCAR was generated by sandwiching full-length 4EBP1 between a FRET

pair, Cerulean, and YPet. Details regarding subcellularly targeted TORCAR
Reports 10, 1767–1777, March 17, 2015 ª2015 The Authors 1775



constructs are provided in the Supplemental Experimental Procedures. All

constructs were verified by sequencing after subcloning into a modified

version of the mammalian expression vector pcDNA3.

Live-Cell Imaging

Cells were washed once with modified Hank’s balance salt solution (HBSS)

and imaged in the dark at room temperature. Images were acquired on a Zeiss

Axiovert 200M microscope with a cooled charge-coupled device camera, as

previously described (Ananthanarayanan et al., 2005). Dual-emission ratio im-

aging was performed with a 420DF20 excitation filter, a 450DRLP dichroic

mirror, and two emission filters, 475DF40 and 535DF25 for CFP and YFP,

respectively. For RFP, a 568DF55 excitation filter, a 600DRLP dichroic mirror,

and a 653DF95 emission filter were used. Exposure times were 50–500 ms,

and images were taken every 30 s. Imaging data were analyzed with Metafluor

6.2 software (Universal Imaging). Fluorescence images were background

corrected by deducting the background (regions with no cells) from the

emission intensities of CFP or YFP. Regions of interest (ROIs) at the cell

periphery representing the plasma membrane were used for analysis for

PM-TORCAR. Traces were normalized by setting the emission ratio before

addition of drugs as 1.

Statistical Analysis

Data are shown as means ± SEM. Means were compared by two-tailed t test.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and two movies and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2015.02.031.
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