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Three Theorems on Phrase Structure 
Grammars of Type 1 

PETER S. LANDWEBER* 

Burrottghs Corporation, Burro~lghs Laboratories, Paoli, Pennsylvania 

It is shown that the class of languages generated by type ] phrase 
structure grammars is not enlarged by allowing end markers, that 
this class is closed under the operation of intersection, and that those 
languages representable by linear bounded automata belong to this 
class. 

INTRODUCTION 

The investigation of type 1 phrase structure grammars, as defined by 
Chomsky (1959), runs into several difficulties. Although these gram- 
mars generate primitive recursive sets, the author has shown in his 
paper (1962) that  a number of decision problems for these grammars 
are undecidable, including most decision problems which are decidable 
for grammars of types 2 and 3. Furthermore, there are no sharp necessary 
conditions for a language to be type 1; for example, it is not known 
whether the class of type 1 languages is closed under complementation, 
although the author suspects that  this is not the case. 

We shall first prove that  the c]ass of languages generated by type 1 
grammars with end markers coincides with the class of languages gen- 
erated by type 1 grammars without end markers. Therefore, we can use 
either kind of grammar without loss of generality. 

Next, we shall show that  the class of type 1 languages is dosed under 
the operation of intersection. This result came as quite a surprise, and 
provides a significant extension of the theorem due to Bar-Hill@ Perles, 
and Shamir (1961), which states that  the intersection of a type 2 ]an- 
guage with a type 3 language is a type 2 language. The generation of the 
intersection L ~  I"/ LG~ of two type 1 languages which we shall give 
proceeds as follows. In a single grammar G, we generate nonterminal 
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strings which correspond to certain pairs of strings; the first member of 
such a pair belongs to La l ,  and the second to Lo2 • The correspondence 
is established by  using doubly indexed symbols. If the two members of 
the pair corresponding to one of these nonterminal strings coincide, 
then the string can be transformed into a terminal string of G. 

Finally, it will be proved that  every language representable by  a 
linear bounded automation is a type 1 language. Since Myhill has shown 
(1960) tha t  all rudimentary languages are representable by  linear 
bounded automata,  it follows that  a considerable family of explicitly 
definable languages are of type 1. This partially accounts for the diffi- 
culty in finding languages of a simple form which are not of type  1. 

By  an alphabet we mean a finite nonvoid set. Any set of finite non- 
empty words over an alphabet will be called a language. (The null word 
will be systematically excluded.) Since type 1 grammars and linear 
bounded automata have been defined and studied elsewhere, we shall 
give only brief formal definitions of these devices. 

A type 1 grammar with end marker is a quintuple G = (V~ ,  VT, S, 
# ,  P ) ,  where VN and VT are disjoint alphabets, S and ~ are special 
symbols of V~,  and P is a finite set of rewriting rules e --~ ¢ satisfying 
the following conditions: 

(1) ~ and ¢ are words over V = VN U VT ; ~ involves at least one 
symbol of V~ other than ~ ; the length of ¢ is not less than  the length of 

(2) f and ¢ may have any of the forms W, ~W,  or W ~  where W is 
a word not involving f~ ; ~ and ¢ must be of the same form. 

VN, VT, and V = VN U VT are the nonterminal, terminal, and total  
vocabularies of G, respectively. S is the sentence symbol and ~ is the 
end marker. 

We write el --~ ~2, in ease ,,2 arises from el by  application of one of the 
rewriting rules. If ~2 arises from e~ after a finite number of applications 
of the rewriting rules, we write e~ ~ ~2 • The grammar G generates the 
language 

L ~ =  { x [ ~ S ~  ~ ~ x ~ } ,  

where x denotes an arbi t rary word over the terminal alphabet VT • 
A type l grammar without end marker is a quadruple G = (VN, V r ,  

S, P ) ,  defined as above, except tha t  ~ does not occur in the rewriting 
rules, and 

L~ = {zlS ~ x}. 
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A linear bounded automaton is a quintuple A = (S, 2, s, F, 4~), where 
S and 2 are alphabets, s is a special element and F a special subset of S, 
and q~ is a function 

q):2 X S----~ 2 X [L, C, R} X S. 

S is the set of states of A, Z the alphabet, s the initial state, F the set 
of final states, and • the behavior function. If q) (a l ,  sl) = (a~, L ,  s~), 
and symbol al is being scanned in state sl ,  the machine prints a2 in place 
of al and scans the symbol to the left of a~ in state s2 , R denotes a move 
to the right, and C indicates that  the scanner does not move. The ma- 
chine is provided initially with a word x over 2 presented on a tape 
whose length is equal to tha t  of x, and begins by scanning the !eftmost 
symbol of z in the initial state. The machine stops if the scanner goes 
off the tape to the left or right. The word x is accepted by the automa- 
ton A if the machine stops off the right-hand end of the tape in one of 
its final states. The language LA deternfined by A is defined to be the set 
of accepted words. 

I t  should be remarked that  certain of the symbols in the alphabet 2 
of A may be auxiliary. If Z0 is the subset of nonauxiliary symbols of Z, 
then LA z0 will denote the set of words over 2;0 which are accepted by A. 
Notice that  LAz0 = L~ f? (20)*, where (20)* denotes the set of all 
words over 20 • We shall prove in Theorem 3 that  L~ is always a type 1 
language. Since (20)* is a type 3 language, it will follow from the inter- 
section theorem that  L~z0 is a type 1 language. Hence, we shall have 
no need to consider a subalphabet ~0 of ~ to obtain the general result 
tha t  LA.z0 is always a type 1 language. 

T Y P E  1 G R A M M A R S  

We shall prove here that  every type 1 grammar with end marker is 
equivalent to a type 1 grammar without end marker. Thus, the class of 
languages generated by  type 1 grammars is not enlarged if end markers 
are permitted. Of course, there are occasions when end markers are 
extremely convenient, as in Theorem 3. 

THEOa~M 1. Every type 1 grammar with end marker is equit, alent to a 
type i grammar without end marker. 

PROOF: Let G = (V~ ,  VT, S, ~ ,  P )  be a type 1 grammar with end 
marker. We shall construct a type 1 grammar G1 -- (Vx~, VT~, S~, P~) 
without end marker such that  La~ = Lo .  

For each a in the total vocabulary V of G other than ~,  introduce 
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new symbols ~a, a *, and *a~; the nonterminal vocabulary VN1 of Gt will 
consist of all symbols ~a, a ~, and ~a ~, as well as all symbols A in V~ 
other than  ~ .  I f  ~ = al a2 • • • ar (r > 1) is a word over V not involving 
~ ,  let ~e = ~ o ~ l a 2 " " a r ,  m~ = alO~2 " ' "  0~r ~, and ~m~ = ~a~a2-"  "ar~; 

thus, ~m, m~, and ~m~ are defined for all (nonempty)  words over V not 
involving ~ .  

The rewriting rules of G~ will now be defined in several groups; of 
course, we take VT1 ~--- VT and S~ = ~S 6. 

I .  I f  e --* ¢ is a rule of G, let ~ --~ ~b, ~ --~ ~¢, ~ --~ ~ ,  and ~ --~ ~¢~ 
be rules of G1 • 

I I .  I f  ~ ~ --+ ~ ~ is a rule of G, leg 6~ --~ ~ and ~ --~ ~¢~ be rules 
of G1. 

I I I .  I f  ~ # -~ ¢/~ is a rule of G, let ~ --* ~b ~ and ~ --~ ~b ~ be rules 
of G~. 

IV. For a ~ Vw, let ~a ~ a, a ~ --> a, and ~a ~ --> a be rules of G1. 
I t  is easy to see tha t  there is a G derivation ~ S ~¢ ~ ~ x ~ if and only 

if there is a G~ derivation $1 ~ x; in fact, we can convert  G derivations 
f rom /~ S # to G~ derivations from S~, and conversely, if we identify 
g ~  with ~ ,  ~ #  with ~ ,  and ~ , ~  with ~,~. Thus, Lo~ = L o ,  and 

the proof is complete. 

THE INTERSECTION THEOREM 

THEOREM 2. Let  G~ = ( V ~  , V ~  , $1 ,  P~) and 

G2 = ( V ~ ,  VT2, $2, P~) 

be type 1 grammars .  Then  there is a type 1 grammar  G which generates the 

language Lo~ f? L a  2 . 
Paoo~:  We will suppose tha t  G1 and G~ have the same terminal vocabu- 

laries: 

VT1 = VT2 = ~ = { al , a~, . . .  , av}. 

Let a~ (i  = 1, 2, . . . ,  p) be new symbols. 
Modify G~ by  replacing all occurrences of the terminal symbols a~ with 

a~ ; let G~ denote the resulting grammar.  The total  vocabulary V~ of G~ 
is {al ,  a~, " "  , a~ } U VN1, which we may  list as {a~, a~, . . .  , a.}, with 
a~ the sentence symbol of G~ ; thus, P ~  = {a~+l, " ' "  , a.}. G~ is not 
changed, but  we will list the total  vocabulary V2 of G~ as [~1, ~ ,  . . .  , 
B~}, with ¢~,~ the sentence symbol, and f~ = a~ for i = 1, 2, . . . ,  p. 

In t roduce further symbols 

P = {~,~,j} (i  = 1,2,  . . .  , n ; j  = 1 , 2 ,  . . . , m )  
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to r ep resen t  pa i rs  (a~,  ~ ) .  A g r a m m a r  G = (Vx , V r ,  S,  P )  will now 
be defined.  W e  t a k e  VN = f/1U P, VT = 2 and  S = ~ ....... The  p roduc-  

t ions  of P will be defined in four  groups.  
I.  I f  a~1 " ' "  a~q - +  a h  " ' "  a Jr is a rule  of G1, then  i t  is a rule  of G in 

a d d i t i o n  to  ~11 " • • ~ - 1 % q  ,~ . 4  ~J~ " " • ~:~-~ % . . . . .  

I I .  I f  5h " ' "  fl,q - 4  5~, " ' "  5J, is a rule of G2, then  O~J, -  1 * * * al:ff'yksq_I ~1 

" " "  Yk,.i~ --~ Tk~.h " " " %~.~,- (where  k~, /c2, . - . ,  lc~ = 1, 2, • • . ,  p, and  
s > 0) is a rule  of G; note  t h a t  there  are  p~ rules of G for each  ru!e of G2. 

I I I .  %,~a~¢ . 4  a~%,j (i ,  k = 1, 2, • • . ,  p; j = 1, 2, • • -, m) 

and  a,*rk,i--~ ~/~,jak (i ,  k = 1, 2, - . . ,  p ; j  = 1, 2, . . . ,  m) 

are  rules of g .  
IV.  %,i  . 4  al is a rule of G for  i = 1 ,2 ,  . . - , p .  
The  rules of g roup  I genera te  the  de r ivab le  s t r ings of (2-~, a,, . . .  a,, , ,  

with  the  r i gh tmos t  cha rac t e r  rep laced  b y  %~.~ ; i.e., a,,  . - .  a.,~_,%~ ..... 
The  rules of g roup  I I  a l low the  p roduc t ions  of g~ to be carr ied ou t  wi th in  
the  s t r ings  ( resu l t ing  f rom the  group I rules)  t h a t  cor respond to t e rmina l  
s t r i n g s  in G1. The  s t r ings  of G2 are  encoded in y , , , ' s  a long with  the  G, 
s t r ings  which  r e m a i n  unchanged .  The  rules of group I I I  a l low the  7 's  
to  slide across the  a ' s ,  b u t  do no t  change  the  coded 0~ or ge str ings.  These  
rules p e r m i t  the  s t r ings  to  be r ea r r anged  for the  group I I  rules. F ina l ly ,  
the  rules of g roup  I V  pe rmi t  a s t r ing x over  2 to be de] ivered if i t  has  
been  de r ived  in group I (Q~) and  in groups  I I  and  I I I  (g2).  

I t  is easy  to  conf i rm t h a t  S m aq  . . -  a,~ if and  on ly  if S ~ "~,l,Zl 
. . .  %~,;~. W e  mus t  t hen  ver i fy  t h a t  th is  las t  condi t ion  holds if and  
on ly  if a h - . .  a~.q C La~ fl Lo~. I t  is d e a r  t h a t  f rom a de r i va t i on  S 
%,,~, . . .  %~.~ we can  o b t a i n  a G, de r i va t i on  S~ ~ a.q . - -  a~q and  a G2 
de r i va t i on  S= ~ a h . . .  a,-~. I f  a~, . . .  a~, C L~I fq L<~, one can con- 
vinee  himself  t h a t  the  rules of groups  I ,  I I ,  and  I I I  p rov ide  for a der iva-  
t ion  S ~ "y~,.~ . . .  y~q.i~ • Hence ,  LG = L <  Cl Lo= . 

L I N E A R  BOUNDED AUTOMATA AND TYPE 1 GRAM2vIARS 

THEOREM 3. I f  A is a linear bounded automaton,  then there is a type 1 
g rammar  G such that L~  = L~  . 

PROOF: Le t  A = (S,  ~,  so, F ,  ~ )  be a l inear  bounded  a u t o m a t o n .  
W e  shall  cons t ruc t  a t y p e  1 g r a m m a r  G wi th  m~d m a r k e r  such t h a t  
L~ = L~ ; G s imula tes  the  reverse  of the  ope ra t ion  of the  a u t o m a t o n  A.  

Suppose  ~ = [a~, a~, . . .  , a d and  S = Is0, s~, . . -  , s,~l, wi th  so the  
in i t ia l  s ta te .  We  in t roduce  new symbols  bo ( i  -- 1, 2, - . .  , n ; j  = O, 1, 

• - • , m)  to  r ep resen t  a~ and  s~ s imul taneous ly .  
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The grammar G = (V~,  VT, $1, * , P )  will now be defined. We 
take V~ - {b~j} U {$1, A, ~} and VT = ~, where $1 is the sentence 
symbol of G. The rules of G will be defined in groups. 

I. $1 --~ bi~ and $1 ---> Ab, j  will be rules of G if the machine moves to 
the right and enters a final state (i.e., a state in F)  when it scans ai in 
state sa. A - ~ a ~  and A - ~  Aa ,  will be rules of G for i = 1, 2, • .. ,n.  
These rules permit derivations ~ / S I ~  ~ ga,~ . . .  a,~_~bi~j~, pro- 
vided that  the machine moves to the right and enters a state of F when 
it scans ai~ in state s j .  

II .  If ¢ (ak ,  s~) = (ai ,  L, s~), then b~aa~ --~ a~bk~ will be a rule of G for 
r = 1, 2, • • • , n; if ¢ (ak ,  sz) = (a~, R, s~), then a,b,.j --~ b~za~ will be a 
rule of G for each r; and if ¢ (ak ,  s~) = (al ,  C, s~-), then bi~'--* bkz will 
be a rule of G. I t  is clear that  these rules mimic the inverses of the opera- 
tions of A. 

I I I .  Finally, we include the rule ~/b,0--* S a~ for i = 1, 2 , . . .  , n. 
Observe that  b~0 indicates that  the symbol a, is being scanned in the 
initial state so of the automaton. 

The reader should have no difficulty in convincing himself that  G is a 
type 1 grammar with end marker, and that  L~ = L~ .  This completes 
the proof of the theorem. 

COROLLARY. Every rudimentary language is a type 1 language. 
Pl~OOF: Myhill has shown that  every rudimentary language L is 

representable by a linear bounded automaton A; i.e., L = LA for some 
linear bounded automaton A. Then use Theorem 2. 
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