
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
J. Math. Anal. Appl. 333 (2007) 500–504

www.elsevier.com/locate/jmaa

A reduced Hsieh–Clough–Tocher element
with splitting based on an arbitrary interior point ✩

A.S. Peker a,∗, J.E. Lavery a,b, S.-C. Fang a,c

a North Carolina State University, Operations Research and Industrial and Systems Engineering,
Raleigh, NC 27695, USA

b Army Research Office, Army Research Laboratory, Mathematics Division, Research Triangle Park, NC 27709, USA
c Tsinghua University, Mathematical Sciences Department, Beijing, China

Received 2 October 2006

Available online 23 December 2006

Submitted by R.P. Agarwal

Dedicated to Professor William F. Ames on his 80th birthday

Abstract

We present formulas for a reduced Hsieh–Clough–Tocher (rHCT) element with splitting based on an
arbitrary interior point. These formulas use local barycentric coordinates in each of the subtriangles and are
not significantly more complicated than formulas for an rHCT element with splitting based on the centroid.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Surfaces on triangular grids are usually represented by one linear function on each triangle.
Such representations fit well with current graphics hardware and software but require many trian-
gles to achieve mathematical and visual accuracy, which reduces computational efficiency. One
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can reduce the number of triangles and increase the computational efficiency by using flexible
piecewise cubic elements rather than rigid linear elements.

The Clough–Tocher (CT) element [2,3] is a triangular C1 piecewise cubic element that is
constructed on a split of each triangle into three subtriangles. A CT element is defined by the
values of the function and its first derivatives at the nodes of the triangle and the values of the
derivative in the normal direction at the midpoints of the three edges of the triangle. A variant
of this element, the reduced Hsieh–Clough–Tocher (rHCT) element [1,8], is fully defined by the
values of the function and its first derivatives at the nodes of the triangle and does not require
specification of the derivative in the normal direction at the midpoints of the three edges of the
triangle. The rHCT element requires fewer parameters than the CT element and has been widely
used in finite-element analysis [8] and in surface and terrain modeling [5–7,10].

In all previous work involving CT and rHCT elements except [9], the three subtriangles into
which the triangle is split are created by connecting the vertices of the triangle to the centroid.
Worsey and Farin [9] require a CT element with a different splitting for their generalization of CT
elements to higher dimensions. The authors of the present paper are in the process of developing
a tetrahedral analogue of the rHCT triangular element. To ensure tetrahedron-to-tetrahedron C1

continuity of the tetrahedral elements that we are developing, the splittings of the rHCT elements
on the faces must be based on points other than the centroids, just as was the case in [9]. The
development of this new tetrahedral element has been delayed because of the absence in the
literature of formulas for an rHCT element with splitting based on a point other than the centroid.
The present paper fills this void.

2. rHCT element: Definition and representation

Let there be given an irregular triangulation of a domain. Denote the counterclockwise-
ordered vertices of a triangle T in this triangulation by V1 = (x1, y1), V2 = (x2, y2) and
V3 = (x3, y3) as indicated in Fig. 1. The values of a function z(x, y) at these vertices will be
denoted by z1, z2 and z3, respectively. The values of the first derivatives ∂z/∂x and ∂z/∂y of this
function at these vertices will be denoted by zx

1 , z
y

1 , zx
2 , z

y

2 , zx
3 and z

y

3 (subscript = index of ver-
tex, superscript = direction of derivative). Let V0 = (x0, y0) be an arbitrary point in the interior
of the triangle. Connecting V0 to each of the vertices of the triangle creates three subtriangles
A , B and C . Edges 1, 2 and 3 denote the edges of triangle T that are included in subtriangles
A , B and C , respectively. We use xij and yij to denote xi − xj and yi − yj , respectively, for
i, j = 0,1,2,3.

Fig. 1. Notation for triangle T and its splitting.
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An rHCT element is a surface z(x, y) on T defined by the following conditions:

(1) The element is a cubic function of x and y on each of the three subtriangles.
(2) At each of the three vertices of T , the element matches the prescribed function value and

the prescribed first derivatives in directions x and y.
(3) Linear Derivative Condition: On each edge of T , the derivative of the element in the direc-

tion normal to that edge is a linear function of arclength.
(4) The element is C1 smooth in the interior of T .

It is a consequence of these four conditions that an rHCT element joins C1 smoothly with the
rHCT elements in the neighboring triangles [8].

McClain and Witzgall [8] developed their rHCT element with centroid-based splitting in a
framework of global barycentric coordinates in triangle T . For representation of an rHCT ele-
ment with splitting based on an arbitrary interior point, it is convenient to use local barycentric
coordinates in each of the subtriangles. We denote the barycentric coordinates of subtrian-
gles A , B and C by (α1, α2, α3), (β1, β2, β3) and (γ1, γ2, γ3), respectively. Orientation of all
barycentric coordinates is counterclockwise. Edges 1, 2 and 3 correspond to α1 = 0, β1 = 0 and
γ1 = 0, respectively. On the subtriangles A , B and C , cubic polynomials are represented in the
Bernstein–Bézier forms

z(A )(α1, α2, α3) =
∑

i+j+k=3

aijk

3!
i!j !k! (α1)

i(α2)
j (α3)

k, (1)

z(B)(β1, β2, β3) =
∑

i+j+k=3

bijk

3!
i!j !k! (β1)

i(β2)
j (β3)

k, (2)

z(C )(γ1, γ2, γ3) =
∑

i+j+k=3

cijk

3!
i!j !k! (γ1)

i(γ2)
j (γ3)

k, (3)

respectively [4]. Here, the terms (3!/(i!j !k!))(α1)
i(α2)

j (α3)
k , (3!/(i!j !k!))(β1)

i(β2)
j (β3)

k and
(3!/(i!j !k!))(γ1)

i(γ2)
j (γ3)

k are the Bernstein polynomials and the coefficients aijk , bijk and cijk

are the Bézier ordinates.

3. Bézier ordinates of the rHCT element

The rHCT element is defined by the 30 Bézier ordinates in expressions (1), (2) and (3). Here
we derive those ordinates omitting the detailed calculations. Equating expressions (1) and (2) to
z3 at V3, expressions (2) and (3) to z1 at V1 and expressions (3) and (1) to z2 at V2, one obtains
6 of these ordinates:

a030 = z2, a003 = z3, b030 = z3, b003 = z1, c030 = z1, c003 = z2. (4)

Equating the first derivatives of the rHCT element to zx
1 , z

y

1 , zx
2 , z

y

2 , zx
3 and z

y

3 at the vertices
determines 12 more of the Bézier ordinates:

a120 = c102 = z2 + zx
2
x02

3
+ z

y

2
y02

3
,
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3
x03

3
+ z
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3
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3
, c120 = b102 = z1 + zx

1
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3
+ z

y

1
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3
,

a021 = z2 + zx
2
x32 + z
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, a012 = z3 + zx
3
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,

3 3 3 3
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b021 = z3 + zx
3
x13

3
+ z

y

3
y13

3
, b012 = z1 + zx

1
x31

3
+ z

y

1
y31

3
,

c021 = z1 + zx
1
x21

3
+ z

y

1
y21

3
, c012 = z2 + zx

2
x12

3
+ z

y

2
y12

3
. (5)

The Linear Derivative Condition (condition (3) of the rHCT element) together with Eqs. (4)
and (5) determines 3 more of the Bézier ordinates:

a111 = a120 − a021 + a102 − a012

2
+ P30(z2 − 3a021) + P02(z3 − 3a012),

b111 = b120 − b021 + b102 − b012

2
+ P10(z3 − 3b021) + P03(z1 − 3b012),

c111 = c120 − c021 + c102 − c012

2
+ P20(z1 − 3c021) + P01(z2 − 3c012), (6)

where

P30 = x23x30 + y23y30

2(x23
2 + y23

2)
, P02 = x02x23 + y02y23

2(x23
2 + y23

2)
,

P10 = x31x01 + y31y10

2(x31
2 + y31

2)
, P03 = x03x31 + y03y31

2(x31
2 + y31

2)
,

P20 = x12x20 + y12y20

2(x12
2 + y12

2)
, P01 = x01x12 + y01y12

2(x12
2 + y12

2)
. (7)

The continuity of z and of its first derivatives between subtriangles (condition (4) of the rHCT
element) determines the remaining 9 Bézier ordinates:

a210 = c201 = c111 − α
(1)
2 a120 − α

(1)
3 a111

α
(1)
1

,

b210 = a201 = a111 − β
(2)
2 b120 − β

(2)
3 b111

β
(2)
1

,

c210 = b201 = b111 − γ
(3)
2 c120 − γ

(3)
3 c111

γ
(3)
1

,

a300 = b300 = c300 = a201 − γ
(3)
2 b201 − γ

(3)
3 c201

γ
(3)
1

, (8)

where (α
(1)
1 , α

(1)
2 , α

(1)
3 ), (β

(2)
1 , β

(2)
2 , β

(2)
3 ) and (γ

(3)
1 , γ

(3)
2 , γ

(3)
3 ) are the representations of V1, V2

and V3, respectively, in the barycentric coordinates of subtriangles A , B and C , respectively.
Use of these representations of the vertices significantly simplifies formulas (8) and provides
them with intuitive geometry-related internal structure.

Equations (4)–(6) and (8) define the 30 Bézier ordinates of an rHCT element with splitting
based on an arbitrary interior point. The structure in the above derivation can be generalized to
the derivation of the Bézier ordinates of tetrahedral analogues of rHCT elements.

4. Conclusion

In the prior literature, a CT element with splitting based on an arbitrary interior point is dis-
cussed and computational formulas for an rHCT element with splitting based on the centroid are
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available. However, computational formulas for CT and rHCT elements with splitting based on
an arbitrary interior point are not available. The formulas given above for an rHCT element with
splitting based on an arbitrary interior point are not significantly more complicated than the for-
mulas of [8] for an rHCT element with splitting based on the centroid. The rHCT element with
splitting based on an arbitrary interior point is a hitherto unused, computationally competitive,
flexible modeling tool for bivariate finite element procedures and geometric modeling and for
extension to tri- and multivariate finite elements and geometric modeling.
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