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1. Introduction

Nowadays it is plainly believed that the universe is experiencing an accelerated expansion. Recent observations from type Ia supernovae
[1] in associated with Large Scale Structure [2] and Cosmic Microwave Background anisotropies [3] have provided main evidence for this
cosmic acceleration. In order to explain why the cosmic acceleration happens, many theories have been proposed. Although theories of
trying to modify Einstein equations constitute a big part of these attempts, the mainstream explanation for this problem, however, is
known as theories of dark energy.

The combined analysis of cosmological observations suggests that the universe consists of about 70% dark energy, 30% dust matter
(cold dark matter plus baryons), and negligible radiation. Although the nature and origin of dark energy are unknown, we still can
propose some candidates to describe it. The most obvious theoretical candidate of dark energy is the cosmological constant λ (or vacuum
energy) [4,5] which has the equation of state w = −1. However, as is well known, two difficulties arise from the cosmological constant
scenario, namely the two well-known cosmological constant problems, the fine-tuning problem and the cosmic coincidence problem [6].
An alternative proposal for dark energy is the dynamical dark energy scenario. The dynamical dark energy proposal is often realized by
some scalar field mechanism which suggests that the energy form with negative pressure is provided by a scalar field evolving down
a proper potential. So far, a large class of scalar-field dark energy models have been studied, including quintessence [7], K-essence [8],
tachyon [9], phantom [10], ghost condensate [11] and quintom [12], and so forth. But we should note that the mainstream viewpoint
regards the scalar field dark energy models as an effective description of an underlying theory of dark energy. In addition, other proposals
on dark energy include interacting dark energy models [13], braneworld models [14], Chaplygin gas models [15], and holographic dark
energy [16], etc.

Some experimental data have implied that our universe is not a perfectly flat universe and recent papers have favoured a universe with
spatial curvature [17]. As a matter of fact, we want to remark that although it is believed that our universe is flat, a contribution to the
Friedmann equation from spatial curvature is still possible if the number of e-foldings is not very large [18]. Cosmic Microwave Background
(CMB) anisotropy data provide the most stringent constraints on cosmic curvature k. Assuming that dark energy is a cosmological constant,
the three-year WMAP data give Ωk = −0.15 ± 0.11, and this improves dramatically to Ωk = −0.005 ± 0.006, with the addition of galaxy
survey data from the SDSS [19]. The effect of allowing non-zero curvature on constraining some dark energy models has been studied
by [20]. Recently Clarkson et al. [21] have shown that ignoring Ωk induces errors in the reconstructed dark energy equation of state, w(z),
that grow very rapidly with redshift and dominate the w(z) error budget at redshifts (z � 0.9) even if Ωk is very small.
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In the present Letter motivated by the recent work of Elizalde et al. [22], some explicit examples are presented in which a unified,
continuous description of the inflationary era and of the late-time cosmic acceleration epoch is obtained. We generalize examples of
Elizalde et al. [22] to the non-flat case in the non-interacting then to the interacting cases respectively in Sections 2 and 3.

2. Unified inflation and late time acceleration in non-flat universe

We consider a universe filled with matter with equation of state pm = wmρm and a scalar field which only depends on time. The action
is as,

S =
∫

d4x
√−g

(
R

16πG
− 1

2
ω(φ)∂μφ∂μφ − V (φ) +Lm

)
, (1)

where V (φ) is the scalar potential, ω(φ) is the kinetic function, and Lm is the matter Lagrangian density. As we work in the spatially
non-flat Friedmann–Robertson–Walker (FRW) universe, the metric is given by

ds2 = −dt2 + a2(t)

(
dr2

1 − kr2
+ r2 dΩ2

)
, (2)

where a = a(t) is the scale factor of the FRW universe and k denotes the curvature of space with k = 0,1,−1 for flat, closed and open
universe respectively.
The third Friedmann equation describes the time evolution of the energy densities of the dark components. These equations are actually
the continuity equations for the matter and scalar field,

ρ̇m + 3H(ρm + pm) = 0, (3)

ρ̇φ + 3H(ρφ + pφ) = 0, (4)

where the quantity H = ȧ/a is the Hubble parameter. The corresponding FRW equations are written as,

H2 + k

a2
= 8πG

3
(ρm + pφ), (5)

Ḣ − k

a2
= −4πG(ρm + pm + ρφ + pφ), (6)

with ρφ and pφ given by,

ρφ = 1

2
ω(φ)φ̇2 + V (φ), (7)

pφ = 1

2
ω(φ)φ̇2 − V (φ). (8)

Combining Eqs. (5)–(8), we obtain,

ω(φ)φ̇2 = − 1

4πG

(
Ḣ − k

a2

)
− (ρm + pm), (9)

V (φ) = 3

8πG

(
H2 + k

a2

)
+ 1

8πG

(
Ḣ − k

a2

)
+ (ρm − pm)

2
. (10)

From Eq. (3), we get,

ρm = ρm0a−3(1+wm). (11)

We now consider the theory in which V (φ) and ω(φ) are,

ω(φ) = − 1

4πG

(
f ′(φ) − k

a2
0

e−2F (φ)

)
− (wm + 1)F0e−3(1+wm)F (φ), (12)

V (φ) = 3

8πG

(
f 2(φ) + k

a2
0

e−2F (φ)

)
+ 1

8πG

(
f ′(φ) − k

a2
0

e−2F (φ)

)
+ wm − 1

2
F0e−3(1+wm)F (φ), (13)

where f (φ) = F ′(φ). Then, the following solution is found [23]

φ = t, H(t) = f (t), (14)

which leads to,

a(t) = a0eF (t), a0 =
(

ρm0

F0

) 1
3(1+wm)

. (15)

Using the FRW equations, the effective EoS parameter is defined as,

weff = pm + pφ

ρm + ρφ

= −1 − 2

3

Ḣ − k
a2

H2 + k
a2

. (16)

Now we consider above equations by following examples.
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Fig. 1. Graphs for the effective EoS parameter: from the left to the right one has the graphs for k = 1, k = 0, and k = −1. Here in the numerical calculation we take
a0 = 2,h0 = t0 = t1 = 3.

3. Example I

As a first example, we consider the following model [22],

f (φ) = h2
0

(
1

t2
0 − φ2

+ 1

φ2 + t2
1

)
. (17)

Using the solution (15), the Hubble parameter and the scale factor are given by,

H(t) = h2
0

(
1

t2
0 − t2

+ 1

t2 + t2
1

)
⇒ Ḣ = 2th2

0

(
1

(t2
0 − t2)2

+ 1

(t2 + t2
1)2

)
, (18)

a(t) = a0

(
t + t0

t0 − t

) h2
0

2t0
e

h2
0

t1
arctan(t/t1)

. (19)

ω(φ) and V (φ) are as,

ω(φ) = − 1

πG

h2
0(t

2
1 + t2

0)(φ2 − t2
1+t2

0
2 )φ

(t2
1 + φ2)2(t2

0 − φ2)2
+ 1

4πG

k

a2
0

e−2F (φ) − (wm + 1)F0e−3(wm+1)F (φ), (20)

V (φ) = h2
0(t

2
1 + t2

0)

8πG(t2
1 + φ2)2(t2

0 − φ2)2

[
3h2

0

(
t2

1 + t2
0

) + 4φ

(
φ2 − t2

1 + t2
0

2

)]
+ 1

4πG

k

a2
0

e−2F (φ) + wm − 1

2
F0e−3(1+wm)F (φ), (21)

F (φ) is as,

F (φ) = h2
0

2t0
ln

(
φ + t0

t0 − φ

)
+ h2

0

t1
arctan

φ

t1
. (22)

By using Eqs. (18) and (19), the effective EoS parameter is obtained as following,

weff = −1 − 2

3

2a2
0h2

0t( 1
(t2

0−t2)2 − 1
(t2+t2

1)2 )(
t+t0
t0−t )

h2
0

t0 e
2h2

0
t1

arctan(t/t1) − k

a2
0h4

0(
1

t2
0−t2 − 1

t2+t2
1
)2(

t+t0
t0−t )

h2
0

t0 e
2h2

0
t1

arctan(t/t1) + k

. (23)

Thus, when t → 0 then weff → −1, weff < −1, weff > −1, respectively for k = 0, k = −1, k = 1. Therefore when t → 0, we have an
acceleration epoch for k = 0, and k = −1. While for t → ∞ we have weff → −1 for all cases, which can be interpreted as late time
acceleration. See also Fig. 1.

4. Example II

As a second example, we consider the following model,

f (φ) = H0

ts − φ
+ H1

φ2
. (24)

Using the solution (15), the Hubble parameter and the scale factor are given by,
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Fig. 2. Graphs for the effective EoS parameter: from the left to the right one has the graphs for k = 1, k = 0, and k = −1. Here in the numerical calculation we take
a0 = 1, H1 = 2, H0 = ts = −1.

H(t) = H0

ts − t
+ H1

t2
⇒ Ḣ = H0

(ts − t)2
− 2H1

t3
, (25)

a(t) = a0(ts − t)−H0 e
−H1

t . (26)

ω(φ) and V (φ) are as,

ω(φ) = − 1

4πG

[
H0

(ts − φ)2
− 2H1

φ2

]
+ 1

4πG

k

a2
0

e−2F (φ) − (wm + 1)F0e−3(wm+1)F (φ), (27)

V (φ) = 1

8πG

[
H0(3H0 + 1)

(ts − φ)2
+ H1

φ3

(
H1

φ
− 2

)]
+ 1

4πG

k

a2
0

e−2F (φ) + wm − 1

2
F0e−3(1+wm)F (φ), (28)

F (φ) is as,

F (φ) = − H1

φ
− H0 ln(ts − φ). (29)

By using Eqs. (25) and (26), the effective EoS parameter is obtained as following,

weff = −1 − 2

3

a2
0(ts − t)−2H0 (

H0
(ts−t)2 − 2H1

t3 )e
−2H1

t − k

a2
0(ts − t)−2H0 (

H0
ts−t − H1

t2 )2e
−2H1

t + k
. (30)

In Fig. 2 one can see that w > −1, namely this model is not phantom-like model.

5. Example III

As a third example, we consider the following model,

f (φ) = H0 + H1

φn
, (31)

where H0 and H1 > 0 are constant and n is a positive integer and constant. Using the solution (15), the Hubble parameter and the scale
factor are given by,

H(t) = H0 + H1

tn
⇒ Ḣ = −nH1

tn+1
, (32)

a(t) = a0e
[H0t− H1

(n−1)tn−1 ]
. (33)

ω(φ) and V (φ) are as,

ω(φ) = 1

4πG

nH1

φn+1
+ 1

4πG

k

a2
0

e−2F (φ) − (wm + 1)F0e−3(wm+1)F (φ), (34)

V (φ) = 1

8πG

3

φn+1

[
(H0φ

n/2 + H1)
2

φn−1
− nH1

3

]
+ 1

4πG

k

a2
0

e−2F (φ) + wm − 1

2
F0e−3(wm+1)F (φ), (35)

F (φ) is as,

F (φ) = H0φ − H1
n−1

. (36)

(n − 1)φ
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Fig. 3. Graphs for the effective EoS parameter: from the left to the right one has the graphs for k = 1, k = 0, and k = −1. Here in the numerical calculation we take
a0 = 0.5, H1 = H0 = −2 and n = +2 (line) and n = −2 (dot).

By using Eqs. (32) and (33), the effective EoS parameter is obtained as following,

weff = −1 + 2

3

a2
0

nH1
tn+1 e

2H0t− 2H1
(n−1)tn−1 + k

a2
0(H0 + H1

tn )2e
2H0t− 2H1

(n−1)tn−1 + k

. (37)

As one can see in Fig. 3, for n = 2, when t → 0 then weff → −1 and we have an acceleration epoch. While for t → ∞, weff → −1 only in
the case k = 0, which can be interpreted as late time acceleration.

6. Example IV

As a fourth example, we consider the following model,

f (φ) = Hi + Hlce2αφ

1 + ce2αφ
, (38)

where Hi, Hl, c and α are positive constant. Using the solution (15), the Hubble parameter and the scale factor are given by,

H(t) = Hi + Hlce2αt

1 + ce2αt
⇒ Ḣ = −2cα(Hi − Hl)e2αt

(1 + ce2αt)2
, (39)

a(t) = a0
(1 + ce2αt)

Hl
2α

(c + e−2αt)
Hi
2α

. (40)

ω(φ) and V (φ) are as,

ω(φ) = 1

2πG

cα(Hi − Hl)e2αφ

(1 + ce2αφ)2
+ 1

4πG

k

a2
0

e−2F (φ) − (wm + 1)F0e−3(wm+1)F (φ), (41)

V (φ) = 1

8πG

[
3(Hi + cHle2αφ)2

(1 + ce2αφ)2
− 2cα(Hi − Hl)e2αφ

(1 + ce2αφ)2

]
+ 1

4πG

k

a2
0

e−2F (φ) + wm − 1

2
F0e−3(wm+1)F (φ), (42)

F (φ) is as,

F (φ) = 1

2α
ln

(1 + ce2αφ)Hl

(c + e−2αφ)Hi
. (43)

By using Eqs. (39) and (40), the effective EoS parameter is obtained as following,

weff = −1 + 2

3

2a2
0cα(Hi − Hl)(1 + ce2αt)

Hl
α e2αt + k(1 + ce2αt)2(c + e−2αt)

Hi
α

a2
0(Hi + cHle2αt)2(1 + ce2αt)

Hl
α + k(1 + ce2αt)2(c + e−2αt)

Hi
α

. (44)

As one can see from Fig. 4, when t → 0 then weff → −1, and we have an acceleration epoch, while for t → ∞ we have weff → −1 for all
cases, which can be interpreted as late time acceleration.

7. Unified inflation and late time acceleration in non-interacting case

In this section we consider the third Fridmann equation when there is interaction between dark energy density ρφ and the Cold Dark
Matter (CDM) ρm . The corresponding continuity equations are now written as,
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Fig. 4. Graphs for the effective EoS parameter: from the left to the right one has the graphs for k = 1, k = 0, and k = −1. Here in the numerical calculation we take
α = 1,a0 = c = Hl = 2, Hi = 1.

ρ̇φ + 3H(1 + ωφ)ρφ = −Q , (45)

ρ̇m + 3Hρ = Q , (46)

where the quantity Q expresses the interaction between the dark components. The corresponding FRW equations are written as,

H2 + k

a2
= 8πG

3
(ρm + ρφ), (47)

Ḣ − k

a2
= −4πG(ρm + ρφ + pφ), (48)

with ρφ and pφ given by,

ρφ = 1

2
ω(φ)φ̇2 + V (φ), (49)

pφ = 1

2
ω(φ)φ̇2 − V (φ). (50)

Combining Eqs. (47)–(50), we obtain,

ω(φ)φ̇2 = − 1

4πG

(
Ḣ − k

a2

)
− ρm, (51)

V (φ) = 3

8πG

(
H2 + k

a2

)
+ 1

8πG

(
Ḣ − k

a2

)
+ ρm

2
. (52)

From Eq. (46), we get,

ρm = ρm0a−3 + Q

3H
. (53)

We now consider the theory in which V (φ) and ω(φ) are,

ω(φ) = − 1

4πG

(
f ′(φ) − k

a2
0

e−2F (φ)

)
− F0e−3F (φ), (54)

V (φ) = 3

8πG

(
f 2(φ) + k

a2
0

e−2F (φ)

)
+ 1

8πG

(
f ′(φ) − k

a2
0

e−2F (φ)

)
− 1

2
F0e−3F (φ), (55)

where f (φ) = F ′(φ). Then the following solution is found,

φ = t, H(t) = f (t) (56)

then we obtain,

a(t) = a0eF (t), a0 =
(

ρm0

F0

) 1
3

(57)

EoS parameter is as,

weff = pφ

ρm + ρφ

= −1 − 2

3

Ḣ − k
a2

H2 + k
a2 + Q

3H

. (58)

Now we consider above equations by following examples.
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Fig. 5. Graphs for the effective EoS parameter: from the left to the right one has the graphs for k = 1, k = 0, and k = −1. Here in the numerical calculation we take
h0 = t0 = t1 = 3 and Q = −1.

8. Example I

As a first example, we consider the following model,

f (φ) = h2
0

(
1

t2
0 − φ2

+ 1

φ2 + t2
1

)
. (59)

Using the solution (15), the Hubble parameter and the scale factor are given by,

H(t) = h2
0

(
1

t2
0 − t2

+ 1

t2 + t2
1

)
⇒ Ḣ = 2th2

0

(
1

(t2
0 − t2)2

+ 1

(t2 + t2
1)2

)
, (60)

a(t) = a0

(
t + t0

t0 − t

) h2
0

2t0
e

h2
0

t1
arctan(t/t1)

. (61)

ω(φ) and V (φ) are as,

ω(φ) = − 1

πG

h2
0(t

2
1 + t2

0)(φ2 − t2
1+t2

0
2 )φ

(t2
1 + φ2)2(t2

0 − φ2)2
+ 1

4πG

k

a2
0

e−2F (φ) − F0e−3F (φ), (62)

V (φ) = h2
0(t

2
1 + t2

0)

8πG(t2
1 + φ2)2(t2

0 − φ2)2

[
3h2

0

(
t2

1 + t2
0

) + 4φ

(
φ2 − t2

1 + t2
0

2

)]
+ 1

4πG

k

a2
0

e−2F (φ) − 1

2
F0e−3F (φ), (63)

F (φ) is as,

F (φ) = h2
0

2t0
ln

(
φ + t0

t0 − φ

)
+ h2

0

t1
arctan

φ

t1
. (64)

By using Eqs. (18) and (19), the effective EoS parameter is obtained as following,

weff = −1 − 2

3

2a2
0h2

0t( 1
(t2

0−t2)2 − 1
(t2+t2

1)2 )(
t+t0
t0−t )

h2
0/t0 e

2h2
0

t1
arctan(t/t1) − k

a2
0[h4

0(
1

t2
0−t2 − 1

t2+t2
1
)2 + Q /(3h2

0(
1

t2
0−t2 − 1

t2+t2
1
))]( t+t0

t0−t )
h2

0/t0 e
2h2

0
t1

arctan(t/t1) + k

. (65)

In Fig. 5, ωeff is starting in a value less than −1, and ending asymptotically go to −1. Therefore expansion of the universe has an
acceleration epoch for all cases.

9. Example II

Now we consider the following model,

f (φ) = H0

ts − φ
+ H1

φ2
. (66)

Using the solution (15), the Hubble parameter and the scale factor are given by,

H(t) = H0

ts − t
+ H1

t2
⇒ Ḣ = H0

(ts − t)2
− 2H1

t3
, (67)

a(t) = a0(ts − t)−H0 e
−H1

t . (68)
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Fig. 6. Graphs for the effective EoS parameter: from the left to the right one has the graphs for k = 1, k = 0, and k = −1. Here in the numerical calculation we take,
a0 = 1, H1 = 2,H0 = ts = −1 and Q = 1.

ω(φ) and V (φ) are as,

ω(φ) = − 1

4πG

[
H0

(ts − φ)2
− 2H1

φ2

]
+ 1

4πG

k

a2
0

e−2F (φ) − F0e−3F (φ), (69)

V (φ) = 1

8πG

[
H0(3H0 + 1)

(ts − φ)2
+ H1

φ3

(
H1

φ
− 2

)]
+ 1

4πG

k

a2
0

e−2F (φ) − 1

2
F0e−3F (φ), (70)

F (φ) is as,

F (φ) = − H1

φ
− H0 ln(ts − φ). (71)

By using Eqs. (25) and (26), the effective EoS parameter is obtained as following,

weff = −1 − 2

3

a2
0(ts − t)−2H0 (

H0
(ts−t)2 − 2H1

t3 )e
−2H1

t − k

a2
0(ts − t)−2H0 [( H0

ts−t − H1
t2 )2 + Q /(3(

H0
ts−t − H1

t2 ))]e −2H1
t + k

. (72)

As one can see in Fig. 6, we have an acceleration epoch in the k = 1 case, but or k = 0,−1 both phases deceleration and acceleration are
possible.

10. Example III

As a third example, we consider the following model,

f (φ) = H0 + H1

φn
, (73)

where H0 and H1 > 0 are constant and n is a positive integer and constant. Using the solution (15), the Hubble parameter and the scale
factor are given by,

H(t) = H0 + H1

tn
⇒ Ḣ = −nH1

tn+1
, (74)

a(t) = a0e
[H0t− H1

(n−1)tn−1 ]
. (75)

ω(φ) and V (φ) are as,

ω(φ) = 1

4πG

nH1

φn+1
+ 1

4πG

k

a2
0

e−2F (φ) − F0e−3F (φ), (76)

V (φ) = 1

8πG

3

φn+1

[
(H0φ

n/2 + H1)
2

φn−1
− nH1

3

]
+ 1

4πG

k

a2
0

e−2F (φ) − 1

2
F0e−3F (φ), (77)

F (φ) is as,

F (φ) = H0φ − H1
n−1

. (78)

(n − 1)φ
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Fig. 7. Graphs for the effective EoS parameter: from the left to the right one has the graphs for k = 1, k = 0, and k = −1. Here in the numerical calculation we take
a0 = 0.5, H1 = H0 = −2, Q = 1, n = +2 (line) and n = −2 (dot).

By using Eqs. (32) and (33), the effective EoS parameter is obtained as following,

weff = −1 + 2

3

a2
0

nH1
tn+1 e

[2H0t− 2H1
(n−1)tn−1 ] + k

a2
0[(H0 + H1

tn )2 + Q /(3(H0 + H1
tn ))]e[2H0t− 2H1

(n−1)tn−1 ] + k

. (79)

As one can see, in case n = 2, for all cases of k, we have two phase, one as deceleration epoch and other as acceleration epoch. But in
n = −2 case, we have an acceleration phase for k = 1,−1, in the other hand we have one acceleration epoch and the other a deceleration
epoch for k = 0. See also Fig. 7.

11. Example IV

As a fourth example, we consider the following model,

f (φ) = Hi + Hlce2αφ

1 + ce2αφ
, (80)

where Hi, Hl, c and α are positive constant. Using the solution (15), the Hubble parameter and the scale factor are given by,

H(t) = Hi + Hlce2αt

1 + ce2αt
⇒ Ḣ = −2cα(Hi − Hl)e2αt

(1 + ce2αt)2
, (81)

a(t) = a0
(1 + ce2αt)

Hl
2α

(c + e−2αt)
Hi
2α

. (82)

ω(φ) and V (φ) are as,

ω(φ) = 1

2πG

cα(Hi − Hl)e2αφ

(1 + ce2αφ)2
+ 1

4πG

k

a2
0

e−2F (φ) − F0e−3F (φ), (83)

V (φ) = 1

8πG

[
3(Hi + cHle2αφ)2

(1 + ce2αφ)2
− 2cα(Hi − Hl)e2αφ

(1 + ce2αφ)2

]
+ 1

4πG

k

a2
0

e−2F (φ) − 1

2
F0e−3F (φ), (84)

F (φ) is as,

F (φ) = 1

2α
ln

(1 + ce2αφ)Hl

(c + e−2αφ)Hi
. (85)

By using Eqs. (39) and (40), the effective EoS parameter is obtained as following,

weff = −1 + 2

3

2a2
0cα(Hi − Hl)(1 + ce2αt)

Hl
α e2αt + k(1 + ce2αt)2(c + e−2αt)

Hi
α

a2
0[(Hi + cHle2αt)2 + Q (1+ce2αt )3

(Hi+cHle2αt )
](1 + ce2αt)

Hl
α + k(1 + ce2αt)2(c + e−2αt)

Hi
α

. (86)

As one can see from Fig. 8, when t → 0 then weff → −1, and we have an acceleration epoch, while for t → ∞ we have weff → −1 for all
cases, which can be interpreted as late time acceleration.
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Fig. 8. Graphs for the effective EoS parameter: from the left to the right one has the graphs for k = 1, k = 0, and k = −1. Here in the numerical calculation we take
a0 = 2, Hl = 2, Hi = 1, α = 1, c = 2 and Q = 1.

12. Conclusions

In order to solve cosmological problems and because of the lack of knowledge, for instance for determining what could be the best
candidate for DE for explaining the accelerated expansion of the universe, cosmologists try to approach the best results as precisely as
they can by considering all the possibilities they have. The flat universe is usually assumed when constraining the time dependence of the
equation of state. The assumption is often justified by invoking a prediction of the inflation or by resorting to confirmation by cosmological
observations. However, we should test the inflationary paradigm by measuring the curvature of the universe, and observational evidence
of a flat universe is often obtained assuming a cosmological constant for dark energy. Therefore, not knowing the nature of the dark
energy, it is important to investigate the curvature of the universe with various dark energy models.
In the present Letter we have developed, the reconstruction program for the expansion history of the universe, by using a single scalar
field in the non-flat universe. At first in the non-interacting case we have presented a number of examples which prove that it is actually
possible to unify early-time inflation with late-time acceleration.
Studying the interaction between the dark energy and ordinary matter will open a possibility of detecting the dark energy. Being a
dynamical component, the scalar field dark energy is expected to interact with the ordinary matters. For example, Carroll [24] (see
also [25]) has considered an interaction of form Q Fμν ˜F μν with Fμν being the electromagnetic field strength tensor which has interesting
implication on the rotation of the plane of polarization of light coming from distant sources. Recent data on the possible variation of the
electromagnetic fine structure constant has triggered interests in studies related to the interactions between quintessence and the matter
fields. Due to this we have generalized the technique of first part of paper to the non-interacting case. Again, various explicit examples of
unification of early-time inflation and late-time acceleration have been presented in those formulations.
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