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ABSTRACT 

Canonical forms are derived for the set of minimal systems of given order from a 
canonical form for a class of coinner transfer functions. One of these canonical forms 
is in terms of so called Riccati balanced coordinates. The application of this work to 
model reduction is discussed. 

1. INTRODUCTION 

This paper is concerned with canonical forms for linear, finite dimen- 
sional state space systems. Recently, Ober (1987a) introduced a canonical 
form for the special class of asymptotically stable systems in terms of 
balanced realizations. This canonical form gives some insight into structural 
properties of these systems, and is particularly useful from a model reduction 
point of view. A canonical form with similar properties will be derived in this 
paper for the set of all minimal systems of a given state space dimension. 

This work was completed while the second author was a Ph.D. student at the University of 
Cambridge, England. 
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We define a canonical form in the following way. Let L,P,“’ be the set of 
all minimal state space systems (A, B, C, D) with n dimensional state space, 
m dimensional input space, and p dimensional output space. Two systems 

(A,, B,, C,, Dr) and (Aa, B,, Ca, Da) in @” are called equivalent if there is 
a nonsingular matrix T such that A, = TA,T- ‘, B, = TB,, C, = C,T- ‘, and 
D, = Da. It is well known that two minimal systems are equivalent if and only 
if their transfer functions are identical. 

A canonical form is a map 

such that 

I&$, B,>C,> 0,)) = r((A,, B,,C,, Q)) 

if and only if 

(A,,B,,C,,D,) isequivalent to (AB,B2,C2,D2). 

Section 2 reviews the results of Ober (1987a) on balanced realizations of 
asymptotically stable systems. In Section 3 the concept of a normalized 
coprime factorization of a transfer function is introduced, and it is shown that 
coprime factors correspond to a particular class of asymptotically stable 
coinner transfer functions. We can then derive a canonical form for minimal 
state space systems on the basis of a canonical form for this class of coinner 
systems. This is done by exploiting the connection between a transfer 
function and its normalized coprime factors. Section 4 then gives canonical 
forms for minimal systems in terms of so-called “normalized left coprime 
factor balanced” coordinates and “Riccati balanced” coordinates. The latter 
is shown to be an extension of the work by Jonckheere and Silverman (1983), 
who gave a canonical form in terms of Riccati balanced coordinates for the 
special case of single input, single output systems with distinct characteristic 
values. The results of Sections 2-4 are then discussed in Section 5 in a model 
reduction framework. 

2. BALANCED REALIZATIONS FOR ASYMPTOTICALLY 
STABLE SYSTEMS 

In this section we are going to review the canonical form for asymptoti- 
cally stable and minimal systems of given dimension, i.e. systems in C,Pjm as 
given in Ober (1987a). This canonical form was derived in terms of balanced 
realizations. which are defined as follows. 
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DEFINITION 2.1 (Moore, 1981). Let (A, I?, C, 0) E Cl,“. Then 
(A, B, C, D) is called balanced if for 

w,= a 
J 

eiABBTetB'dt , 
0 

w,= m 
s 

e tA’h *Ce tA dt 
0 

we have W, = W, =: 2 =: diag( ui, ua, . , a,). Z is called the gramian of the 
system (A, B, C, 0). The positive numbers ui, u2,, . . , a,, are called the singu- 

lar values of the system (A, B, C, D). 

Alternatively, balanced realizations can be characterized as those systems 
whose corresponding Lyapunov equations have identical and diagonal solu- 

tions. 

THEOREM 2.1 (Moore, 1981). (A, B, C, D) E Cl,“’ is balanced if and 
only if there exists a diagonal matrix ): > 0 such that 

AZ + ZAT= - BBT, 

A*Z + ZA = - CrC. 

In this case Z = W, = W,.. 

It was shown in Ober (1987b) that all pass systems have a particular 
canonical form which is a building block for the canonical form of general 
systems. For convenience of notation we therefore introduce the following 
notion, which describes the essential features of structure of the C and A 
matrix of an all pass system in the canonical form mentioned above. 

DEFINITION 2.2. We say that 

(CD A) AER”~“, CERP~“, 

is in standard all pass form if: 

(1) We have 

CTC=diag(h,l,(,,,X,Z,(,,,...,XIZ,(l,,O,...,O) 

with hi > X, > . . . > X, > 0 and r0 := Ci,,r(i) < p. In particular C has 
the following structure: 

C= (C(1) ,..., C(i) ,..., C(Z),0 ,..., 0), 

where for 1~ i < I, the submatrix 

C(i) = (c(i)st)lGsGp EIRpx’(i) 
lGtgr(i) 
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has lower triangular form specified by indices 

l<s(i,l)<s(i,2)< ... <s(i,r(i))<p 

in the following way: 

C(i)s(i,t),t ’ O, 1 <t <T(i), 

C(i),l = 0, s<s(i,t), l<ttr(i), 

i.e. 

C(i) = 

0 

x 

x 

x 

x 

x 

(2) For A partitioned as 

0 0 

0 0 
0 0 

0 0 

0 0 
C(i),(i,2).2 0 

0 

we have: 

C(i)s(i,3x3 

x 

x 

x 

X 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

0 \ 

0 
0 

0 

0 
0 

0 

0 

0 

0 
. . . C(i)s(i.,(i)),ffi) 

. . . X 

. . . x I 

AI2 
I A ' 

A,,E RQxrn 
22 

(9 AI, is skew symmetric, i.e. AT,, = - A,,; 
(ii) there is an integer 9 > 1 and a set of double indices 

(g(l), h(l)),...,(g(i), h(i)),...,(g(9), h(9)) 
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with 

27 

AZ, = 

1= g(l) < . 

l=h(q)< 

such that for 

we have 

‘g(t), h(i)' O, 

'g(i),t = 0, 

a = 
St 0, 

i.e. 

?z x 

. x Ia 

1 x 
* x 

IT x 

* x 

~g(3I.h(3) 0 

0 0 

(iii) A,, = - AT . 21’ 

(iv) we have 

A,= 

. <g(i)<g(i+l)< ... <n-r,, 

.. <h(i+l)<h(i)< ... <To 

A21=+,,L.“-. 

l=st<ro 

lGiG9, 

td(i), l<i,<q, 

s>g(i>, eh(i), l<i<9, 

0 - a2 

% 0 

ff3 

0 

0 0 

0 0 

- a3 

0 . . 

a n - 9, 
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with LY~, 2 < i < n - rO, given by 

0 
(Yi = 

if i=g(s)forsomel<s<q, 

>o otherwise. 

The following result, which was proven in Ober (1987a), gives a canonical 
form for state space realizations of asymptotically stable and minimal sys- 
tems. Conversely, it also shows that if a state space system is of this form it is 
automatically minimal and asymptotically stable. Let ?‘Cf,” denote the set of 
transfer functions of systems with state space realizations in C:,“‘. 

THEOREM 2.2. Yl’he following two statements are equivalent: 

(1) G(s) E TC:,“‘. 

(2) G(s) has a realization (A,B,C,D)EIW”~“X[W”~~“X[W~~“X[W~~~” 
given in the following way: There are positive integers 

k 

n(1) ,..., n(j) ,..., n(k) such that c n(j) = n 
j=l 

and numbers 

Ul>. . . >Uj> ... >a,>0 

such that if (A, B, C, D) is partitioned as 

‘B1\ 

B=: Bj , 

,Ok, 
c:=(cl,..., cj ,..., ck), 



CANONICAL FORMS 29 

we have 

(9 (Cj, A(j, j)) is in standard all pass form and 

A(j, j> = - $(cj)‘cj+ A(j, i) 

with rO(j) := rank[(Cj)TCj] < min(p, m); 
(ii) we have 

(iii) we have 

with 

such that 

where h(i), is the sth row of B’, u(i), is the sth row of U’, c(i), is 

the sth column of C’, and Ilc(i)Sl]=\ic(i)~c(i)y; 
(iv) D E Iw pX”‘. 

Moreover, (A, B, C, D) as defined in (2) is balanced with gramian 

The map which assigns to each system in C{*“’ the realization given in 

(2) is a canonical form. 
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Proof. Follows from Theorem 6.1 and Theorem 7.1 in Ober (1987a) by 
taking adjoints. n 

The following corollary specializes these results to the case of single input, 
single output transfer functions. 

COROLLARY 2.1. The following two statements are equivalent: 

(1) g(s) E TC,IJ. 

(2) g(s) hasarealizution (A,~,c,~)E[W~~~XW~~~XIW~~~X[W~~~, which 
is given by the following parameters: 

n(l), . . . , n(j),-..,n(k), n(j) E N, Ci=,n(j> = 72, 

sl,. . .) Si’. . .) Sk, si = + 1, 1~ j < k, 

ul> . . . > aj > . . . iJk > 0, UjEIR,l<j<k 

cl,a(l),,...,“(l)j’..“a(l),(,)-,, c, > 0, a(l)j r 0, 1 G j G n(1) - 1, 

$,> 42),,..., a(2)j,“‘3 d2)n(2)-1, c2 > 0, ~42)~ > 0, 1 G j < n(2) - 1, 

in the following way: 

(i) c=(- ,..., cj,o ,..., 0 ,..., _ck,o,_-..,o]. 

WY 

n(l) n(j) n(k) 

(ii) hl=( sIcI,O ,..., 0 ,..., sjcj,0,...,0,...,~kck~~...,Oj~ 

n(l) n(j) n(k) 
(iii) For A=:(A(i,j)),Gi,jGk we have 

(a) block diagonal entries A(j, j), 16 j G k: 

A( j, j) = 

T(j, i) -dill 0 

a(j), 0 - 412 
a(j)2 0 

413 0 
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with a(j, j) = - (1/2u,>c~. 

(b) Off diagonal blocks A(i, j), 1~ i, j < k, i + j: 

‘a(i,j) 0 ... 0 

A(i,j)= 0 0 .” 0 

, 0 0 . . . (j 

with 

(iv) d E R. 

1 
a(i, j) = - 

ui + sisjuj ‘icj. 

Moreover, (A, 6, c, d) as defined in (2) is balanced with gramian 

The map which assigns to each system in C,‘, ’ the realization given in (2) 

is a canonical form. 

It is interesting to observe that a realization (A, b, c, d) as given in part 
(2) of the previous corollary is in fact sign symmetric with respect to the sign 
matrix 

S = diag( sIf,,(I,, . . . , sjl^,(j,>. . . , skfn(k)), 

f,,(jj=diag(+l, -l,+l, -l,...)~[W”(j)~“‘(j), 

i.e. 

AT = SAS, b = SC’. 

The Cauchy index of a single input, single output system, which is 
important in the study of the topology of transfer functions [see Brockett 
(1976) or Ober (1987c)] is defined as follows: 

DEFINITION 2.3. Let p(x) and q( 1~) be relatively prime polynomials 
with real coefficients. The Cuuchy index C&g(r)) of g(r) = p( x)/q(x) is 
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defined as the number of jumps from - 00 to + co less the number of jumps 
from t-00 to -co of g(x) when x varies from -co to +co. 

A result due to Anderson (1972) implies that if a system is sign symmetric 
with respect to a sign symmetry matrix S, the Cauchy index of its transfer 
function is given by 

Cind(g(s)) = trace(S). 

As systems which are parametrized in the previous corollary are sign symmet- 
ric, the Cauchy index of a transfer function in TC,‘,’ can thus be calculated 
on the basis of the signs (si)rGiGk which are part of the parametrization. 

3. NORMALIZED LEFT COPRIME FACTORIZATIONS 

In this section we will give a canonical form for a special class of coinner 
systems which has a similar structure to the canonical form for Cz,“’ in 
Theorem 2.2. We will also show that a one to one correspondence exists 
between this class of coinner functions and normalized coprime factor 
representations. Further it is shown that a function in IX:,“, the set of 
transfer functions of systems in LEs*, can be directly related to its normal- 
ized coprime factor representation. In Section 4 we are then going to give a 
canonical form for L ,“a m by exploiting these preliminary results. 

Before we introduce the normalized left coprime factorization of a 
transfer function in TLE,“‘, we will first discuss coinner transfer functions. 

DEFINITION 3.1. A transfer function G(s) E TClxm, p < m, is called 
coinner if 

G(s)G( - s)~ = 1 

for all SEC. 

A system theoretic criterion for a transfer function to be coinner is given 
in the next proposition. 

PROPOSITION 3.1 (Doyle 1984). Let (A, B, C, D) E Ci,m, p 6 m, and 
let P = PT > 0 be such that 

AP + PAT= - BBT. 
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Then G(s) = C(s1 - A)-lB + D is coinner if and only if 

(i) CP + DBr = 0, 
(ii) DDT = I. 

For a class of coinner functions whose realizations have a particular 
D-term this characterization can also be rewritten as follows. 

PROPOSITION 3.2. Let (A,., B,, C,, DC) E Cf.“‘, with p < m, and purti- 
tion 

lf P = PT > 0 is the solution to 

AP+PAT= - BBz 

and DC, = ( Dc,)T > 0, then 

G(s) = C&Z - Ar.) -‘B, + D, 

is coinner if and only if 

(i) B,.,= -(PC<?+ B,.,D~?)D~;‘, 

(ii) DC, is such that I - D&‘; > 0 and DC,, = (I - Dr.,Dc?i)1/2. 

Proof. Assume that G(S) is coinner. Then 

C,P + D,B,1’=C,.P + D,.,B;+ D,.%BL=O 

and hence 

Bc,= -(PC,“+ B<.,D:;)D<,‘. 

The fact that D,DT = I together with the assumption that DC, = DC: > 0 
immediately implies (ii). The converse follows similarly. n 

We denote by ?%I, Plm+P the class of coinner transfer functions in 
TC,PX”‘+~ which are such that for G(oo) =: [DC,, D,,], with DC, E RPxP, D+ is 
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symmetric and positive definite and for which the largest singular value of a 
balanced realization of G(s) is strictly less than one. The symbol CZ~‘“‘+P 
denotes the set of minimal state space realizations of transfer functions in 
)“CZP.“1+P 

before we show that the set TCZ:*“‘+p is in fact closely linked with the 
set TLE,“‘, we prove the following parametrization result for transfer func- 
tions in TCZ~,“‘+P. 

THEOREM 3.1. The following two statements are equivalent: 

(1) G(s) E TCZ,p~“‘+p. 
(2) G(s) has a realization (A,., B,, C,, 0,) E R”x” X RnX(p+nl) X 

!R px” x [w px(p+*‘) given in the following way: There are positive integers 

k 

n(l>,...,n(j),...,n(k) such that C n(j) = n 
j=l 

and numbers 

1> u1 1 . . . > aj . . . > lJk > 0 

such that if (A,, B,, C,,ZI,) is partitioned as 

A,.=:(A,(i,j))l~i,j~k, A,.(i, j) E [Wn(i)xn(i), 

B,. =: B,’ , Bj g (Wn(j)x(rll+p) r 

then: 

c,’ E fq pxn(i), 

(i) DC = [ZV1/‘Dpn,, R-1/2] for a matrix D,,, E RPx”’ with R := Z + 

0, r,, D,‘t,, . 
(4 (Cj, A,( j, j)) is in standard all pass form, where 

A,(j, j>= -&JCj)‘Cj+A,(j,j) 
I 

with rO( j) := rank((C,i)TCf’) < min(p, m). 
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(iii) Bj =: [B,i, B,jz], BjI E IR~(~)~~‘, is given by 

35 

Bc’,= - [ Bjs-1/2D,T,, + rJj(c~)TR-‘:q, 

where 

with Uj E Iw ro(j)XRL, uj(uj)T = zrOcjj, Up s = z + DpTrn~~,~. 
(iv) We have 

A,(i,j)=[Ac(~~~) ii, l<i,j<k, i#j, 

with 

X,(i, j) =: (a,(i, j)st)l<s<lo(j, E w(i)x~~(j) 

16 t< r"(j) 

such that 

where b(i), is the s th row of ii and c,(i), is the s th column of C,i. 

Moreover, (A,, B,, C,, 0,) as defined in (2) is balanced with gramian 

The map which assigns to each system in CZE,mip the realization given in 
(2) is a canonical form. 

Proof. To show that (1) implies (2) let (A,, B,, C,, 0,) be a realization of 

G(s) given in the balanced canonical form of Theorem 2.2 with gramian Z,. 
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Firstly note that as (A,, B,., C,, 0,) E CZ, P, nr+p the singular values are such , 
that 

1 > ur > . ‘. > Uk > 0. 

Part (i) follows, as G(s) E TCZ~~“‘+p and hence, by Proposition 3.2, Dc has 

the form 

D,=: [DC,, DC%] = [Rp1’2Dp,,L,Rp”2] 

with D,,, := Dc.‘Dc, and R := I + D,,,,D,‘,,,,. The inverse DC;’ exists because 
by assumption DC, = DC’, > 0. 

Since (A,, B,, C,, 0,) is the canonical form of Theorem 2.2, A,(j, j) and 
Cj are as in (ii). To show (iii) and (iv), partition Bc =: [ Bc,, BJ], B,_] E R ” x”l, 
and introduce the matrix 

ii =: (Bc,+ 2,:,TA-1/2Dp,,L)S1/2. 

with S = I + Dp’m D,,, . Then 

B 
Cl 

= &r/s- Z,C,rR-‘/sD pnr 7 

and with Proposition 3.2 

I$,= - (BcC;+ Bc,D,T,,R~“2)R1’” 

= 
4 ZcC,TR”2 + i%p”2D,T,, - Z,_C~T’R~“2Dp,,,D;n,) 

=-( &CcTR ~ 1’2 + I% “‘D&). 

Thus we have that 

B,B,T = Bc,B,‘, + B+Bc’, 

z.z iS’iT+ k1’2D~,,,DpmS-1/2~T 

+ ZcCcTR~“2Dp,D,T,R-1’2Cc~c + E,C,TR-‘CJ, 

- i$ - l/‘DpT, R ~ 1/2CcXc + i?S 1’2D,T,, R 1’2C Z c c 

- Z,C,TR~1/2D,,S-1/2gT+ Z,C,?R-“2Dp,,,S-1’2~T 

= lziT + z,c,Tc,z,. 
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If we partition 
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we obtain that 

B;( B;)~ = B( i@)’ + $( c;)~c;, 

and as (A, B, C, D) is balanced, we have the identity 

which then implies that 

Hence there exists a unique UJ E Rrl)(j)xnr, Uj(UJ jr= I,,,(j), such that 

(iii) is satisfied. Moreover r,(j) = rank [(Cj)rC,i] < min( p, m), 
which shows (iii) and completes the proof of (ii). 

To complete this part of the proof it now remains to evaluate the entries 
a,.(4 j),, of A<.(i, j), 1 B i, j < k, i f j: 

~~["jS~i)~i;(i)~~u*(l~of)c~~i~~c~~~)~]~ 

I J 

where we have used that B,BT = I%‘+ Z,.C,“C,.Z,.. 
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As a first step in proving that (2) implies (1) we show that G(s) E IDS:,“’ 
using Theorem 2.2. Analogously to the derivation above we obtain that 

and thus for l< j<k, 

z3j(B,j)T = B(H)* + uf(ci)c; 

=(l-o;)(c~)rc~+.;(c~)rc~ 

= (Cj)‘CJ 

which implies that 

q = [ ( cj)Tcj]‘/2j ;) 

for some !?j E RrO(j)x(miP) such that oj(uj)T = ZrOcjj. 
Again using ( *), it follows that 

and hence 

This shows that (A,, B,, C,, 0,) is given in the parametrization of Theorem 
2.2 and hence G(s) E Z’Cl,m+p with gramian 2,. 

To complete the proof we have to show that G(s) is coinner. But 
D,D,‘= I, so it remains to show, following Proposition 3.2, that 

Bc, = - (z,Cc’+ Z3c,Dg,R-'/2)Rl/2, 
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where B, := [B,,, ,BJ, Bc, E R”‘“. But this is the case, since for 1 < j < k 
and BJ =: [ B$ BfJ, Bj, E Iw ‘(jJx”‘, we have that 

-I ( 
uj c; 

) 
* + Bj,,Dp’m R - 1/z 1 R112 

= - nj(C;)*R- 1’2 - &-“2D,T, + oj(Cf)TRpl’zDpnLD;~, 

=- 
[(I 
aj cy TR-1/2+ fijS-l/2 

D&t] 

= Br;. n 

Again, specializing to the case of least input and output dimensions we 
obtain the following corollary for systems in TCI,‘,‘. 

(1) 

(2) 

COROLLARY 3.1. The following two statements are equivalent: 

g(s) E TCZ,1,2. 

g(s) has a realization (A,,b,.,c,,d,)~R”~” XR"~"XR'~" x[wlx2, 

which is given by the following parameters: 

n(l),...,n(j),...,n(k), n(j) E N, E~=,n(j) = n; 

Sl)...) S,‘. .) Sk, sj = f 1, 1~ j < k, 

1 > (I1 > . . > CT] > . . . Ok > 0 u,EW, I,< j<k 

cl, 41)1,. . . , 4UlY.., 4u,(,,p,, cl > 0, ~$1)~ > 0, 1 < j < n(1) - 1 

cz>(y(2)1>.‘.> (w(2)j’...‘“(2).o,_l, c2 > 0, a(2), > 0, 1 < j G n(2) - 1 

in the following way: 

1 
(i)d,= , 

p + d;“, 
[dpn,, 11. 

(ii) c~=( c,,O,..., 0 )...) cj,o )...) 0 )...) c,,o )...) 0). 
v W w 
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0 

ck ( w$,t,, - sk /=Z) 
0 

0 

ck 

0 

A,.( j, j) = 

‘n,.(j,j) -a(j)1 

(iv) FOTAc=:(Ac(i,j))1di,j4k we have 

(a) Block diagonal entries A,(j, j), 1~ j G k: 

0 

n(k) 

a( j)l 0 - a(i)2 
4ih 0 

a(j)3 

1 0 Nj)w-l 0 

1 
with a,( j, j) = - gc$. 

(b) Off diagonal blocks -k,(i, j), 1~ i, j < k, i # j: 

A&J)= 
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with 

41 

a,.(i, j) = - 

CiCj 7 1 - aj 

ui J7 7”’ 1 - aj + s,sjuj 1 - ui 

Moreover, (A, b, c, d) as defined in (2) is balanced with gramian 

The map which assigns to each system in CZ,!,,” the realization given 

in (2) is a canonical form. 

The following definition of the normalized left coprime factorization of a 
transfer function shows that coinner transfer functions are naturally associ- 
ated with such a factorization. For a reference on the role of coprime 
factorizations of transfer functions in the design of control systems see 
Vidyasagar (1985). 

DEFINITION 3.2, Let G(s) 
transfer functions M(s) E TC:, p, 

coprime factorization of G(s) if: 

(i) ti(co) is nonsingular. 
(ii) G(s) = M(s)-‘N(s). 

be a p X m transfer function. Then the 
ti( s) E TC;,“’ constitute a normalized left 

(iii) There exist V(s) E TC,Pz P and U(s) E TCr’P such that for all s E @ 
we have 

ti(s)v(s)+ti(s)u(S) =I,. 

(iv) [I+(s), A?(s)] is coinner, i.e. 

fi(s)$( -s)‘+ti(s)ti( -+=I, 

for all SEC. 

The following statement formalizes the existence and uniqueness proper- 
ties of these normalized left coprime factors. 

PR_OPOSITION 3.3 (Vidyasagar, 1985). The normulized left coprime fac- 

tors N(s) and L@(S) of a transfer function G(s) exist and are unique to 

within left multiplication by a unitary matrix. 



42 RAIMUND OBER AND DUNCAN McFARLANE 

We are now going to review a state space construction of the normalized 
left coprime factors of a transfer function G(s) E TLK,“‘. To do this we have 
to introduce Riccati equations for systems (A, B, C, D) in LE,“‘. 

The generaked control algebraic Riccati equation (GCARE) is given by 

and the generalized filtering algebraic Riccati equation (GFARE) is given by 

(A - BS~‘DTC)z + Z(A - BS-‘&f - ZC*R-‘CZ + BS-‘RT= 0, 

with R = I+ DDT and S = I + D*D. 
These Riccati equations occur in the solution to a particular linear- 

quadratic-gaussian (LQG) control and filtering problem: the GCARE is the 
Riccati equation associated with the steady state output regulator design 
when input and output cost weights are chosen to be the identity. Dually, the 
GFARE is the Riccati equation associated with the steady state optimal filter 
design, where measurement and input noises have identity covariances. 
[More details can be found, for example, in Kwakemaak and Sivan (1972).] 
Note that the case D = 0 allows considerable simplification of these equa- 
tions. 

It is well known that minimality of (A, B, C, D) is sufficient to ensure 
that symmetric and positive definite solutions to the GCARE and the 
GFARE exist, are unique and are the stabilizing ones: 

PROPOSITION 3.4. If (A, B, C, D) is controllable (observable), then 
there exists a unique solution X = XT > 0 (Z = ZT > 0) to the GCARE 
(GFARE). Zf the control gain F and the filter gain H are defined to be 

F:= -S-‘(D*C+BrX), 

H:= -(BD~+zc*)R~~, 

then the eigenvalues of 

A+BF. A+HC 

corresponding to these solutions have strictly negative real parts. 

The use of Riccati equations in this coprime factor context has its basis in 
the results of Nett et al. (1984), who showed that left and right coprime 
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factors of a nominal plant can be generated from a state-feedback-observer 
configuration. 

The following proposition shows that the LQG problem mentioned above 
yields the desired feedback-observer configuration for normalized coprime 
factors of a transfer function G(s). 

PROPOSITION 3.5 (Vidyasagar, 1988). Let (A, B, C, D) E Lc,“’ with 
transfer function G(s) = C(sZ - A))‘B + D, and let H = - (ZCT + 
BD’)R -I he the filter gain corresponding to the unique positive definite 
solution to the GFARE. Then with R = I+ DO’, 

&j(s) := R-‘/2C(sI - A - HC) -‘H+ R--‘j2 

are normalized left caprime factors of G(s), i.e. 

G(s) = ii(s) -%(s). 

REMARK 3.1. The previous proposition shows that each transfer function 
G(s) has a normalized left coprime factorization G(s) = g(s)- ‘#( s) such 
that a( cc) = $( CO)~ > 0. It follows from Proposition 3.3 that a normalized 
left coprime factorization with this property is in fact unique. 

Using Proposition 3.5, a realization of the transfer function [G(s), G(s)] 
can be obtained. The next proposition shows that the positive definite 
solutions to the Lyapunov equations of [g(s), hi(s)] are closely related to the 
positive definitive solutions of the WARE and GFARE of G(s). 

PROPOSITION 0.6 (Clover and McFarlane, 1988b). With the notation of 
Praposition 3.5, define 

A,.=A+ HC, B,= [BtlfD, H], 

C, = R-‘/2C c D,.= [R- 1/2D, R-19. 

l’hen (A,., B,, C,, D,.) is a minimal state space realiuztian of [G(s), G(s)] 
such that the positive definite solutions to the Lyapunoc equations 

A,. P + PAT = - Bc B<!‘, 

ATQ + QA, = - C,?C( 



44 

are given by 

RAIMUND OBER AND DUNCAN McFARLANE 

P=Z, 

Q=x(z+zx)~‘, 

where X, Z are the unique positive definite solutions to the GCARE and the 

GFARE of (A, B, C, D) respectively. 

A further property of P and Q is given next. 

PROPOSITION 3.7 (Meyer, 1988; Glover and McFarlane, 1988b). With 

the notation above. 

Z>PQ 

where u1 denotes the maximum singular value of a balanced realization of 

[fl(s), h-i(s)]. 

REMARK 3.2. -Definition 3.2 and Propositions 3.5-3.7 show immediately 
that the matrix [N(s), M(s)] containing the normalized coprime factors of a 
transfer function G(s) is in T’CZ~,“‘+p. 

We are next going to establish that each transfer function in TCZ,P”“+p 
can be related to a transfer function in TLE,“’ in this way. 

PROPOSITION 3.8. Let G(s) =: [G(s), h;r( s)] E TCZ,P”“+p, d(s) being 

p x p, have a realization given by (A,, B,, C,, D,.), where B, =: [B,,, B,J, 

D, =: [ Dc,,_DJ are pfrtitioned conformalEy with [G(s), g(s)]. 
Then N(s) and M(s) are normalized lefi coprime factors of the transfer 

function e(s) E TLE,“’ defined by the state space realization (A,, B,, CO, DO) 
given by 

A, = A, - B+D<;%<.. 
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Proof. We first have to show that (A,, B,, C,,, D,) is minimal. For this 
purpose we rewrite the matrices of the system (A,, B,, C,, 0,) in terms of the 
matrices of the system (A,, B,,, C,, D,). Since (A,, B,, C,, 0,) is asymptoti- 
cally stable, there exist P = PT > 0 and Q = Q’ > 0 such that 

A,P + PAT, = - B,B,T, 

AT,Q+QA,= -C,‘Cc. 

The fact that the system is in CZg,m+P implies by Proposition 3.2 that 

DC, = (I - D,ID;)“2 

and 

B,,= -(PC:+ Bc,D;)~$. 

But these identities imply that 

with R = (I - Dc,D$ ’ = Z + D, DJ and that 

B,,= - (PC,‘+ B~,D;)R? 

Using the definition B, = Bc, - Bc,R1/zD,.l and setting S = Z + DtD, = 
(Z - D:D,,)Y’, we thus have that 

Z& = (B,, - PC,TD,)S-‘, 

B,,= - ($D,T+ PC;)R-’ 

and hence 

A, = A, - (B,D,T+ Pc$)R-‘c, 
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Also note that 

We are now in a position to reformulate the Lyapunov equations correspond- 
ing to (AC, B,, C,, 0,). We have 

0 = A,P + PA;+ B,B,T 

= [A,-(B,D~+P~~)R-~~~]P+P[A,,-(B,,D,T+PC,:)R-~C,]~ 

+ B 0 S-‘BT+ PCTR-‘C 0 0 0 P 

= (A, - $D;R~‘C,)P + P(A, - BoD,TR--‘C$ 

- PcTR-‘C 0 0 P + B 0 S-‘BT 0 (1) 

and 

O=A:Q+QA,+C$, 

= (A, - BoD$R~‘Co)TQ + Q( A, - B,D,TR-‘Co) 

+(Z-QP)C,TR-%,(I-PQ)-QPC,TR-‘C,PQ 

=(A,- B,D,TR-‘C,)Q-‘+Q-‘(A,- B,,D,TRp’Co)T 

+(Q-‘- P)C,TR-‘Co(Qm’ - P) - PC,TR-‘COP. (2) 

Subtracting Equation (1) from Equation (2), we obtain 

+(Q-‘-P)C,TR-‘C,(Q-‘-P)-B,S-‘B,T. (3) 
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If (A,, B,, C,, De) is not controllable, then there exists a vector x0 # 0 and 
X E Q: such that x$A, = Xx,” and x,*B, = 0. Then by (3) we have 

0 = hx,*(Q-’ - P)x, + ixg*( Q-1 - P)X” 

+ xo*(Q-’ - P)C,TR-‘C,(Q-’ - P)X” 

and hence 

ReX = _ 1 Gw’- W,TR-‘Co(Q-‘- P)X” ho 

2 x,*( Q-l - P)x, 

noting that x:(Q-’ - P)x, > 0 by Proposition 3.7. 

But by (1) we have that 

hx,*Px, + Xx;Px, - x,*PC,TR +)PX” = 0 

and hence 

Re h = t “o*PC,TR-‘C”PX, 

2 Xo*PX, 
> 0, 

which implies that Re A = 0 and hence that 

But, since A, = A, - (I?@: + PCT)R ‘Co we now have that 

which implies that A, has an eigenvalue with Re h = 0, which is a contradic- 
tion to the asymptotic stability of A,, and hence (A,, Be, C,, 0,) is control- 
lable. 

The observability of (A,, Bo, Co, Do) follows by a straightforward applica- 
tion of the Popov-Belevitch-Hautus test. 

The minimality of (A,, I&, C,, D,) now implies that P = PT > 0 is in fact 
the unique stabilizing solution of the GFARE as given in (1). 

Now let Gi(.s), k,(s) be the normalized left coprime factors of G”(s) as -- 
given by the construction in Proposition 3.5. If (A,., SC, C,, DC) is the 
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corresponding realization of [ til(s), XII(s)], then, since the filter gain of 
(A,, B,, C,, Da) is given by 

H= - (PC;+B&)R-i= B,,, 

it follows immediately that 

which shows that P?(s) = fli(s), Q(s) = g,(s) are normalized left coprime 
factors of G(s). n 

4. CANONICAL FORMS FOR MINIMAL SYSTEMS 

We are now going to derive a canonical form for systems in Lx, * on the 
basis of the results in Section 3. We will exploit the relationship between the 
transfer functions in TLE,“’ and coinner functions in TCZ,PY”‘+~ and make use 
of the canonical form for systems in CZg,“‘+p given in Theorem 3.1. 

The relationship between TL,P,” and TCZg,m+p which was partially 
established in the previous section is precisely formulated in the following 
proposition. 

PROPOSITION 4.1. The map 

CF: TL:,“’ + TCZ;,“‘+p, 

G(s) ++ [G(s), G(s)] > 

which assigns each G(s) E TL, Pxrn to the coinner transfer function consisting 
of the_normaliz$ left coprime factors a(s), g(s) [i.e. G(s) = g(s)-‘??(s)], 

with M(W) = Mu > 0, is a bijection. 

Zf (A,, B,, C,, D,) E L:,“’ is a realization of G(s) E LE.“‘, then CF(G(s)) 
has a realization (A,, B,., C,, 0,) given by 

D,= [RP1’zD,,R-‘/2], 

C =R-WC c 0 ) 

By= [B,+HD,,H], 

A,=A,+HC, 

with R = Z + D,Dz and filter gain H = - (B,,DT+ ZCT)RP1. 
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ConverseEy, if (A,, B,, C,, 0,) E CZg,“‘+p is-a realization of a transfer 

function G(s) E TCZ,p,m+p, then CF-‘(G(s)) has a realization 

(A,, Z$, CO, DO) given by 

D, = Dc; ‘DC,, 

A, = A, - Bc2D<,‘C, 

Proof. It was shown in Proposition 3.8 that CF is surjective. The fact 
that CF is injective follows from Proposition 3.3 and Remark 3.1. The state 
space formulae have been established in Proposition 3.6 and Proposition 3.8. 

n 

The state space formulae of this proposition allow us to derive a canonical 
form for Lp,“’ from the canonical form for CZ,P”“+P. n 

THEOREM 4.1. The following two statements are equivalent: 

(1) G(s) E TL;.“‘. 

(2) G(s) has a realization (A,,B,,C,, D~)~IWnXnXIWnX”~XIWpXnXIWpX”~ 

given in the following way: There are positive integers 

k 

n(l), . . . . n(j) ,..., n(k) such that C n(j) = n 
j=l 

and numbers 

1> CT1 > . . * > aj > . . . > Ok > 0 
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such that if (A,,, $, CO, D,,) is partitioned as 

AO=‘(AO(i, .i))l<i,j<k, 
A,(i, j) g [Wn(i)xn(i), 

B, =: B; 

c,=:(c,l,..., C,‘)...) c(f), cd E R pxn(i), 

(i) DO E (WPXm. 
(ii) We have 

with (Ji E R ro(i)xm , such that Uj( Uj)T = Zro( jj, 

‘o(j):=‘“nk[(C,i)TR-lC~] <min(p,m), 

andR=Z+D,,D~, S=Z+D~D,. 
(iii) (R - 1/2C& A ,(j, j)) is in standard all pass form with 

Ao(.L j> = B;D,TR-‘CJ+&(j,j). 

(iv) We have 

with 

Al,(i, j) =: (a,(i, j)st)lss~r,(i) E [WrO(i)xrO(i) 
1 it < ‘o(j) 
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such that 

a,(i,j>,, = 

where b,(i), is the s th row of BJ and ~,(i),~ is the s th column of C& 

The map which assigns to each system in Lg.“’ the realization given in 

(2) is a canonical form. 

Proof. The proof is based on the canonical form for CZ,P”“+P and the 
bijection CF between TL,P,” and TC~,!,‘~“‘+P given in Proposition 4.1. 

To show (1) implies (2) let G(s) := CF( G(s)) have the realization 
(A,_, B,, C,, 0,) given in the canonical form of Theorem 3.1 with gramian 2,. 
Then by Proposition 4.1 a realization (A,, B,, CO, DO) of G(s) is given by 

C 
0 

= R’/zC 
i-1 

B 0 = B. -B 
(1 c!? R”‘D. (1’ 

A, = A, - B,.,R”“C,, 

where R _ I,” = Dr2, with D, = [DC,, D,J, DC, E Iw pXnr, and Br = [B ,.,, BJ, 

Bc, E Iwnx”‘. Note that DO = R1/‘Dc, corresponds to the D,,,, matrix in 
Theorem 3.1 and that (i) is satisfied. 

If we partition the systems in the standard way according to the struc- 
tural indices n(l), n(2), . . , n(k), we obtain, noting that R = (I - D,.,D;f;) ‘, 

S=(Z- D;t;DJ’, 

Bi = Bi _ Bi R’/zD 
0 (‘1 c2 Cl 

= ~jS-“2 + Z%-“2D;RD,, - oj( C,!& + aj( C,j)‘o,., 

where 3 is as in Theorem 3.1. This shows that B. is as postulated in (ii). 
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Now since 

B;pR1’zCc= - [oi(C,‘)*R-‘P+ &-1/2D,T]Co 

we have that 

=- [q(C,f+ B;D,T]R-‘C,, 

=~[~~b,(i),S~‘h(j):-*i(l-o:)c,(i)TR-l~,(j), 
1 I 

+ b,(i),D,TR-‘c,(j),. 

Similarly, for the block diagonal entries A,(j, j) we have 

A&, j) = A,(& j) - BjzR1’2Ccj 

Cd + B;D,TR-‘Cd + A”&, j), 

where we set Ao(j, j) := A,( j, j). Since (A,, B,, Co, Do) is uniquely deter- 
mined by (A,, B,, C,, D,), we have thus constructed a canonical form for 
TLPz m n . 
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We will now show the converse, i.e. that (2) implies (1). Given a system 
(A,, B,, CO, Da) which is parametrized as in (2), construct the system 
(A,, B,, C,, D,) by 

0, =: [DC,, DC21 = [R-"2Do, R-“2] > 

A, = A, + HC,, 

where R = I + DOD,’ and 

H,= -(B~D,T+~,~:)P 

with 2, = diag(a,Z,+), . . . , ajZncjj,. . . , ukZnckj). 
We have to show that (A,, B,, Cc, 0,) is parametrized as in the canonical 

form of Theorem 3.1. Partitioning in the standard way, we have 

Bj, = Bd + H;Do 

= &‘/2- &S'/2D,TR-1Do - uj(C;)TR_lDo 

and hence, since Bj := B$-1/2 is of the demanded form, B,i as in Theorem 
3.1, where we set Dp,,, = Do. It is also easily verified that A, is parametrized 
as in Theorem 3.1. Thus (A,, B,, Cc, 0,) E CZ,P’mcp, and hence by Proposi- 
tion 4.1 (A,, B,, Co, Do) E LExrn. m 

Specializing the statement of the previous theorem to the case of single 
input, single output transfer functions, we obtain the following corollary. 
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COROLLARY 4.1. The following two statements are equivalent: 

(1) g(s) E TLt;‘. 

(2) g(s) has a realization (Ao,bo,co,do)~IW”X”XIW”XIXIWIX”XIWIX1, 

which is given by the following parameters: 

n(l), . . . , n(j), . . . , n(j), n(j) E N, E~=ln(j> = n, 

Sl,. . .) s. 

1 > a1 :‘. 

. . .) Sk, sj = -t 1, 1~ j < k, 

. * > aj > . . . > Uk > 0, +ft,l<j<k 

c1,41)1,..., “(l)jP.‘.> 4l),(l)-lr cl > 0, cam > 0, 1 G j d n(1) - 1, 

cz,a(2),,...,(y(2)j,“‘,(Y(2)n(2)-1, c2 > 0, cam > 0, 1 < j < n(2) - 1, 

in the following way: 

(i) d, E R. 
(ii) co=( C,,O ,..., 0 ,..., Cj,O ,... ,O,..., C,,O,...,O)+ 

- v - 
n(l) n(j) n(k) 

(iii) 

b,T=( s,/~c,,o I,.., o ,.,., sj/‘~~cj,o ,..., os,Ji-T&,,~., 0). 

n(l) n(j) 

(iv) For A, =:(A,(i, j))lGi, jGk we have 
(a) Block diagonal entries A,(j, j), 1~ j < k: 

n(k) 

A,(j, j) = 

4i3 i) -4j), 0 

4i)l 0 - a(j)2 
4j)2 0 

_ 4jl.w1 
0 4jlnc,,-l 0 
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(b) Off diagonal blocks A,(i, i), 1~ i, j < k, i # j: 

/a,(i,j) 0 ... 0 

A,(i,j)= 

with 

a,(i, j) = - 
“icj/iq 

l+d,2 

The map which assigns to each system in C,‘,’ the realization given in (2) 
is a canonical form. 

REMARK 4.1. In Glover and McFarlane (1988a, 198813) the problem of 
robustly stabilizing a transfer function G(s) is considered. The aim is to 
design a feedback controller which guarantees closed loop stability for a 
maximum amount of uncertainty in the plant. In this case the uncertainty is 
modeled as additive perturbations on a(s) and g(s), the normalized left 
coprime factors of the transfer function. Thus a perturbed model is given by 

G,(s)= [ti(s)+A,(s)] -‘[N(s)+AiV(s)], 

where A,(s), A,(s) are asymptotically stable, unknown transfer functions. 
The aim is to find a controller for which 

is maximized while guaranteeing closed loop stability. It can be shown that 



56 RAIMUND OBER AND DUNCAN McFARLANE 

the maximum margin for stability, emax, is given by 

with ui as in Theorem 4.1. n 

REMARK 4.2. It also follows from the derivation of the canonical form of 
Theorem 4.1 that for a system parametrized in this canonical form, the same 
parameters yield a state space realization of the normalized left coprime 
factors of this system via the parametrization of CZz’m+p in Theorem 3.1. 
The canonical form of Theorem 4.1 can therefore be said to be in rwrmulized 

left coprime factor balanced coordinates. 

We are now going to use the parametrization given in the previous 
theorem to obtain a parametrization of so called Riccati balanced systems 
introduced in Jonckheere and Silverman (1983). 

DEFINITION 4.1. A system (A,, B,,C,, 0,) in LE.“’ is called Riccati 

balanced if 

X=Z=:M=:diag(p, ,..., pi ,..., pn)>O, 

where X = XT > 0 is a solution to the GCARE and Z = Zr > 0 is a solution 
to the GFARE. 

For an interpretation of Riccati balancing in the context of linear quadratic 
control design see Jonckheere and Silverman (1983). The following proposi- 
tion states that if a system is in the canonical form of Theorem 4.1, it can be 
brought to an equivalent realization in Riccati balanced coordinates by a 
diagonal state space transformation. 

PROPOSITION 4.2. Let (A,, B,, Co, D,,) E L,P,“’ be given in the canonical 

fin-m of Theorem 4.1 with 



CANONICAL FORMS 57 

Then X = Z&Z - X9)-’ solves the GCARE, and Z = 2,. solves the GFARE. 
The system 

with T = (I - 2;)-1’4, is Riccati balanced, and the corresponding positive 
definite solutions to the GCARE and the GFARE of (A,, B,, C,, 0,) are 

M= Z,(Z -2:) ~1’2=:diag(lllZ,l(l),...,~jZll(j),...,~kZ~(k)). 

Proof. The proof follows immediately from Proposition 3.6. W 

REMARK 4.3. Using the notation of the previous proposition and noting 
that 

for all 1~ j < k, it is easily verified that for 1 G j < k - 1, 

'j ’ uj+l if and only if pi > pj+r. 

Following this remark and the previous proposition, we can now write 
down a canonical form for LExrn in terms of Riccati balanced systems. 

THEOREM 4.2. The following two statements are equivalent: 

(1) G(s) E TL,p,“. 

(2) G(s) has a realization (A,., B,,C,, 0,) E Iw”‘” XRnx" XRpx" X[WpXm 

given in the following way: There are positive integers 

n(l),...,n(j>,...,n(k> such that i n(j)=n 
j=l 

and numbers 

j.ll> .-- >pj> . . . >p,>o 
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such that if (A,, B,, C,, 0,) is partitioned as 

A,=: (Adi, .i))lci,j</cr A,(i, j) E Rn(i)Xn(j), 

’ B,’ ’ 

B,, =: B,j , Bi E [Wn(j)xm 
r 

ii; 

c,=:(c,‘,..., C,‘)...) c;), c,i E RpxNi), 

then: 

(i) 0,. E [wPx’“. 
(ii) We have 

with Uj E lF8r~(j)xm, such that Uj(tJj)T = ZrOcj,, where 

~~(j):=rank[(C1)TR-lC~] <min(p,m) 

and R = Z + DrD,‘, S = Z + D,‘D,. 
(iii) (RP1/‘Cj’, A,(j, j)) is in standard all pass form with 

~,(j, j) = G(c;)‘R-~c;+ BJD,TR-~c,~+ Al,(j, j). 

(iv) We have 

A.(i,j)=(Ar(:‘j) i), l<i,j=gk, i+j, 

with 
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such that 

where b,(i), is the s th row of B,! and cr( i), is the s th column of C,i, 

Moreover, (A,, B,, C,, 0,) is Riccati balanced such that 

M = diag( PI1 .(l)~...~l”j’,(j)~...~~Lk’,(,)) 

is the unique positive definite solution to the GCARE and GFARE of 
(A,, B,,, C,., 0,). The map which assigns to each systq in Lzz”’ the 

realization given in (2) is a canonical form. 

Proof. The proof follows immediately from Theorem 4.1 by performing 
a state space transformation with T = (I - IX:)- ‘I4 and by setting C, = C,T-’ 

as well as p j = oj//w for 1~ j < k. n 

The case of single input, single output transfer functions is considered in 
the following corollary. 

COROLLARY 4.1. Th e 0 f 11 owing two statements are equivalent: 

(1) g(s) E TLt;‘. 

(2) g(s) has a realization (A,,b,,c,,d,)~IW”X”XOB”XIXIWIX”XIWIX1, 

which is given by the following parameters: 

n(l),..., n(j),,..,,(k), n(j) E N, Z;=,n(j> = n, 

sl,, . .) Si’. . .) Sk, sj = _t 1, 1 G j G k, 

pl> . . . >pj> . .’ >Pk>O pj E R> 1~ j < k, 

cl,a(l>l,.“,a(l>j,...,a(l),(l,-,, cl > 0, a(l)j > 0, 1 < j < n(1) - 1, 

cz> (y(2),,..‘3 a(2)j,.~~, a(2),(2)-l, c2 > 0, a(2)j > 0, 1 G j G n(2) - 1, 

ck,a(k)l,...,~(k)j,...,a(k),o,,, ck>O, a(k)j>O,lG jGn(k)-1, 

d, E R, 
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in the following way: 

(i) d,ER. 
(ii) c,=( c,,O ,..., 0 ,..., cj,O ,..., 0 ,..., Ck,O ,..., 0). 

v e - 
n(l) n(j) n(k) 

(iii) bT=( sIcl,O ,..., 0 ,..., sjcj,o ,..., 0 ,..., SkCk202...rO). 

- - 

41) n(j) 
n(k) 

(iv) ForA,=:(A,(i,j))l~i,jgk we have 

(a) block diagonal entries A,(j, j), 1 =G j < k: 

A,( i3 j) = 

I 
, z,(j, j) -dill 0 

4j), 0 _ 4j)2 
a(j)2 0 

with 

a,(j, j) = - & 2 ; [T-sj,.,; 

(b) off diagonal blocks A,(i, j), 1~ i, j < k, i z j: 

‘ar(i,j) 0 ... 0’ 

A,(i,j)= 0 ? “’ 0 

\ ;, 0 . . . 0 

with 

adi, j) = - l+d2 
1- sisjpjpj 

r pi + SiSj/Lj - 
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Moreover, (A,, b,, cr, d,) as defined in (2) is Riccati balanced such that 

is the unique positive definite solution to the GCARE and GFARE of 

(A,, b,., c,, d,). 

The map which assigns to each system in Lk’ the realization given in (2) 
is a canonical form. 

Note that (A,., b,, cr, d,) as given in the corollary is sign symmetric with 
sign symmetry matrix 

i.e. 

AT = SAS, b = SC=, 

and hence the Cauchy index of the system g(s) = c,(sZ - A,)-‘b, + d, is 

Cind( g( s)) = trace(S). 

5. MODEL REDUCTION 

Balanced realizations as defined in Definition 2.1 were originally intro- 
duced to provide a simple method for model reduction (Moore, 1981). The 
basic idea is to consider a balanced n-dimensional system (A, B, C, D) and to 
partition it conformally as 

so that for l<N<n we have A,,E[W”~~, B1~IWNxnl, C1~(WpXN. The 
principal subsystem (A,,, B,, C,, D) is considered as an approximant of 
(A, B, C, 0). It was shown in Pemebo and Silverman (1982) that this scheme 
has the important property that it preserves the minimality and asymptotic 
stability of the original system. This is restricted to the case where none of 
the retained singular values are identical to any of the neglected singular 
values. 
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This method of model reduction can also be applied to other types of 
realizations of systems. The following theorem summarizes results when this 
scheme is applied to systems given in one of the canonical forms of the 
previous sections. 

THEOREM 5.1. Let (A,B,C,D)EIW”~“XIW”~~X~W~~~XIW~~~, and 
let (d, g, c^, fi) := (A,,, B,, C,, D) be the Ndirnensional (1~ N < n) princi- 
pal subsystem of (A, B, C, 0). 

(1) Zf (A, B,> C, ?) E C,p,m is in the balanced canonical fm of Theorem 

2.2, then (A, B, C, D) is in Cg,” and in the balanced canonical form of 
Theorem 2.2. The gramian of (A, s,e, fi) is given by Z, E IWNxN, where 
Z = diag(Z,, Z,) is the grumian of (A, B, C, 0). 

(2) Zf (A, B, C, D) E Cl;,* is in the canonical form for the coinner 
systems in CZ,P’ * of Theorem 3.1, then (d, & c^, 6) is in CZ$“’ and in the 

canonical folm of Theorem 3.1. The gramian of (d, 6,c^, fi) is given by 
Z, E [w NXN, where Z = diag(Z,, 2,) is the grumian of (A, B, C, 0). 

(3) Zf (A, B, C, D) E Lx,” is in the norrnu..i~d ie@ coprime factor bal- 
anced canonical form of Theorem 4.1, then (A, B, C, D) is in LE” and in 
the normalized lej? coprime factor canonical form of Theorem 4.1. 

(4) Zf (A, B, C, q)~ Z$,” is in Riccati balanced canonical form of 
Theorem 4.2, then (A, B, C, D) is in Lk m and in Riccati balanced canonical 
form of Theorem 4.2. The unique, symmetric, and positive definite solutions 
to the GCARE and the GFARE of (A, 6,6,6) are given by M, E IWNXN, 
where M = diag(M,, M,) is a solution to the GCARE and GFARE of 

(A, B, C, D). 

Proof. The proof of the four statements is an immediate consequence of 
the parametrization results concerning the four different canonical forms and 
of the observation that the reduced order systems are parametrized in the 
canonical forms. n 

REMARK 5.1. The previous theorem asserts that if a system is given in 
any of the canonical forms introduced in this paper, then each principal 
subsystem has the desired properties such as minimality and asymptotic 
stability in the case of balanced systems in Cf,“‘. Hence, for balanced systems 
which are in canonical form, the restrictive assumption that truncation has to 
be performed at places of nonrepeated singular values (Pemebo and 
Silverman, 1982) can be dropped. 
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REMARK 5.2. For the case of Riccati balanced systems which are not 
necessarily in the canonical form of Theorem 4.2, Jonckheere and Silverman 
(1983) proved a truncation result analogous to that of Theorem 5.1(4) for the 
case when the truncation is such that none of the retained “characteristic 
values” pj coincides with any of the neglected ones. 

REMARK 5.3. Meyer (1988) introduced a model reduction scheme for 
transfer functions G(s) in TL, . pyrn The first step is to obtain a normalized left 
coprime factorization of G(s) = P?(s)&?(s)-i. The system [Z’?(s), X?(s)] is 
then reduced to a lower order system [g(s),, It?(s),]. The transfer function 
G(s), := #(s),~(s),’ is taken to be the lower order approximant of the 
transfer function G(s). 

The results of Section 3 and 4 imply, however, that this reduction scheme 
in fact produces the same lower order approximants as the Riccati balancing 
technique. In the same way, the schemes of Theorems 5.1, part (3) and part 
(4), produce the same results. 

REMARK 5.4. In Remark 4.1 a robust stabilization problem was dis- 
cussed. The following result for a system (A, B, C, 0) given in the normal- 
ized left coprime factor canonical form of Theorem 4.1 with parameters 
ui>us> ...ak is an immediate consequence of results by McFarlane, 
Glover, and Vidyasagar ! 198t). 

Let G(s) = C(sZ - A)-‘B + fi be the reduced order model obtained by 
truncating (A, B, C, D) according to Theorem 5.1(3). Let Z?(s) be a feedback ,. 
controller designed to robustly stabilize G(s) with a corresponding maximum 

robustness margin cmax = /-. Then, if 

the transfer function G(s) = C( sZ - A)- ‘R + D of (A, B, C, D) is also stabi- 
lized by K(s). The robustness margin, E:,,,, of this closed loop system is now 
given by 

e:nax = l/l - lJ1” - 2 5 ui. 
i=K+I 

The authors would like to thank Dr. K. Glover for many helpful discus- 
sions. The first author is funded by SERC Grant GR(E12424.8. The second 



64 RAIMUND OBER AND DUNCAN McFARLANE 

author would like to thank the Broken Hill Proprietary Co. Ltd for their 
support of this work. 

REFERENCES 

Anderson, B. D. 0. 1972. On the computation of the Cauchy index, Quart. AppE. 
Math., pp. 577-582. 

Brockett, R. W. 1976. Some geometric questions in the theory of linear systems, IEEE 
Trans. Automat. Control 21:449-454. 

Doyle, J. 1984. Lecture Notes on ONR/Honeywell Workshop on Advanced in 
Multivariable Control, Minneapolis, 1984. 

Glover, K. and McFarlane, D. 1988a. Robust stabilization of normalized coprime 
factors: An explicit H” solution, in Proceedings 1988 American Control Confer- 
ence, Atlanta, Ga. 

Glover, K. and McFarlane, D. 198813. Robust Stabilization of Normalized Coprime 
Factor Plant Descriptions with H,-Bounded Uncertainty, to appear IEEE Trans. 
Automat. Control. 

Jonckheere, E. and Silverman, L. M. 1983. A new set of invariants for linear systems 
-applications to reduced order compensator design, IEEE Trans. Automat. 
Control 28:953-964. 

Kwakemaak, H. and Sivan, R. 1972. Linear Optimal Control Systems, Wiley. 
McFarlane, D., Glover, K., Vidyasagar, M. 1988. Reduced Order Controller Design 

Using Coprime Factor Model Reduction, to appear IEEE Trans. Automat. 

Control. 
Meyer, D. G. 1988. A fractional approach to model reduction, in Proceedings 1988 

American Control Confmence, Atlanta, Ga. 
Moore, B. C. 1981. Principal component analysis in linear systems: Controllability, 

observability and model reduction, IEEE Trans. Automat. Control 26:17-32. 
Nett, C., Jacobsen, C. A., and Balas, M. J. 1984. A connection between state space 

and doubly coprime fractional representations, IEEE Trans. Automat. Control 
29:831-832. 

Ober, R. 1987a. Balanced realizations: Canonical form, parametrization, model reduc- 
tion, Internat. J. Control 46(2):643-670. 

Ober, R. 1987b. Asymptotically stable all-pass transfer functions: Canonical form, 
parametrization and realization, in Proceedings 1987 IFAC World Congress, 
Munich. 

Ober, R. 1987c. Topology of the set of asymptotically stable minimal systems, 
Znternat. 1. Control 46(1):263-280. 

Pemebo, L. and Silverman, L. M. 1982. Model reduction via balanced state space 
representations, 1EEE Trans. Automat. Control 27~282-287. 

Vidyasagar, M. 1985. Control System Synthesis: A Coprime Factorizatiun Approach, 
MIT Press. 

Vidyasagar, M. 1988. Normalized coprime factorizations for non strictly proper 
systems, IEEE Trans. Automat. Control 33300-301. 

Received 29 May 1988; final manuscript accepted 30 August 1988 


