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Annexin A2 (AnxA2) and S100A10 are known to form a molecular complex. Using fluorescence-
based binding assays, we show that both proteins are localised on the cell surface, in a molecular
form that allows mutual interaction. We hypothesized that binding between these proteins could
facilitate cell–cell interactions. For cells that express surface S100A10 and surface annexin A2,
cell–cell interactions can be blocked by competing with the interaction between these proteins.
Thus an annexin A2-S100A10 molecular bridge participates in cell–cell interactions, revealing a
hitherto unexplored function of this protein interaction.
� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Annexin A2 (AnxA2) is a member of the larger annexin family of
Ca2+ and phospholipid binding proteins [1–3]. AnxA2 has been
implicated in cellular functions which generally involve membrane
surface-associated events, such as intracellular trafficking. In com-
mon with all annexins, AnxA2 contains a conserved C-terminal
core domain, which confers Ca2+ and phospholipid binding proper-
ties, and a less conserved, smaller N-terminal domain. The N-ter-
minal domain of AnxA2 consists of 30 amino acids of which the
first 14 residues constitute the binding site for its typical binding
partner S100A10, a member of the S100 protein family [4].

S100A10 requires dimerisation to accommodate the AnxA2
N-terminus such that an S100A10 dimer can bridge two AnxA2
molecules forming a heterotetramer structure [2,5–7]. Complex
formation affects several properties of AnxA2. It reduces the Ca2+

requirement of AnxA2 for membrane association and alters the
intracellular distribution of AnxA2 compared with monomeric
AnxA2 [8,9]. The tetramer localises to the cytosolic surface of the
plasma membrane in association with the submembranous
cytoskeleton [10]. In addition, the tetramer displays binding and
bundling of F-actin at physiological Ca2+ concentrations [11,12].

Apart from being localised inside the cell, AnxA2 has also been
detected on the cell surface of various cells. Whilst the mecha-
nisms by which surface expression occurs are still actively investi-
gated, from a functional point of view some patterns are emerging.
Thus cell surface AnxA2 participates in cell–cell interactions. Local-
ised on macrophages or epithelial cells, it provides a signal for
interaction with and phagocytosis of apoptotic cells, most likely
via interactions with phosphatidyl serine on the juxtaposed apop-
totic cell surface [13–15]. AnxA2 expressed on apoptotic cells
themselves binds complement factors as signal for cell–cell inter-
action and phagocytosis [16,17]. Furthermore, the AnxA2-
S100A10 heterotetramer has been implicated in tight junction
maintenance in epithelial MDCK cell monolayers in a model in
which AnxA2 is associated with the lipid membrane with the
S100A10 dimer bridging two AnxA2 molecules [18,19].

A relatively early study showed that an AnxA2 antibody inhib-
ited adhesion of liver-metastatic RAW117-H10 cells to human
umbilical vein endothelial cells (HUVECs) [20] suggesting an
involvement of surface AnxA2 in tumour–host cell interactions
during metastasis. Interactions between osteoblast AnxA2 and its
receptor have also been implicated in prostate cancer metastasis
to the bone [21] and in the support of multiple myeloma cell
growth and adhesion in the bone marrow [22].

Amongst breast cancer cells, surface AnxA2 levels were appar-
ently higher in metastatic than in non-metastatic cells [23–25].
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However, little is known about the implications of this for breast
cancer cell–host cell interactions. Interestingly, S100A10 has been
detected on the cell surface of HUVECs [26]. Thus direct interac-
tions between surface AnxA2 and S100A10 could mediate cell–cell
interactions between breast cancer cells and endothelial cells.
Using probes recently developed in our lab, we have investigated
this further. We show that surface AnxA2 and S100A10 can act
as mutual receptors on the cell surface and that breast cancer cells
that express surface AnxA2 can form cell–cell contacts with human
microvascular endothelial cells (HMECs) through an AnxA2-
S100A10 molecular bridge.

2. Materials and methods

2.1. Antibodies, peptides and recombinant human S100A10 protein

AnxA2 mouse monoclonal antibodies were from Santa Cruz Bio-
technology, Heidelberg, Germany (#sc-47696) and from Becton,
Dickinson and Company (BD), Oxford, UK (#610068). The
S100A10 monoclonal mouse antibody (#610070 and total mouse
IgG (#556648) were from BD, Oxford, UK. Alexa Fluor 488-conju-
gated goat anti mouse antibody was from Invitrogen, Dorchester,
UK (#A11017) and horseradish peroxidase-conjugated goat anti
mouse antibody was from Upstate, Watford, UK (#12-349). The
Cy3-labelled AnxA2(Ac1-14) peptide, non-labelled peptide, Cy5-la-
belled S100A10 and non-labelled S100A10 were obtained as de-
scribed [27]. A second batch of non-labelled wildtype
(STVHEILSKLSLEC) and scrambled peptide (KIETLSEHVSLSLC) were
purchased from Genscript, Piscataway, NJ, USA.

2.2. Cell maintenance

HUVECs [28] were maintained in (endothelial growth medium-
2) EGM-2 (Lonza, Slough, Berkshire, UK) supplemented with their
BulletKit containing: heparin, VEGF, rhFGF-B, R3-IGF-1, hydrocorti-
sone, gentamicin sulphate amphotericin-B, rhEGF, ascorbic acid,
FBS. HMEC-1 cells [29], a kind gift from Dr Francisco Candal at
the Center for Disease Control and Prevention (Atlanta, GA, USA),
were maintained in EGM-2 supplemented with EGF (10 ng/ml)
(BD), hydrocortisone (1 lg/ml) and 10% foetal bovine serum.
Human bone marrow endothelial cells [30], a kind gift from
Dr Kenneth Pienta at the University of Michigan (MI, USA), were
maintained in DMEM (Dulbecco’s modified eagle medium) 10%
foetal bovine serum, 2% penicillin/streptomycin. Human breast
adenocarcinoma MDA-MB-231 and MCF7 cells [31] were main-
tained in RPMI-1640 supplemented with 10% foetal bovine serum.

2.3. Flow cytometry

Cells were harvested using trypsin and washed twice with phos-
phate–buffered saline (Sigma). For antibody experiments, 5 � 105

cells were gently resuspended in 100 ll phosphate–buffered saline
containing 2.5 lg primary antibody and incubated for 45 minutes
at room temperature. Cells were then washed three times with
phosphate–buffered saline and incubated for 30 min at 4 �C in the
dark with secondary antibody diluted 1:50 in 1% foetal bovine serum
in phosphate–buffered saline. Cells were washed three times with
phosphate–buffered saline and resuspended in 1 ml phosphate–
buffered saline. For experiments with Cy3-labelled AnxA2(Ac1-14)
peptide and S100A10 protein 5 � 105 cells were incubated with
the tracers for 15 minutes at 4 �C in the dark. The cells were then
washed three times with phosphate–buffered saline at 250 g for
5 min and resuspended in 1 ml phosphate–buffered saline.

Analysis was done on a Beckman Coulter Epics XL-MCL flow
cytometer using Expo32 flow cytometry software. For every
experiment, a minimum of 2 � 104 cells were analysed per sample
and gated during analysis to exclude doublets and debris.

2.4. Biotinylation of cell surface proteins

The Pierce Cell Surface Protein Isolation Kit (#89881, Perbio Sci-
ence, Cramlington, UK) was used to biotinylate and identify cell
surface proteins. Briefly, confluent cells was washed in Phos-
phate-buffered Saline and incubated with 10 ml sulfo-NHS-SS-bio-
tin solution for 30 minutes at 4 �C. 500 ll of a quenching solution
was added after which cells were harvested by centrifugation,
washed and lysed in lysis buffer. The cell extract was centrifuged
at 10000 g for 2 min at 4 �C and the supernatant was collected. Bio-
tinylated proteins were recovered by immobilization on NeutrAvi-
din Gel and eluted in SDS sample buffer containing 50 mM DTT.
The eluates were then analysed by Western blot as described [32].

2.5. Cell adhesion assay

Endothelial cells (2 � 105 per well) were seeded in black 96-well
plates with a clear bottom (Corning Costar, Amsterdam, The
Netherlands) and grown overnight to a confluent monolayer. Breast
cancer cells in 75 cm2 flasks were incubated with 1 lM 20,70-bis-(2-
carboxyethyl)-5,6-carboxyfluorescein acetoxymethylester (BCECF-
AM; Invitrogen) for 15 min at 37 �C in cell culture medium. Breast
cancer cells were then trypsinised, resuspended in media and
counted. 3 � 104 cancer cells were added to the endothelial mono-
layers and incubated at 37 �C for 1 h or 15 min. Plates were washed
three times with phosphate–buffered saline to remove unbound
tumour cells and the fluorescence was read on a fluorescence plate
reader (PerkinElmer Envision 2104 Multilabel Reader) with excita-
tion at 490 nm and emission intensity detected at 535 nm. The vol-
ume was adjusted so that for every experiment, the total volume in
the well was always 60 ll after the addition of the breast cancer
cells. AnxA2(Ac1-14) peptide, S100A10, S100A4 and antibodies,
when added to the adhesion assay, were incubated with the endo-
thelial monolayers for 30 min before the addition of the breast
cancer cells diluted in media to the correct concentration.

3. Results

3.1. Cell surface AnxA2 is capable of interacting with S100A10

Recent studies revealed the presence of AnxA2 on the surface of
breast cancer cells [23,24]. Here we investigated if surface-local-
ised AnxA2 could bind S100A10, known as its main binding
partner.

A Cy5 fluorophore-labelled S100A10 [27], was used as tracer
and surface binding to the intact cell population was assessed
using flow cytometry. Cy5-S100A10 can bind to intact MDA-MB-
231 cells, indicating that an S100A10 receptor exists on these cells
(Fig. 1A). Cy5-S100A10 binding can be competed with non-labelled
S100A10 (Fig. 1B) and is blocked by a synthetic peptide based upon
residues 1–14 of AnxA2 [28] (Fig. 1C), suggesting that AnxA2 ex-
pressed on the cell surface of these cells is the relevant receptor.
In support of this conclusion, an antibody to AnxA2 also inhibits
binding of Cy5-labelled S100A10 to the MDA-MB-231 cell surface
(Fig. 1D).

The presence of AnxA2 on the surface of MDA-MB-231 cells was
confirmed using surface biotinylation. Cells were labelled using
Sulfo-NHS-SS-Biotin (a membrane-impermeable biotin linker)
and the biotinylated (surface protein) fraction was immobilised
on a streptavidin column and recovered using DTT. AnxA2 was
recovered in the surface fraction of MDA-MB-231 cells (Fig. 2A).
By contrast, -MCF7 breast cancer cells showed lower AnxA2
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Fig. 1. AnxA2-dependent binding of Cy5-labelled S100A10 to MDA-MB-231 cells. (A) Concentration dependence of S100A10-Cy5 binding to MDA-MB-231 cells. 5 � 105 cells
were incubated with increasing concentrations of Cy5-labelled S100A10 (0–10 lM) and binding was measured by flow cytometry. (B) Competition of S100A10-Cy5 binding to
MDA-MB-231 cells with unlabelled S100A10. 5 � 105 cells were pre-incubated with increasing concentrations of unlabelled S100A10 (0–35 lM) for 30 min and then with
0.1 lg Cy5-labelled S100A10 for 15 min. Binding of S100A10-Cy5 was measured by flow cytometry. (C) Competition of S100A10-Cy5 binding to MDA-MB-231 cells by
AnxA2(Ac1-14) peptide. 5 � 105 cells were incubated with increasing concentrations of unlabelled N-terminal peptide (0–50 lg) and then with 0.1 lg Cy5-labelled S100A10
for 15 min. Binding of S100A10-Cy5 was measured by flow cytometry. (D) Competition of S100A10-Cy5 binding to MDA-MB-231 cells by an AnxA2 antibody. 5 � 105 cells
were incubated with increasing concentrations of AnxA2 antibody (0–20 lg) for 30 min and then with 0.1 lg Cy5-labelled S100A10 for 15 min. Binding of S100A10-Cy5 was
measured by flow cytometry. All data points shown are the average ± S.E.M. from three independent experiments, with 20000 events being counted each time.
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present on the cell surface (Fig. 2A), due to lower overall levels of
annexin A2 in the cell. Based on these observations we predicted
that S100A10 binding to MCF7 cells would be lower. Indeed, using
the above flow cytometry measurement method, binding of Cy5-
labelled S100A10 to MCF7 cell was substantially lower than bind-
ing to MDA-MB-231 cells (Fig. 2B).

Thus our data indicate that AnxA2 is present on the surface of
MDA-MB-231 breast cancer cells, in a form that is capable of bind-
ing to S100A10. Competition experiments indicate that the AnxA2
N-terminus is the relevant binding site for S100A10 suggesting
that for surface-bound AnxA2 the N-terminus is exposed. AnxA2
may exist on the surface directly accessible to Cy5-S100A10, or
in complex with S100A10, requiring competitive displacement by
Cy5-S100A10.

3.2. Surface localisation of S100A10 on microvascular endothelial cells

We hypothesized that the protein interaction between AnxA2
and S100A10 may mediate cell–cell interactions. This would in-
volve the N-terminus of surface-localised AnxA2 on one cell bind-
ing to surface-localised S100A10 on a second cell. Evidence for
surface localisation of S100A10 is limited however some reports
indicate that S100A10 is present on the cell surface of large vessel
endothelial cells [33]. In agreement with these reports we ob-
served binding of a mouse monoclonal S100A10 antibody to intact
HUVECs using flow cytometry (Fig. 3A). Using a mouse monoclonal
S100A10 antibody, S100A10 surface expression was also detected
on HMEC-1 and human bone marrow endothelial (HBME)-1 cells
(Fig. 3A). Surface expression of S100A10 was verified by biotinyla-
tion. As shown in Fig. 3B, S100A10 was found in the surface protein
fraction of HUVEC, HMEC-1 and HBME-1 cells. This indicates that
S100A10 is expressed on the surface of different types of endothe-
lial cells. To explore this further we focused on microvascular
endothelial cells as model system.
3.3. Microvascular endothelial cell surface S100A10 is capable of
binding the AnxA2 N-terminus

To establish whether S100A10 localised on the cell surface of
endothelial cells can bind AnxA2, we performed binding experi-
ments using a fluorescent N-acetylated synthetic peptide based
upon residues 1–14 of AnxA2 [28]. A Cy3 fluorophore was cova-
lently linked to the peptide [27] and this was then incubated with
HMEC-1 cells. Binding of the peptide to the cell surface of intact
cells was assessed using flow cytometry. Fig. 4A shows that Cy3-
AnxA2(Ac1-14) binds to HMEC-1 cells and that the binding of
Cy3-AnxA2(Ac1-14) could be competed using non-labelled peptide
suggesting a specific interaction with a surface binding site. This
site is most likely S100A10, since the annexin N-terminus binds
strongly to this protein. An antibody to S100A10 prevented binding
of the Cy3-AnxA2(Ac1-14) peptide, indicating that this binding site
was indeed S100A10 (Fig. 4B). Thus S100A10 is present on these
cells in a form capable of binding to the AnxA2 N-terminus.

3.4. AnxA2–S100A10 complex in breast cancer cell adhesion to
microvascular endothelial cells

Given that S100A10 and AnxA2 are localised on the cell surface
of endothelial and breast cancer cells, in a molecular form that al-
lows mutual binding, we assessed whether an interaction between
these proteins can mediate cell–cell interactions between these
cells. MDA-MB-231 cells were loaded with (BCECF-AM) fluorescent
dye and incubated for 15 min on a monolayer of HMEC-1 cells after
which non-adherent cells were washed away. Fig. 2C shows that
MDA-MB-231 cells are capable of binding to HMEC-1 as well as
HUVEC monolayers. MCF7 cells by contrast, showed lower levels
of adhesion to either monolayer or endothelial cells (Fig. 2C). This
was not due to differences in dye loading between the cells since
the amount of BCECF-AM in the two cell types was identical (not
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shown). However, it may be due to the difference in the amount of
AnxA2 present on the surface of the two breast cancer cell lines
(Fig. 2A and B).

Next we investigated the involvement of AnxA2 binding to
S100A10 in adhesion of MDA-MB-231 cells to microvascular endo-
thelial cells. To do so, we used the AnxA2(Ac1-14) peptide as com-
petitor, since it can disrupt the interaction between these proteins
[32]. The AnxA2(Ac1-14) peptide blocked the adhesion of MDA-
MB-231 cells to HMEC-1 monolayers, indicating that binding of
AnxA2 to S100A10 indeed contributes to the cell–cell interaction
(Fig. 5A). The smaller inhibition of adhesion of MCF7 cells to
HMEC-1 cells may reflect the observation that these cells express
less AnxA2 (Fig. 2). To exclude that peptide batch effects or non
specific effects caused the inhibition of adhesion, an independently
synthesized, differently sourced batch of the AnxA2(Ac1-14) pep-
tide was tested, alongside a scrambled version of the peptide.
Adhesion of both MDA-MB-231 cells and MCF7 cells appeared to
be inhibited by the scrambled peptide (Fig. S1). Compared to the
scrambled peptide, the wildtype peptide inhibited the adhesion
of MDA-MB-231 cells to HMEC-1 monolayers by 40%, whereas
adhesion of MCF7 cells was not affected (Fig. S2). Thus AnxA2–
S100A10 binding contributes to adhesion of MDA-MB-231 cells,
but not of MCF7 cells to endothelial cells. Since the adhesion is
not fully inhibited by the peptide, other mechanisms also contrib-
ute to cell adhesion. An antibody to S100A10, which blocked the
binding of Cy3-AnxA2(Ac1-14) to HMEC-1 cells (Fig. 4B), blocks
the binding of MDA-MB-231 cells to HMEC-1 cells (Fig. 5B), provid-
ing a further argument that surface AnxA2 on MDA-MB-231 cells
can interact with S100A10 to mediate cell–cell interaction.

Since HBME-1 cells also express S100A10 on the cell surface
(Fig. 3), we investigated whether surface AnxA2 interacting with
S100A10 on the surface of HBME-1 cells is involved in cell–cell
adhesion. As shown in Fig. S3, MDA-MB-231 cells adhere efficiently
to a monolayer of HBME-1 cells whereas MCF7 cells do not. Fur-
thermore, the AnxA2(Ac1-14) peptide inhibits the adhesion of
MDA-MB-231 breast cancer cells to HBME-1 cells in a concentra-
tion dependent fashion whilst not affecting the low level of adhe-
sion observed for MCF7 cells (Figure S3). Thus the AnxA2–S100A10
molecular complex plays a role in adhesion of breast cancer cells to
multiple types of endothelium.

4. Discussion

We show that the binding of surface AnxA2 to surface S100A10
contributes to heterotypic cell–cell interactions between breast tu-
mour cells and microvascular endothelial cells.

Although neither AnxA2 nor S100A10 are classically secreted
proteins, their expression on the surface of various cells has been
noted. Previous studies indicated the presence of S100A10 on the
surface of large vessels [33], but the presence on small vessels
was less established. Our studies indicate that S100A10 is present
on small dermal endothelial cells as well as bone marrow
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endothelial cells. The conformation of surface S100A10 has not
been assessed previously. Using fluorescent tracers developed in
our laboratory, we probed the conformation of the protein and
we show here that S100A10 is capable of binding AnxA2, suggest-
ing that it is present on the cell surface as a dimer. We provide evi-
dence that an AnxA2 molecule present on an opposing cell, such as
a breast cancer cell, can bridge to the endothelial cell by interacting
with surface localised S100A10 located on the latter.

Exactly how S100A10 associates with the endothelial cell sur-
face is not known. It may be that S100A10 is in fact tethered to
the endothelial membrane via AnxA2, which has known capability
of binding to cholesterol [34] and heparin [35]. One molecule of
AnxA2 on the cell surface could tether an S100A10 dimer, leaving
one free annexin binding site to coordinate annexin on the surface
of an opposite cell [7]. Alternatively, S100A10 could form a homo-
tetramer, consisting of two dimers with one dimer binding to two
surface-localised AnxA2 molecules and the other dimer free to
bind two AnxA2 molecules [36]. Such a model is in principle test-
able by performing competition experiments and measuring re-
lease of the proteins into the cell supernatant. Attempts at this
using Western blotting of cell supernatants were unsuccessful.
Thus at this stage the model is mainly based upon high sensitivity
reagents including fluorescence tracers.

It may be argued that the surface expression detected here
is non-physiological, for instance being generated during cell
preparation. However, it should be noted that the binding assays
employed here relied exclusively on flow cytometry methods,
which only measure the intact cell population with any cell debris
or small particular material gated out. Furthermore, we showed
that the proteins localised on the cell surface are physiological in
the sense that they can bind their protein partners, and not merely
deposited on cells in disordered fashion. This is the first such anal-
ysis of cell surface annexin A2 and S100A10 (previous studies re-
lied mostly on antibody detection). Hence the data support the
notion that surface expression of these proteins is physiological.
Nevertheless, the alternative scenario mentioned cannot be en-
tirely excluded.

Several known adhesion molecules contribute to breast tumour
cell–endothelium interactions, including selectins and cadherin
[37]. Indeed the fact that we observed that cell–cell interactions
were not 100% inhibited by the annexin A2 peptide indicates that
other components also contribute. Changing the relative expres-
sion patterns of adhesion molecules by tumour cells forms a step
in the acquisition of a metastatic phenotype. The difference in
AnxA2 surface expression between MDA-MB-231 and MCF7 cells
is of interest and correlates with their metastatic behaviour. Both
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cell lines can establish tumours in nude mice. However, tumours
derived from MCF7 cells are poorly invasive and rarely metastatic
whilst tumours derived from MDA-MB-231 produce metastases in
nude and SCID mice [38]. The fact that surface AnxA2 is elevated in
metastatic breast cancer cells compared to normal breast epithe-
lium and non-metastatic breast cancer cells [23] (and this study)
suggests that it may contribute to this process, possibly via medi-
ating cell–cell interactions. Further research, using a wider range of
breast cancer cell lines is needed to firmly establish this notion.
The direct interactions with the microvasculature observed here
may aid tumour cell intravasation or extravasation during haemat-
ogenous dissemination. In vivo assessment is required to provide
further confirmation of this idea.

As mentioned in the introduction, surface AnxA2 has been
implicated in a number of cell–cell interaction scenarios. The cur-
rent data are mostly consistent with earlier models of kidney epi-
thelial cell monolayers which were shown to make cell–cell
contacts via an AnxA2–S100A10 molecular bridge. Thus an
AnxA2–S100A10 molecular bridge may facilitate cell–cell interac-
tions in a range of cellular contexts and changes in the AnxA2-
S100 axis may affect the dynamics of tumour–host cell
interactions.
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