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Abstract

A graph G on n vertices is called a Dirac graph if it has a minimum degree of at least n/2. The distance distG(u, v) is defined
as the number of edges in a shortest path of G joining u and v. In this paper we show that in a Dirac graph G, for every small
enough subset S of the vertices, we can distribute the vertices of S along a Hamiltonian cycle C of G in such a way that all but
two pairs of subsequent vertices of S have prescribed distances (apart from a difference of at most 1) along C . More precisely
we show the following. There are ω, n0 > 0 such that if G is a Dirac graph on n ≥ n0 vertices, d is an arbitrary integer with
3 ≤ d ≤ ωn/2 and S is an arbitrary subset of the vertices of G with 2 ≤ |S| = k ≤ ωn/d, then for every sequence di of integers
with 3 ≤ di ≤ d, 1 ≤ i ≤ k − 1, there is a Hamiltonian cycle C of G and an ordering of the vertices of S, a1, a2, . . . , ak , such that
the vertices of S are visited in this order on C and we have

|distC (ai , ai+1) − di | ≤ 1, for all but one 1 ≤ i ≤ k − 1.

c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Notation and definitions

For basic graph concepts see the monograph of Bollobás [2].
V (G) and E(G) denote the vertex set and the edge set of the graph G. (A, B, E) denotes a bipartite graph

G = (V, E), where V is the disjoint union of A and B, and E ⊂ A × B. For a graph G and a subset U of
its vertices, G|U is the restriction to U of G. N (v) is the set of neighbors of v ∈ V . Hence the size of N (v) is
|N (v)| = deg(v) = degG(v), the degree of v. δ(G) stands for the minimum degree, and ∆(G) for the maximum
degree in G. ν(G) is the size of a maximum matching in G. The distance distG(u, v) is defined as the number of
edges in a shortest path of G joining u and v. For S ⊂ V (G) we write N (S) = ∩v∈S N (v), the set of common
neighbors. N (x, y, z, . . .) is shorthand for N ({x, y, z, . . .}). For a vertex v ∈ V and set U ⊂ V − {v}, we write
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deg(v, U ) for the number of edges from v to U . When A, B are subsets of V (G), we denote by e(A, B) the number
of ordered pairs (a, b) such that a ∈ A, b ∈ B and (a, b) ∈ E(G). For non-empty A and B,

d(A, B) =
e(A, B)

|A||B|

is the density of the graph between A and B. We write

d(A) = d(A, A) = 2|E(G|A)|/|A|
2.

Definition 1. The bipartite graph G = (A, B, E) is ε-regular if

X ⊂ A, Y ⊂ B, |X | > ε|A|, |Y | > ε|B| imply |d(X, Y ) − d(A, B)| < ε,

otherwise it is ε-irregular. Furthermore, it is (ε, d)-regular if it is ε-regular and d(A, B) ≥ d. Finally, (A, B, E) is
(ε, d)-super-regular if it is ε-regular and

deg
G

(a) > d|B| ∀ a ∈ A, deg
G

(b) > d|A| ∀ b ∈ B.

1.2. Distributing vertices along a Hamiltonian cycle in Dirac graphs

Let G be a graph on n ≥ 3 vertices. A Hamiltonian cycle (path) of G is a cycle (path) containing every vertex
of G. A Hamiltonian graph is a graph containing a Hamiltonian cycle. A graph in which every pair of vertices can be
connected with a Hamiltonian path is Hamiltonian-connected. A classical result of Dirac [4] asserts that if δ(G) ≥ n/2
(call these graphs Dirac graphs), then G is Hamiltonian. This result of Dirac has generated an incredible amount of
research; it has been generalized and strengthened in numerous ways (see the excellent survey of Gould [8]).

In a recent, interesting strengthening of Dirac’s Theorem, Kaneko and Yoshimoto [10] showed that in a Dirac graph
given any sufficiently small subset S of vertices, a Hamiltonian cycle C can be constructed such that there is a uniform
lower bound on the distances on C between successive pairs of vertices of S.

Theorem 1. Let G be a graph of order n with δ(G) ≥ n/2 and let d be a positive integer with d ≤ n/4. Then for any
vertex set S with at most n/2d vertices, there exists a Hamiltonian cycle C with distC (u, v) ≥ d for every u and v

in S.

Note that this result is sharp; the bound on the cardinality of S cannot be increased.
Gould called for further studies on density conditions that allow the distribution of “small” subsets of vertices

along a Hamiltonian cycle (see Problem 1 in [8]). In this paper we show that not only can we have a lower bound
on the distances but actually almost all of the distances between successive pairs of vertices of S can be specified
almost exactly. Note that the partitions of graphs into special subgraphs of given size have received attention (see
[5,6,9] and [19]). One example is the celebrated El-Zahar conjecture (see [5]), where we partition the graphs into
cycles of a given length (instead of paths). The conjecture states that a graph G of order n = n1 + n2 + · · · + nk with
δ(G) ≥

∑k
i=1dni/2e contains a 2-factor Cn1 ∪ · · · ∪ Cnk . The case k = 1 follows again from Dirac’s Theorem, and

the case k = 2 was proved by El-Zahar in [5]. Another example is a result of Enomoto and Matsunaga who showed
that in a graph G of order n = n1 + n2 + · · · + nk with ni ≥ 2, δ(G) ≥ 3k − 2, for any set of k vertices {v1, . . . , vk}

we can find a partition V (G) = V1 ∪ · · · ∪ Vk such that |Vi | = ni , vi ∈ Vi and G|Vi has no isolated vertices. This fact
has been used to derive the best known error bounds in certain branches of coding theory [3].

Here our main result is the following.

Theorem 2. There are ω, n0 > 0 such that if G is a graph on n ≥ n0 vertices with δ(G) ≥ n/2, d is an arbitrary
integer with 3 ≤ d ≤ ωn/2 and S is an arbitrary subset of the vertices of G with 2 ≤ |S| = k ≤ ωn/d, then for every
sequence di of integers with 3 ≤ di ≤ d, 1 ≤ i ≤ k − 1, there is a Hamiltonian cycle C of G and an ordering of the
vertices of S, a1, a2, . . . , ak , such that the vertices of S are visited in this order on C and we have

|distC (ai , ai+1) − di | ≤ 1, for all but one 1 ≤ i ≤ k − 1.
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It would be desirable to eliminate the two discrepancies by 1 from the theorem. However, this is impossible. We
need the discrepancies by 1 between distC (ai , ai+1) and di because of parity reasons. Indeed, consider the complete
bipartite graph between U and V , where |U | = |V | = n/2. Take S ⊂ U , then the distance between subsequent
vertices of S along a Hamiltonian cycle is even, and if we have an odd di we cannot obtain a distance with that di .

To see that we might need an exceptional i for which |distC (ai , ai+1)−di | > 1, consider the following construction.
Take two complete graphs on U and V with |U | = |V | = n/2. Let S = S′

∪ S′′ with S′
⊂ U , S′′

⊂ V and
|S′

| = |S′′
| = |S|/2, and add the complete bipartite graphs between S′ and V , and between S′′ and U . Clearly on any

Hamiltonian cycle we will have two distances much greater than d.
Let us also remark that we need the di ≥ 3 requirement as in certain parts of our proof (see Subcase 1.1 in

Section 5). We use connecting paths of length at least 4 between two vertices of S.
Finally we believe that our theorem remains true for greater values |S|’s (perhaps proportional to n/d as in

Theorem 1) and for greater values of d as well, but we were unable to prove a stronger statement.

2. The main tools

In the proof the Regularity Lemma [23] plays a central role. Here we will use the following variation of the lemma.
For the proof, see [18].

Lemma 1 (Regularity Lemma – Degree form). For every ε > 0 and every integer m0 there is an M0 = M0(ε, m0)

such that if G = (V, E) is any graph on at least M0 vertices and δ ∈ [0, 1] is any real number, then there is a
partition of the vertex set V into l + 1 sets (so-called clusters) V0, V1, . . . , Vl , and there is a subgraph G ′

= (V, E ′)

with the following properties:

• m0 ≤ l ≤ M0,
• |V0| ≤ ε|V |,
• all clusters Vi , i ≥ 1, are of the same size L,
• degG ′(v) > degG(v) − (δ + ε)|V | for all v ∈ V ,
• G ′

|Vi = ∅ (Vi are independent in G ′),
• all pairs G ′

|Vi ×V j , 1 ≤ i < j ≤ l, are ε-regular, each with a density 0 or exceeding δ.

This form can easily be obtained by applying the original Regularity Lemma (with a smaller value of ε), adding
to the exceptional set V0 all clusters incident to many irregular pairs, and then deleting all edges between any other
clusters where the edges either do not form a regular pair or they do but with a density of at most δ.

An application of the Regularity Lemma in graph theory is now often coupled with an application of the Blow-up
Lemma (see [13] for the original, [14] for an algorithmic version and [20,21] for two alternative proofs). Here we
use a very special case of the Blow-up Lemma. This asserts that if (A, B) is a super-regular pair with |A| = |B| and
x ∈ A, y ∈ B, then there is a Hamiltonian path starting with x and ending with y. More precisely.

Lemma 2. For every δ > 0 there are εBL = εBL(δ), nBL = nBL(δ) > 0 such that if ε ≤ εBL and n ≥ nBL ,
G = (A, B) is an (ε, δ)-super-regular pair with |A| = |B| = n and x ∈ A, y ∈ B, then there is a Hamiltonian path
in G starting with x and ending with y.

We will also use some well-known properties of regular pairs. They can be found in [18]. The first one basically
says that every regular pair contains a “large” super-regular pair.

Lemma 3 ([18, Fact 1.3]). Let (A, B) be an (ε, δ)-regular pair and B ′ be a subset of B of size at least ε|B|. Then
there are at most ε|A| vertices v ∈ A with |N (v) ∩ B ′

| < (δ − ε)|B ′
|.

The next property says that subgraphs of a regular pair are also regular.

Lemma 4 (Slicing Lemma, [18, Fact 1.5]). Let (A, B) be an (ε, δ)-regular pair, and, for some β > ε, let A′
⊂ A,

|A′
| ≥ β|A|, B ′

⊂ B, |B ′
| ≥ β|B|. Then (A′, B ′) is an (ε′, δ′)-regular pair with ε′

= max{ε/β, 2ε} and |δ′
− δ| < ε.

We will also use two simple Pósa-type lemmas on Hamiltonian-connectedness. The second one is the bipartite
version of the first one.
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Lemma 5 (See [1], Chapter 10, Theorem 13). Let G be a graph on n ≥ 3 vertices with degrees d1 ≤ d2 ≤ · · · ≤ dn
such that for every 2 ≤ k ≤

n
2 we have dk−1 > k. Then G is Hamiltonian-connected.

Lemma 6 (See [1], Chapter 10, Theorem 15). Let G = (A, B) be a bipartite graph with |A| = |B| = n ≥ 2
with degrees d1 ≤ d2 ≤ · · · ≤ dn from A and with degrees d ′

1 ≤ d ′

2 ≤ · · · ≤ d ′
n from B. Suppose that for every

2 ≤ j ≤
n+1

2 we have d j−1 > j and d ′

j−1 > j . Then G is Hamiltonian-connected.

Finally we will use the following two simple facts on the sizes of matchings in graphs.

Lemma 7 (Erdős, Pósa [7], see also [2], Chapter 2, Theorem 4.2). Let G be a graph on n vertices. Then

ν(G) ≥ min
{
δ(G),

n − 1
2

}
.

Lemma 8. Let G be a graph of order n and let S ⊂ V (G) with |S| ≤ n/2. Then in G there is a matching of size at
least

δ(G)
n − |S|

2(δ(G) + ∆(G))
≥ δ(G)

n

8∆(G)

such that for each matching edge at least one of the endpoints is from V (G) \ S.

Proof. Let us take a maximal matching M with m-edges with the property that for each matching edge at least one of
the endpoints is from V (G) \ S. Then for the number of edges E between V (M) and V (G) \ (V (M) ∪ S), we get the
estimate

δ(G)(n − 2m − |S|) ≤ E ≤ 2m∆(G).

From this we get

2m(δ(G) + ∆(G)) ≥ δ(G)(n − |S|),

which proves the lemma. �

3. Outline of the proof

In this paper we use the Regularity Lemma–Blow-up Lemma method again (see [11–17,22]). The method is usually
applied to find certain spanning subgraphs in dense graphs. Typical examples are spanning trees (Bollobás conjecture,
see [11]), Hamiltonian cycles or powers of Hamiltonian cycles (Pósa–Seymour conjecture, see [15,16]) or H -factors
for a fixed graph H (Alon–Yuster conjecture, see [17]).

Let us consider a graph G of order n with

δ(G) ≥
n

2
. (1)

We will assume throughout the paper that n is sufficiently large. We will use the following main parameters

0 < ω � ε � δ � α � 1, (2)

where a � b means that a is sufficiently small compared to b. For simplicity, we do not compute the actual
dependencies, although it could be done.

Let d be an arbitrary integer with 3 ≤ d ≤ ωn/2 and let S be an arbitrary subset of the vertices of G with

2 ≤ |S| = k ≤ ωn/d. (3)

Consider an arbitrary sequence d = {di |3 ≤ di ≤ d, 1 ≤ i ≤ k − 1}. A cycle C in G (or a path P) is called an
(S, d)-cycle (or an (S, d)-path) if there is an ordering of the vertices of S, a1, a2, . . . , ak , such that the vertices of S
are visited in this order on C (on P) such that

|distC (ai , ai+1) − di | ≤ 1, 1 ≤ i ≤ k − 1.
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We must show that there is a Hamiltonian cycle that is almost an (S, d)-cycle, namely we can have

|distC (ai , ai+1) − di | > 1

for only one 1 ≤ i ≤ k − 1.
First in the next section, in the non-extremal part of the proof, we show this assuming that the following extremal

condition does not hold for our graph G. We show later in Section 5 that Theorem 2 is true in the extremal case as
well.

Extremal Condition (EC) with parameter α: There exist (not necessarily disjoint) A, B ⊂ V (G) such that

• |A|, |B| ≥

(
1
2 − α

)
n, and

• d(A, B) < α.

In the non-extremal case, when G does not satisfy the EC with parameter α, we apply the Regularity Lemma
(Lemma 1) for G, with ε and δ as in (2). We get a partition of V (G ′) = ∪0≤i≤l Vi . We define the following reduced
graph Gr : The vertices of Gr are p1, . . . , pl , and we have an edge between vertices pi and p j if the pair (Vi , V j )

is ε-regular in G ′ with density exceeding δ. Thus we have a one-to-one correspondence f : pi → Vi between the
vertices of Gr and the clusters of the partition. This function f allows us to move from Gr to G ′ (or G). Since in G ′,
δ(G ′) > ( 1

2 − ε − (δ + ε))n = ( 1
2 − δ − 2ε)n, an easy calculation shows that in Gr we have

δ(Gr ) ≥

(
1
2

− 2δ

)
l. (4)

Indeed, because the neighbors of u ∈ Vi in G ′ can only be in V0 and in the clusters which are neighbors of pi in Gr ,
then for a Vi , 1 ≤ i ≤ l we have:(

1
2

− δ − 2ε

)
nL ≤

∑
u∈Vi

deg
G ′

(u) ≤ εnL + deg
Gr

(pi )L2.

From this using ε ≤ δ/3 we get inequality (4):

deg
Gr

(pi ) ≥

(
1
2

− δ − 3ε

)
n

L
≥

(
1
2

− 2δ

)
l.

Applying Lemma 7 we can find a matching M in Gr of size at least
(

1
2 − 2δ

)
l. Put |M | = m. Let us put the

vertices of the clusters not covered by M into the exceptional set V0. For simplicity V0 still denotes the resulting set.
Then

|V0| ≤ 4δl L + εn ≤ 5δn. (5)

Denote the i th pair in f (M) by (V i
1 , V i

2 ) for 1 ≤ i ≤ m.
The rest of the non-extremal case is organized as follows. In Section 4.1 first we find an (S, d)-path P where

actually dist(ai , ai+1) = di for all 1 ≤ i ≤ k − 1. Then in Section 4.2 we find short connecting paths Pi between the
consecutive edges in the matching f (M) (for i = m the next edge is i = 1). The first connecting path P1 between
(V 1

1 , V 1
2 ) and (V 2

1 , V 2
2 ) will also contain P , each of the others has length exactly 3. In Section 4.3 we will take care of

the exceptional vertices and make some adjustments by extending some of the connecting paths so that the distribution
of the remaining vertices inside each edge in f (M) is perfect, i.e., there are the same number of vertices left in both
clusters of the edge. Finally applying Lemma 2 we close the Hamiltonian cycle in each edge thus giving a Hamiltonian
(S, d)-cycle where dist(ai , ai+1) = di for all 1 ≤ i ≤ k − 1 (thus in the non-extremal case both discrepancies by 1 in
Theorem 2 are eliminated). Note that the material of Sections 4.2 and 4.3 is fairly standard by now and is independent
of the problem of prescribed distances. Similar arguments have appeared in other works (see e.g. [16,17] and [22]).
For the sake of completeness we present the full proof here, but the readers familiar with this technique may skip these
sections.
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4. The non-extremal case

Throughout this section we assume that the extremal condition with parameter α does not hold for G. We apply
the Regularity Lemma (Lemma 1) for G with ε and δ given in (2) and m0 = 1/ε, define the reduced graph Gr , and
find the matching M in Gr as described above in the outline.

4.1. Finding an (S, d)-path

We are going to use the following fact repeatedly.

Fact 1. For any distinct x, y ∈ V (G) there are at least δn internally disjoint paths of length 3 in G connecting x
and y.

Proof. Indeed, using (1) we may choose A ⊂ NG(x) with |A| = b
n
2 c and B ⊂ NG(y) with |B| = b

n
2 c. The fact that

the EC with parameter α does not hold for G implies d(A, B) ≥ α. From this it follows that we have at least α
2 |A|

vertices v in A, for which we have deg(v, B) ≥
α
2 |B|. Indeed, otherwise we would have

d(A, B) =
e(A, B)

|A||B|
<

α
2 |A||B| +

α
2 |A||B|

|A||B|
= α,

a contradiction. Then using δ ≤ α/20 we can select greedily a matching of size at least
α

5
|B| =

α

5
b

n

2
c ≥

α

20
n ≥ δn,

such that each edge has one endpoint in A and one endpoint in B, these endpoints are vertex disjoint from {x, y}, and
from this Fact 1 follows. Indeed, take a vertex v ∈ A with deg(v, B) ≥

α
2 |B|, and select one of these edges to B as

the first matching edge. Remove this edge, and apply this repeatedly in the leftover, namely take a vertex v′
∈ A with

deg(v′, B) ≥
α
2 |B|, and select one of the remaining edges to B as a matching edge. As long as the matching that we

have so far covers fewer than α
2 |B| vertices, we can select the next matching edge. We remove the at most 2 matching

edges that have a non-empty intersection with {x, y}, and we get the desired matching of size at least α
5 |B|. �

We construct an (S, d)-path P = Q1 ∪ · · · ∪ Qk−1 in the following way. Let a1, . . . , ak be the vertices of S in an
arbitrary order (so note that here actually we can prescribe the order of the vertices of S as well). First we construct a
path Q1 of length d1 connecting a1 and a2. Using the minimum degree condition (1), we construct greedily a path Q′

1
starting from a1 that has length d1 − 3 (note that d1 ≥ 3). Denote the other end point of Q′

1 by a′

1. Applying Fact 1,
we connect a′

1 and a2 by a path Q′′

1 of length 3 that is internally disjoint from Q′

1. Then Q1 = Q′

1 ∪ Q′′

1 is a path
connecting a1 and a2 with length d1.

We iterate this procedure. For the construction of Q2, first we greedily construct a path Q′

2 starting from a2 that
is internally disjoint from Q1 and has length d2 − 3. Denote the other end point of Q′

2 by a′

2. Applying Fact 1, we
connect a′

2 and a3 by a path Q′′

2 of length 3 that is internally disjoint from Q1 ∪ Q′

2. Then Q2 = Q′

2 ∪ Q′′

2 is a path
connecting a2 and a3 with length d2.

By iterating this procedure we get an (S, d)-path P . (1)–(3) and Fact 1 imply that we never get stuck since

|V (P)| = 1 +

k−1∑
i=1

di ≤ 1 + (k − 1)d ≤ ωn � δn. (6)

Observe that here in the non-extremal case there is no discrepancy between dist(ai , ai+1) and di for all 1 ≤ i ≤

k − 1, and furthermore we can construct an (S, d)-path for any ordering of the vertices of S.

4.2. Connecting paths

The first connecting path P1 between (V 1
1 , V 1

2 ) and (V 2
1 , V 2

2 ) will include as a subpath the (S, d)-path P . To
construct this P1 first by using Fact 1 we connect a typical vertex u of V 1

2 (more precisely a vertex u with
deg(u, V 1

1 ) ≥ (δ − ε)L , most vertices in V 1
2 satisfy this by Lemma 3) and a1 with a path of length 3. Then we

connect ak and a typical vertex w of V 2
1 (so deg(w, V 2

2 ) ≥ (δ − ε)L) with a path of length 3. To construct the second
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connecting path P2 between (V 2
1 , V 2

2 ) and (V 3
1 , V 3

2 ) we just connect a typical vertex of V 2
2 and a typical vertex V 3

1
with a path of length 3 that is vertex disjoint from P1. Continuing in this fashion, finally we connect a typical vertex
of V m

2 with a typical vertex of V 1
1 with a path of length 3 that is vertex disjoint from all the other connecting paths.

Thus P1 has length at most ωn + 6, all other Pi ’s have length 3. Note that we can always find these connecting paths
that are vertex disjoint from the connecting paths constructed so far. Indeed, the total number of vertices in the union
of these paths is at most

2ωn + 4l ≤
ε

2
n

2M0
+ 4M0 ≤

ε

2
n

2M0
+

ε

2
n

2M0
= ε

n

2M0
≤ ε

n

2l
≤ εL ,

using ω ≤
ε

8M0
and n ≥

16M2
0

ε
. Then we can find endpoints for the next connecting path that are vertex disjoint from

the connecting paths constructed so far since from every cluster (of size L) we used up only at most εL vertices,
so most of the typical vertices from a cluster are still available. Furthermore, when applying Fact 1 to connect the
endpoints, since εL ≤ εn ≤

δ
2 n we still have δ

2 n internally disjoint paths of length 3 connecting the endpoints that are
vertex disjoint from the connecting paths constructed so far.

We remove the internal vertices of these connecting paths from the clusters, but for simplicity we keep the notation
for the resulting clusters. These connecting paths will be subpaths of the final Hamiltonian cycle. If the number of
remaining vertices (in the clusters and in V0) is odd, then we take another typical vertex w of V 2

1 and we extend P1
by a path of length 3 that ends with w. This way we decreased the number of vertices by 3, so we may always assume
that the number of remaining vertices is even. Note that by removing vertices we might have created discrepancies
between the sizes of the clusters in an edge of f (M), this will be adjusted later at the end of the non-extremal case.

4.3. Adjustments and the handling of the exceptional vertices

Let us note again that the material of this section is fairly routine in this kind of proofs. For the sake of completeness
we present the full proof, but the reader familiar with this technique may skip this section.

We already have an exceptional set V0 of vertices in G. We add some more vertices to V0 to achieve super-regularity.
From V i

1 (and similarly from V i
2 ) we remove all vertices u for which deg(u, V i

2 ) < (δ−ε)L . ε-regularity and Lemma 3
guarantee that at most εL such vertices exist in each cluster V i

1 .
Thus using (5) and ε ≤ δ, we still have

|V0| ≤ 5δn + εn ≤ 6δn. (7)

Since we are looking for a Hamiltonian cycle, we have to include the vertices of V0 on the Hamiltonian cycle as well.
We are going to extend some of the connecting paths Pi , so now they are going to contain the vertices of V0. Let us
consider the first vertex (in an arbitrary ordering of the vertices in V0) v in V0. We find a pair (V i

1 , V i
2 ) such that either

deg(v, V i
1 ) ≥ δL , (8)

in which case we say that v and V i
1 are friendly, or

deg(v, V i
2 ) ≥ δL , (9)

in which case we say that v and V i
2 are friendly. In case (8) holds we assign v to the cluster V i

2 , and in case (9) holds
we assign v to the cluster V i

1 . In case (8) holds we extend Pi−1 (for i = 1, Pm) inside the pair (V i
1 , V i

2 ) by a path of
length 3, and in case (9) holds we extend Pi inside the pair (V i

1 , V i
2 ) by a path of length 3, so that now in both cases

the paths end with v. Indeed, in case (8) holds (it is similar for (9)) consider the endpoint w of Pi−1 in V i
1 . Choosing

X = N (w) ∩ V i
2 and Y = N (v) ∩ V i

1 , by (8), the fact that w was typical and ε ≤ δ/3 we can apply the regularity
condition for X and Y , so in particular we have d(X, Y ) ≥ δ − ε. Then we can take an arbitrary edge (v1, v2) between
X and Y and then (w, v1, v2, v) gives us the desired extension of Pi−1.

To finish the procedure for v, in case (8) holds we add one more vertex v′ to Pi−1 after v such that (v, v′) ∈ E(G)

and v′ is a typical vertex of V i
1 , so deg(v′, V i

2 ) ≥ (δ − ε)L . In case (9) holds we add one more vertex v′ to Pi before
v such that (v, v′) ∈ E(G), v′ is a typical vertex of V i

2 . Thus now v is included as an internal vertex on the extended
connecting path Pi−1 or Pi .
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After handling v, we repeat the same procedure for the other vertices in V0. However, we have to pay attention
to several technical details. First, of course in repeating this procedure we always consider the remaining vertices in
each cluster; the internal vertices on the extended connecting paths are always removed. For simplicity we keep the
notation. Note that the number of remaining vertices is always even during the whole process.

Second, we make sure that we never assign too many vertices of V0 to any cluster, and thus we never use up too
many vertices from any cluster in the matching. First we claim that each v ∈ V0 is friendly with at least l/4 clusters
in the matching. Indeed, assume for a contradiction that there were only c < l/4 friendly clusters for a v ∈ V0. Then,
since v has fewer than δL neighbors in clusters that are not friendly with v, using (7) and ε < δ < 1

56 we have

deg
G

(v) < cL + (2m − c)δL + |V0| ≤
l

4
L + δl L + 6δn ≤

(
1
4

+ 7δ

)
n ≤

3
8

n <
n

2
,

which is a contradiction to (1). We assign the vertices v ∈ V0 as evenly as possible to the pairs (in the matching) of
the friendly clusters. Since each vertex v ∈ V0 has at least l/4 friendly clusters, each cluster gets assigned at most
4|V0|

l vertices v ∈ V0. However, as this is proportional to δL , this creates an additional problem, namely as we keep
removing vertices we might loose the super-regularity property inside the matching edges, in the worst case it would
be possible that we used up all the δL neighbors of a vertex in the other set. Note, that we never loose ε-regularity, the
Slicing Lemma (Lemma 4 with β = 1/2) implies that as long as we still have at least half of the vertices remaining in
both clusters, the remaining pair is still (2ε, δ/2)-regular.

Therefore, we do the following periodic super-regularity updating procedure inside the pairs. After removing
b

δ
8 Lc vertices from a pair (V i

1 , V i
2 ), we do the following. In the pair (V i

1 , V i
2 ) (that is still (2ε, δ/2)-regular) we find

all vertices u from V i
1 (and similarly from V i

2 ) for which deg(u, V i
2 ) < ( δ

2 − 2ε)|V i
2 | (where we consider only the

remaining vertices). Consider one such vertex u. Similarly as in the way of handling v ∈ V0 using ε-regularity we
extend the connecting path Pi−1 or Pi by a path of length 4 inside the pair (using two vertices from both clusters of
the pair so we do not change the difference between the sizes of the clusters in the pair; this fact will be important
later) so that it now includes u as an internal vertex (here u plays the role of v ∈ V0 in the above). By iterating this
procedure we can eliminate all of these exceptional u vertices. Then between two updates in a pair (V i

1 , V i
2 ), for the

degrees of vertices u ∈ V i
1 (and similarly in V i

2 ) we always have

deg(u, V i
2 ) ≥

(
δ

2
− 2ε

)
|V i

2 | −
δ

8
L ≥

(
δ

2
− 2ε

)
L

2
−

δ

8
L =

(
δ

8
− ε

)
L ≥

δ

16
L ,

and thus we maintain a super-regularity condition. Furthermore, Lemma 3 implies that we find at most 2εL exceptional
vertices in one cluster in one update. Thus during the whole process the total number of vertices that we use up from
a cluster with this super-regularity updating procedure is at most 64ε

δ
L ≤ δL using ε ≤

δ2

64 .

Returning to the V0-vertices, using (7), each cluster gets assigned at most 4|V0|
l ≤ 24δn/ l ≤ 25δL vertices from

V0 during the whole process. Note that in order to handle an assigned V0-vertex we have to use at most 2 additional
vertices from both clusters of the pair where the vertex was assigned. Thus, we use up at most 100δL vertices from
each cluster for handling the vertices in V0 and an additional at most δL vertices in any other way (super-regularity
updating procedure, connecting paths and the exceptional vertices removed in the beginning), so altogether we used
up at most 101δL vertices from each cluster.

After we are done with this, in the remainder of each pair (V i
1 , V i

2 ) we have |V i
1 |, |V i

2 | ≥ (1−101δ)L(≥ L/2) (using
δ ≤ 1/202) and the pair is still (2ε, δ/16)-super-regular. At this point we might have a small difference (≤ 101δL)
between the number of remaining vertices in V i

1 and in V i
2 in a pair. Therefore, we have to make some adjustments.

For this purpose we will need some facts about Gr . First we will show that Gr satisfies structural properties similar
to that of G.

Fact 2. EC with parameter α/2 does not hold for Gr .

Indeed, otherwise suppose for a contradiction that there are A, B ⊂ V (Gr ) such that |A|, |B| ≥

(
1
2 −

α
2

)
l and

dGr (A, B) < α
2 . We will show that in this case the EC with parameter α would hold for G as well, a contradiction.
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Consider f (A) and f (B). We have f (A), f (B) ⊂ V (G) with

| f (A)|, | f (B)| ≥

(
1
2

−
α

2

)
(1 − ε)n ≥

(
1
2

− α

)
n,

giving the first condition in the definition of EC with parameter α. For the second condition in the definition,
concerning the number of edges in G between f (A) and f (B) we get the following upper bound.

|E(G| f (A)× f (B))| <
α

2
| f (A)|| f (B)| + (δ + ε)| f (A)|n

≤
α

2
| f (A)|| f (B)| + 6δ| f (A)|| f (B)| < α| f (A)|| f (B)|

(using δ < α/12). Here the first term comes from the edges in G ′ between f (A) and f (B) (they must come from
Gr -edges), and the second term comes from the edges in G \ G ′ between f (A) and f (B). Thus indeed EC with
parameter α would hold for G, a contradiction, proving Fact 2.

The next fact will be similar to Fact 1.

Fact 3. For any (not necessarily distinct) p, q ∈ V (Gr ) there are at least α
90 l internally disjoint alternating (with

respect to edges in M) paths (cycles if p = q) of length 5 connecting p and q, where the M-edges are the 2nd and
4th edges along the paths.

Indeed, consider the sets NGr (p) ∩ V (M) and NGr (q) ∩ V (M). Let us denote by A the pairs (in M) of the clusters

in the first set and by B the pairs of the clusters in the second set. From (4) and m = |M | ≥

(
1
2 − 2δ

)
l we have

|A|, |B| ≥

(
1
2 − 6δ

)
l. Using δ < α/12 and Fact 2 we know that dGr (A, B) ≥ α/2. Then, as in the proof of Fact 1

we can select a matching M ′ of size at least α
10 |B| ≥

α
30 l from A to B. By throwing away some edges from M ′, we

can find a matching M ′′ of size at least α
90 l from A to B such that for any edge e ∈ M we have at most one edge of

M ′′ that is incident to e. Then the statement of Fact 3 follows. Note that we have
α

90
l ≥

α

90
m0 =

α

90ε
,

so using (2) there are quite many paths guaranteed by Fact 3.
With these preparations, let us take a pair (V i

1 , V i
2 ) with a difference ≥ 2 (if one such pair exists), say |V i

1 | ≥ |V i
2 |+2

(only the remaining vertices are considered). Using Fact 3 with p = q = f −1(V i
1 ) we can find an alternating path in

Gr of length 5 starting and ending with f −1(V i
1 ). Let us denote this path by

f −1(V i
1 ), p1, p′

1, p2, p′

2, f −1(V i
1 )

where (p1, p′

1) and (p2, p′

2) are edges in matching M (and thus they correspond to super-regular pairs), and the other
3 edges of the path are edges in Gr (and thus they correspond to regular pairs). We remove a typical vertex u1 from
V i

1 (a vertex for which deg(u1, f (p1)) ≥ ( δ
2 − 2ε)| f (p1)|, most of the remaining vertices satisfy this in V i

1 ) and add
it to f (p′

1) (and thus we preserve the super-regularity of ( f (p1), f (p′

1))). We remove a typical vertex u2 from f (p′

1)

(a vertex for which deg(u2, f (p2)) ≥ ( δ
2 − 2ε)| f (p2)|, most of the remaining vertices satisfy this in f (p′

1)) and add
it to f (p′

2) (and thus we preserve the super-regularity of ( f (p2), f (p′

2))). Finally we remove a typical vertex u3 from
f (p′

2) (a vertex for which deg(u3, V i
1 ) ≥ ( δ

2 − 2ε)|V i
1 |, most remaining vertices satisfy this in f (p′

2)) and add it to
V i

2 (and thus we preserve the super-regularity of (V i
1 , V i

2 )). Furthermore, similarly as above in the super-regularity

updating when we add a new vertex to a pair (V j
1 , V j

2 ), using ε-regularity we extend the connecting path Pj−1 or Pj
by a path of length 4 inside the pair (using two vertices from both clusters of the pair so that we do not change the
difference between the sizes of the clusters in the pair) so that it now includes the new vertex as an internal vertex.
Thus the overall effect of these changes is that the difference |V i

1 | − |V i
2 | decreases by 2, but the other differences

|V j
1 | − |V j

2 | do not change for 1 ≤ j ≤ m, j 6= i .
Now we are one step closer to the perfect distribution, and by iterating this procedure we can assure that the

difference in every pair is at most 1. However, similarly as above we have to make sure that we never use up too many
vertices from each cluster in this part of the procedure. Note that altogether we use up at most 104δn vertices in this
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part of the procedure. We declare a cluster forbidden if we used up αL vertices from that cluster. Then from Fact 3 it
follows that we can always find an alternating path that does not contain any forbidden clusters assuming δ ≤ α2/106.
Furthermore, as above we perform periodically the super-regularity update inside each pair.

Thus we may assume that the difference in every pair (V i
1 , V i

2 ) is at most 1. We consider only those pairs for which
the difference is exactly 1, so in particular the number of remaining vertices in one such pair is odd. Since we have an
even number of vertices left, it follows that we have an even number of such pairs. We pair up these pairs arbitrarily.
If (V i

1 , V i
2 ) and (V j

1 , V j
2 ) is one such pair with |V i

1 | = |V i
2 | + 1 and |V j

1 | = |V j
2 | + 1 (otherwise similar), then similar

to the construction above, we find an alternating path in Gr of length 5 between V i
1 and V j

1 , and we move a typical

vertex of V i
1 through the intermediate clusters to V j

2 .
Thus we may assume that the distribution is perfect, in every pair (V i

1 , V i
2 ) we have the same number of vertices

(≥ (1 − 2α)L ≥ L/2) left in both clusters and all the pairs are still (2ε, δ/16)-super-regular. Then using (2) all the
conditions of Lemma 2 are satisfied and then Lemma 2 closes the Hamiltonian cycle in every pair.

5. The extremal case

For the extremal case, first we will deal with two special cases. In Case 1, G contains an almost complete bipartite
graph. In Case 2, G contains the union of two almost complete graphs. Finally we will show that the extremal case
reduces to one of these two cases.

Case 1. Assume that there is a partition V (G) = A1 ∪ A2 with
(

1
2 − α

)
n ≤ |A1| ≤

n
2 and d(A1) < α1/3.

Note that in this case from (1) we also have d(A1, A2) > 1 − 2α1/3. Thus, roughly speaking in this case we have
very few edges in G|A1 , and we have an almost complete bipartite graph between A1 and A2.

In this case a vertex v ∈ Ai , i ∈ {1, 2}, is called exceptional if it is not connected to most of the vertices in the
other set, more precisely if we have

deg(v, Ai ′) ≤

(
1 − 2α1/6

)
|Ai ′ |, {i, i ′} = {1, 2}.

Note that since d(A1, A2) > 1 − 2α1/3, the number of exceptional vertices in Ai is at most α
1
6 |Ai |. We remove the

exceptional vertices from each set and we redistribute them in such a way that e(A1, A2) is maximized. We still denote
the resulting sets by A1 and A2. Assume that |A1| ≤ |A2|, so |A2| − |A1| = r , where 0 ≤ r ≤ 3α1/6

|A2|. It is easy
to see that in G|A1×A2 we certainly have the following degree conditions. Apart from at most 3α1/6

|Ai | exceptional
vertices for all vertices v ∈ Ai , i ∈ {1, 2} we have

deg(v, Ai ′) ≥

(
1 − 4α1/6

)
|Ai ′ |, {i, i ′} = {1, 2},

and for the exceptional vertices v ∈ Ai , i ∈ {1, 2} we have

deg(v, Ai ′) ≥
|Ai ′ |

3
, {i, i ′} = {1, 2}.

Thus note that in G|A1×A2 the degrees of the exceptional vertices are certainly much more than the number of these
exceptional vertices, so the degree conditions of Lemma 6 are satisfied with much room to spare. However, |A1| may
not be equal to |A2|.

Our goal is to achieve |A1| = |A2| (if this is not true already). Thus we do the following. If |A1| < |A2| and there
is a vertex x ∈ A2 for which

deg(x, A2) ≥ α1/7
|A2|, (10)

then we remove x from A2 and add it to A1. We iterate this procedure until either there are no more vertices in A2
satisfying (10) or |A1| = |A2|.

Subcase 1.1. We have |A1| < |A2|, but there are no more vertices in A2 satisfying (10). Since we have δ(G|A2) ≥
r
2

(using (1)) and ∆(G|A2) < α1/7
|A2| (since there are no more vertices in A2 satisfying (10)), applying Lemma 8 for

G|A2 and using (2) we get that G|A2 has an r -matching Mr denoted by {u1, v1}, . . . , {ur , vr } such that for every edge
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in Mr at least one of the end points (say ui ) is not in S. This matching Mr will be used to balance the discrepancy
between |A1| and |A2|.

Note that in G|A1×A2 the degrees of the exceptional vertices (and now we have exceptional vertices only in A1) are
still much more than the number of these exceptional vertices since for α � 1 we have α1/6

� α1/7. These degree
conditions and (2) imply the following fact (similar to Fact 1).

Fact 4. For any distinct x, y ∈ A2 there are at least n/4 internally disjoint paths of length 2 in G|A1×A2 connecting x

and y. For any distinct x, y ∈ A1 there are at least α1/7

8 n internally disjoint paths of length 4 in G|A1×A2 connecting

x and y. Finally for any x and y that are in different sets, say x ∈ A1 and y ∈ A2, there are at least α1/7

8 n internally
disjoint paths of length 3 in G|A1×A2 connecting x and y.

Proof. Indeed for the first statement note that from ∆(G|A2) < α1/7
|A2| we get deg(x, A1), deg(y, A1) ≥

(1 − 2α1/7)|A1| and thus the number of common neighbors of x and y in A1 is at least (1 − 4α1/7)|A1| ≥ n/4
and from this the first statement follows. For the second statement consider two disjoint equal-size subsets from
the two neighborhoods X ⊂ N (x, A2) and Y ⊂ N (y, A2) with |X | = |Y | ≥

α1/7

4 |A2| ≥
α1/7

8 n (using

deg(x, A2), deg(y, A2) ≥
α1/7

2 |A2|). Pairing up the vertices between X and Y arbitrarily and applying the first
statement for each pair we get the second statement. Finally for the last statement consider a subset of the
neighborhood X ⊂ N (x, A2) with |X | ≥

α1/7

8 n. Applying the first statement for each of the pairs (y, u) where
u ∈ X we get the last statement. �

Let S be an arbitrary subset of the vertices of G, satisfying (3), to be distributed along the Hamiltonian cycle at
approximately the specified distances. Let us take an arbitrary ordering a1, a2, . . . , ak of the vertices in S. In this
subcase we construct the desired Hamiltonian cycle in the following way. First, by using Fact 4 repeatedly and a
similar procedure as in Section 4.1 we find in G|A1×A2 an (S, d)-path

P = P(a1, ak) = Q1 ∪ · · · ∪ Qk−1

connecting the vertices a1 and ak . The only difference from Section 4.1 is that here because of parity reasons we
might have distC (ai , ai+1) = di + 1. Indeed, first we construct a path Q1 of length d1 or d1 + 1 connecting a1 and
a2. If a1 is covered by an edge of Mr , say a1 = vi , then we start Q1 with the edge {vi , ui } (note that ui 6∈ S). If
d1 = 3, then to get Q1 we connect ui and a2 in G|A1×A2 by a path of length 2 in case a2 ∈ A2, and by a path of
length 3 in case a2 ∈ A1. If d1 > 3, then we greedily construct a path Q′

1 that has length d1 − 3, starts with the edge
{vi , ui } and continues in G|A1×A2 . Denote the other end point of Q′

1 by a′

1. Applying Fact 4, we connect a′

1 and a2 by
a path Q′′

1 of length 3 in case they are in different sets, and by a path of length 4 in case they are in the same set. Then
Q1 = Q′

1 ∪ Q′′

1 is a path connecting a1 and a2 with length d1 or d1 + 1.
We iterate this procedure; we construct Q2, . . . , Qk−1 similarly and thus we get P = Q1 ∪ · · · ∪ Qk−1. Say, the

remaining edges of Mr which are not traversed by P are

{ui1 , vi1}, . . . , {uir ′ , vir ′ } for 0 ≤ r ′
≤ r.

Then we connect the end point ak of P and ui1 by a path R1 of length 2 or 3, connect vi1 and ui2 by a path R2 of
length 2, etc. Finally connect vir ′−1

and uir ′ by a path Rr ′ of length 2. Consider the following path.

P ′
= (P, R1, {ui1 , vi1}, R2, {ui2 , vi2}, . . . , Rr ′ , {uir ′ , vir ′ }).

Note that we never get stuck in the construction of this path; namely when applying Fact 4 we can always choose
paths that are internally disjoint from the path that has been constructed so far, since using (2) we have

|V (P ′)| ≤ 1 +

k−1∑
i=1

(di + 1) + 4r ≤ 2ωn + 12α1/6n � α1/7n.

In case a1 ∈ A2, add one more vertex from A1 to the end of the path P ′. Remove P ′ from G|A1×A2 apart from the
end vertices a1 and vir ′ . From (2) and (3) and the degree conditions we get that the resulting graph still satisfies the
conditions of Lemma 6 and thus it is Hamiltonian-connected. This closes the desired Hamiltonian cycle and finishes
Case 1. For this purpose we could also use Lemma 2 because the remaining bipartite graph is super-regular with the
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appropriate choice of parameters, but here the much simpler Lemma 6 also suffices. Note also that here we have no
exceptional i , so we have

|distC (ai , ai+1) − di | ≤ 1 for all 1 ≤ i ≤ k − 1,

and here this is true again for any ordering of the vertices in S.

Subcase 1.2. We have |A1| = |A2|. The proof is similar to the proof of Subcase 1.1. Corresponding to Fact 4 here we
have the following.

Fact 5. For any distinct non-exceptional x, y ∈ Ai , i ∈ {1, 2} there are at least n/4 internally disjoint paths of length
2 in G|A1×A2 connecting x and y. For any distinct (possibly exceptional) x, y ∈ Ai , i ∈ {1, 2} there are at least α1/7

8 n
internally disjoint paths of length 4 in G|A1×A2 connecting x and y. For any x and y that are in different sets, say

x ∈ A1 and y ∈ A2, there are at least α1/7

8 n internally disjoint paths of length 3 in G|A1×A2 connecting x and y.

Proof. Indeed for the first statement note that since x, y ∈ Ai are non-exceptional we have

deg(x, Ai ′), deg(y, Ai ′) ≥

(
1 − 4α1/6

)
|Ai ′ |, {i, i ′} = {1, 2}.

Then the number of common neighbors of x and y in Ai ′ is at least
(
1 − 8α1/6

)
|Ai ′ | ≥ n/4 and from this the

first statement follows. For the second statement consider two disjoint equal-size subsets of non-exceptional vertices
from the two neighborhoods X ⊂ N (x, Ai ′) and Y ⊂ N (y, Ai ′) with |X | = |Y | ≥

α1/7

8 n. Pairing up the vertices
between X and Y arbitrarily and applying the first statement for each pair we get the second statement. Finally for the
last statement consider a subset of non-exceptional vertices of the neighborhood X ⊂ N (x, A2) with |X | ≥

α1/7

8 n.
Applying the first statement for each of the pairs (y, u) where u ∈ X we get the last statement. �

The remaining portion of Subcase 1.2 is similar to Subcase 1.1. By using Fact 5 repeatedly we find in G|A1×A2 an
(S, d)-path connecting the vertices a1 and ak . Here the situation is even simpler as we do not have to worry about the
matching edges. We remove this path and apply Lemma 6 in the leftover.

Case 2. Assume next that we have a partition V (G) = A1 ∪ A2 with
(

1
2 − α

)
n ≤ |A1| ≤

n
2 and d(A1, A2) < α1/3.

Thus roughly speaking, G|A1 and G|A2 are almost complete and the bipartite graph between A1 and A2 is sparse.
Again we define exceptional vertices v ∈ Ai , i ∈ {1, 2}, as

deg(v, Ai ′) ≥ α1/6
|Ai ′ |, {i, i ′} = {1, 2}.

Note that from the density condition d(A1, A2) < α1/3, the number of exceptional vertices in Ai is at most α1/6
|Ai |.

We remove the exceptional vertices from each set and we redistribute them in such a way that e(A1, A2) is minimized.
We still denote the sets by A1 and A2. It is easy to see that in G|Ai , i ∈ {1, 2}, apart from at most 3α1/6

|Ai | exceptional
vertices all the degrees are at least (1 − 3α1/6)|Ai |, and the degrees of the exceptional vertices are at least |Ai |/3.
These degree conditions and (2) imply the following fact (similar to Facts 1, 4 and 5).

Fact 6. For any distinct x, y ∈ Ai , i ∈ {1, 2}, where at most one of the vertices is exceptional, there are at least n/8
internally disjoint paths of length 2 in G|Ai connecting x and y. For any distinct x, y ∈ Ai , i ∈ {1, 2} there are at
least n/8 internally disjoint paths of length 3 in G|Ai connecting x and y.

Assume that |A1| ≤ |A2|. Let S be an arbitrary subset of the vertices of G satisfying (3). Put

S′
= S ∩ A1, S′′

= S ∩ A2, k′
= |S′

|, k′′
= |S′′

|,

d ′
= {di |1 ≤ i ≤ k′

− 1} and d ′′
= {di |k

′
+ 1 ≤ i ≤ k − 1}.

We show that we can find two vertex disjoint edges (called bridges) {u1, v1}, {u2, v2} in G|A1×A2 such that for
both of these bridges at least one of the end points (say ui ) is non-exceptional and it is not in S. This is trivial if
|A1| < |A2|, since then for every u ∈ A1 we have deg(u, A2) ≥ 2. Thus we may assume that |A1| = |A2|. But then
for every u ∈ A1 we have deg(u, A2) ≥ 1 and for every v ∈ A2 we have deg(v, A1) ≥ 1, and thus again we can pick
the two bridges.

We distinguish two subcases.
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Subcase 2.1. u1 and u2 are in different sets, say u1 ∈ A1 \ S′ and u2 ∈ A2 \ S′′. Here we construct the desired
Hamiltonian cycle in the following way. First by using Fact 6 and a similar procedure as in Section 4.1 we find in
G|A1 an (S′, d ′)-path P ′

= P ′(a1, v2) with end points a1 ∈ S and v2 (if v2 ∈ S′ then this is just the last vertex
v2 = ak′ from S on the path, otherwise we connect the last vertex ak′ and v2 by a path of length 3). Similarly we
find in G|A2 an (S′′, d ′′)-path P ′′

= P ′′(ak′+1, v1) with end points ak′+1 ∈ S and v1. Then in G|A1 we remove the
path P ′ apart from the end vertex a1. From (2) and (3) and the degree conditions we get that the resulting graph
satisfies the conditions of Lemma 5 and thus it is Hamiltonian-connected. Take a Hamiltonian path P1 = P1(u1, a1)

with end points u1 and a1. Similarly in G|A2 we remove the path P ′′ apart from the end vertex ak′+1 and we find a
Hamiltonian path P2 = P2(u2, ak′+1) with end points u2 and ak′+1. Then in this case the desired Hamiltonian cycle
C is the following.

C = (P ′, {v2, u2}, P2, P ′′, {v1, u1}, P1).

Note that here actually in C we have

distC (ai , ai+1) = di for all 1 ≤ i ≤ k′
− 1 and k′

+ 1 ≤ i ≤ k − 1.

However, distC (ak′ , ak′+1) could be very different from dk′ .

Subcase 2.2. u1 and u2 are in the same set (say A1). Here we do the following. We may assume that v1, v2 ∈ S′′, since
otherwise we are back at Subcase 2.1. We denote v2 by ak′+1 and v1 by ak . First we find in G|A1 again an (S′, d ′)-path
P ′

= P ′(a1, ak′) with end points a1 and ak′ . We connect ak′ and u2 with a path Q = Q(ak′ , u2) of length dk′ − 1 that
is internally disjoint from P ′ and u1. The degree conditions guarantee that this is possible (even if dk′ = 3, since u2 is
non-exceptional). Then we remove P ′ and Q from G|A1 apart from the end vertex a1 and we find a Hamiltonian path
P1 = P1(u1, a1) with end points u1 and a1. Define

S′′′
= S′′

\ {ak} and d ′′′
= {di |k

′
+ 1 ≤ i ≤ k − 2} = d ′′

\ {dk−1}.

We find in G|A2 an (S′′′, d ′′′)-path P ′′
= P ′′(ak′+1, ak−1) with end points ak′+1 and ak−1. We remove P ′′ from G|A2

apart from the end vertex ak−1 and we find a Hamiltonian path P2 = P2(ak−1, v1) with end points ak−1 and v1 = ak .
Then in this case the Hamiltonian cycle C is the following.

C = (P ′, Q, {u2, v2}, P ′′, P2, {v1, u1}, P1).

Note that here actually in C we have

distC (ai , ai+1) = di for all 1 ≤ i ≤ k − 2,

but distC (ak−1, ak) could be very different from dk−1. This finishes Case 2.
Assume finally that the extremal condition holds with parameter α, so we have A, B ⊂ V (G), |A|, |B| ≥(

1
2 − α

)
n and d(A, B) < α. We may also assume |A|, |B| ≤ n/2. We have three possibilities.

• |A ∩ B| <
√

αn. The statement follows from Case 2. Indeed, let A1 = A, A2 = V (G) \ A1, then clearly
d(A1, A2) < α1/3 if α � 1 holds.

•
√

αn ≤ |A ∩ B| < (1 −
√

α) n
2 . This case is not possible under the given conditions. In fact, otherwise we would

get

|A ∩ B|
n

2
≤

∑
u∈A∩B

deg
G

(u) =

∑
u∈A∩B

deg
G

(u, A ∪ B) +

∑
u∈A∩B

deg
G

(u, V (G) \ (A ∪ B))

≤ 2αn2
+ |A ∩ B| (|A ∩ B| + 1) ,

or

|A ∩ B|

(n

2
− |A ∩ B| − 1

)
≤ 2αn2. (11)

Here in the given range for |A ∩ B| the left side is always greater than

(1 −
√

α)
n

2

(√
α

n

2
− 1

)
≥

√
α

n2

8
� 2αn2,

(using α � 1) a contradiction to (11).
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• |A ∩ B| ≥ (1 −
√

α) n
2 . The statement follows from Case 1 by choosing A1 = A, A2 = V (G) \ A1, and then

d(A1) < α1/3.

This finishes the extremal case and the proof of Theorem 2.
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