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Abstract

A famous conjecture of Berge about linear hypergraphs is studied. It is proved that all
nearly resolvable Steiner systems S(2; 4; v) and all almost nearly resolvable S(2; 4; v) verify this
conjecture. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A hypergraph is a pair H=(X;E), where X is a 6nite non-empty set and E is
a collection of subsets E⊆X , such that E �= ∅, for every E∈E, and

⋃
E∈E E=X .

The elements of X are called the points (or vertices) of H, the elements of E are
called the edges of H. A hypergraph H is called k-uniform if all its edges have
exactly k distinct elements. For k =2, hypergraphs are called graphs. The degree of
a point x∈X is the number of edges containing x. A hypergraph is called linear
if any two of its edges share at most one vertex. The heredity Hˆ of H is the
hypergraph having the same point-set of H and its edge-set is the family of all non-
empty subsets of the edges of H. A hypergraph H is said to be resolvable if there
exists a partition �= {�1; �2; : : : ; �r} of E such that, for every i=1; 2; : : : ; r; �i is
a partition of X (therefore, if b′; b′′∈�i; b′ �= b′′, then b′∩b′′= ∅). The partition �
is called a resolution of H and all the classes �i are called parallel classes of H.
A complete graph, usually indicated by Kv, has v vertices and all the pairs of its
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vertices as edges. It is resolvable iE v is even. A resolution of Kv is also called a
1-factorization of Kv and the parallel classes are called 1-factors.
A hypergraph H is called nearly resolvable if there exists a point x∈X such that

the hypergraph H(x)= (X − {x}; E(x)), where E(x)= {E ∈E: x �∈E}, is resolvable.
Given a hypergraph H=(X;E), an edge-coloring of H is a mapping K :E→C,

from the edge-set to a set C of colors, such that if E′; E′′∈E; E′ �=E′′; E′∩E′′ �= ∅,
then K(E′) �=K(E′′). The minimum number k, for which there exists an edge-coloring
K of H, using k colors, is denoted by q(H) and it is called the chromatic index
of H. If � is the maximum degree of the points of H, then it is immediate that
q(H)¿�(H). If q(H)=�(H); then we say that H has the edge-coloring property.
A Steiner system S(h; k; v) [resp. a partial Steiner system PS(h; k; v)] is a k-uniform

hypergraph S=(S;B) such that every h-subsets of S is contained in exactly [resp.
at most] one edge, also called block, of B. If h=2 and k =4 a system S(2; 4; v) exists
if and only if v≡ 1 or 4 (mod: 12). It is easy to prove that a system S(2; 4; v) contains
exactly |B|= [v(v − 1)]=12 blocks and that every point x∈ S is contained in exactly
(v − 1)=3 blocks. Two partial Steiner systems PS(h; k; n) �1 = (S;B′); �2 = (S;B′′)
are said to be disjoint and mutually balanced, brieIy DMB, if B′ ∩B′′= ∅, and a
h-subset of S is contained in a block of B′ if and only if it is contained in a block
of B′′. In what follows, we will consider DMB-PS(2; 4; n) and we will indicate them
by the triple (S;B′;B′′). Observe that a (partial) system S(2; k; v) is a linear hyper-
graph.
A famous conjecture of Berge about linear hypergraphs says that: “if H is a linear

hypergraph, then Hˆ has always the edge-coloring property”. Observe that if J is a
regular (and linear) hypergraph then to say that “J has the edge-colouring property”
is equivalent to say that “J has a resolution” [5, Lemma 2:2].
It seems that this conjecture is very diLcult to prove and the known results are

very few, until today. Some authors studied this conjecture for particular classes of
hypergraphs. In particular, considering the importance and the interest of the design
theory in combinatorics, Berge pointed out the study of the conjecture for Steiner
systems S(2; k; v), which are all linear hypergraphs.
In [5] it is proved that all resolvable S(2; 4; v) verify the conjecture of Berge. In

this paper, we examine other classes of S(2; 4; v). We will prove that all nearly re-
solvable S(2; 4; v) and all almost nearly resolvable S(2; 4; v) verify the conjecture of
Berge.

2. Nearly resolvable S(2; 4; C)

In what follows, we will consider nearly resolvable Steiner systems S(2; 4; v), which
we will indicate brieIy by NRS(2; 4; v).

Theorem 1. If S =(S;B) is an NRS(2; 4; v), then its hereditary closure Sˆ is resolvable.

Proof. Let S=(S;B) be an NRS(2; 4; v) and let S = {1; 2; : : : ; v}. Suppose that x=1
is the point such that (S −{1};B(1)), with B(1)= {b∈B: 1 �∈ b}, has a resolution �.
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Observe that

v≡ 1(mod: 12); |B|= v·(v− 1)
12

; d(1)= (v− 1)=3; |B(1)|= (v− 1)(̇v− 4)
12

:

Further, � consists of (v− 4)=3 parallel classes �1; �2; : : : ; �(v−4)=3, and each of them
contains exactly (v− 1)=4 disjoint blocks.
Let C = {c1; c2; : : : ; c(v−1)=3}=B−B(1):

c1 = {1; 2; 3; 4}
c2 = {1; 5; 6; 7}
c3 = {1; 8; 9; 10}
: : :
: : :
ci= {1; 3i − 1; 3i; 3i + 1} ∈C
: : :
: : :
c(v−1)=3 = {1; v− 2; v− 1; v}:

It follows that B=C ∪�1 ∪�2 ∪ · · · ∪�(v−4)=3.
Further, consider the following collections of singletons, pairs and triples of S.

1. Let F = {F1; F2; : : : ; Fv} be a 1-factorization of the complete graph de6ned on the
set X = {0}∪ S, such that {0; i}∈Fi, for every i=1; 2; : : : ; v, and

{1; v}∈Fv−2; {v− 2; v− 1}∈Fv:
2. Let P= {P1; P2; : : : ; Pv} be the family obtained by the factorization F , replacing in
every factor Fi ∈F the pair {0; i} by the singleton {i} (the element 0 is deleted).

3. Let T = {T1; T2; : : : ; Tv} be the family of subsets of S, where Ti contains {i} and all
the triples {x; y; z}⊆ S such that {i; x; y; z}∈B.

Now, we will construct a resolution �′ of S .̂
(I) For every i=1; 2; : : : ; (v − 4)=3, consider ci; �i, and observe that in �i there

are three disjoint blocks containing the elements 3i− 1; 3i; 3i+1; respectively, which
belong to ci (together with the point 1). Let

di;1 = {3i − 1; xi;1; yi;1; zi;1}
di;2 = {3i; xi;2; yi;2; zi;2} ∈�i:
di;3 = {3i + 1; xi;3; yi;3; zi;3}

So, de6ne the following collection of blocks:

�′
i =�i − {di;1; di;2; di;3}∪ {ci}∪ {{xi;1; yi;1; zi;1}; {xi;2; yi;2; zi;2}; {xi;3; yi;3; zi;3}};

∀i=1; 2; : : : ; (v− 4)
3

:
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If �′= {�1; �2; : : : ; �′
(v−4)=3}, let �′ ⊆�′.

(II) Now, consider the family T . Since for every i=1; 2; : : : ; (v− 4)=3,

B3i−1 = {{3i − 1}; {xi;1; yi;1; zi;1}}⊆T3i−1;
B3i= {{3i}; {xi;2; yi;2; zi;2}}⊆T3i ;
B3i+1 = {{3i + 1}; {xi;3; yi;3; zi;3}}⊆T3i+1;

and, among the others,

{{1}; {v− 2; v− 1; v}}⊆T1;
{{v− 1}; {1; v− 2; v}}⊆Tv−1;

we can de6ne, for every i=1; 2; 3; : : : ; (v− 4)=3

T ′
3i−1 =T3i−1 − B3i−1 ∪{di;1};
T ′
3i=T3i − B3i ∪{di;2};
T ′
3i+1 =T3i+1 − B3i+1 ∪{di;3}

and

T ′
1 =T1 − {{1}; {v− 2; v− 1; v}}∪ {c(v−1)=3};
T ′
v−2 =Tv−2;

T ′
v =Tv:

Let T ∗= {T ′
1 ; T

′
2 ; : : : ; T

′
v−2; T

′
v }∪ {Tv−1}⊆�′.

(III) Consider the family P. Since

{{v}; {v− 2; v− 1}}⊆Pv;
{{v− 1}; {1; v− 2; v}}⊆Tv−1;

we can de6ne:

P′
i =Pi; for every i=1; 2; : : : ; v− 3; v− 1;

P′
v =Pv − {{v}; {v− 2; v− 1}}∪ {{v; v− 2; v− 1}};
P′
v−2 =Pv−2 − {{v− 2}; {1; v}}∪ {{1; v− 2; v}};
and if P′= {P′

1 ; P
′
2 ; : : : ; P

′
v }; let P′ ⊆�′:

(IV) Finally, observe that the pairs {1; v}; {v − 2; v − 1} are not contained in the
families constructed so far, while the triple {1; v− 2; v} and the singleton {v− 1} are
contained two times.
So, if we de6ne

T ′
v−1 =Tv−1 − {{v− 1}; {1; v− 2; v}}∪ {{1; v}; {v− 2; v− 1}};

and if T ′= {T ′
1 ; T

′
2 ; : : : ; T

′
v }, let T ′ ⊆�′.
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The collection �′=�′ ∪T ′ ∪P′ contains all the quadruples of B and all the triples,
the pairs, the singletons contained in the quadruples of B. �′ is a resolution of the
closure Sˆ of S. This proves the theorem.

The resolution �′ so obtained consists of three families of subsets of S: �′; T ′; P′. It
is clear that there exist other resolutions. In what follows, when we will use resolutions
of nearly resolvable S(2; 4; v) constructed as �′, we will write �′= [�′; T ′; P′].

3. Almost nearly resolvable and almost resolvable S(2; 4; C)

Let �1 = (S;B′); �2 = (S;B′′) be a pair of DMB-PS(2; 4; n). It is easy to see that
necessarily: |B′|= |B′′|=m¿6; m �=7. Further
(1) In [5] it is proved that
(I) There are only two pairs of DMB-PS(2; 4; n) with m68 blocks. They are:

m=6;
n=11 (0; 1; 2; 3; : : : ; 9; A);
B′: B′′:
{1; 3; 4; 5} {1; 3; 6; 9}
{1; 6; 7; 8} {1; 4; 7; 0}
{1; 9; 0; A} {1; 5; 8; A}
{2; 3; 6; 9} {2; 3; 4; 5}
{2; 4; 7; 0} {2; 6; 7; 8}
{2; 5; 8; A} {2; 9; 0; A};

m=8;
n=14 (0; 1; 2; 3; : : : ; 9; A; B; C; D);
B′: B′′:
{1; 2; 3; 4} {1; 2; 5; 8}
{1; 5; 6; 7} {1; 3; 6; B}
{1; 8; 9; A} {1; 4; 9; C}
{1; B; C; D} {1; 7; A; D}
{0; 2; 5; 8} {0; 2; 3; 4}
{0; 3; 6; B} {0; 5; 6; 7}
{0; 4; 9; C} {0; 8; 9; A}
{0; 7; A; D} {0; B; C; D}:

(2) If S1 = (S;B′) and S2 = (S;B′′) are two S(2; 4; v), such that B′ ∩B′′=B, then
B′ −B and B′′ −B de6ne a pair of DMB-PS(2; 4; n).
This implies that
(II) Two distinct Steiner systems S(2; 4; v) can have m= qv−6 or m6qv−8 blocks

in common, being qv= [v·(v− 1)]=12.
In what follows, we will say that a Steiner system S(2; 4; v) is almost nearly resolv-

able [resp. almost-resolvable], brieIy ANRS(2; 4; v) [resp. ARS(2; 4; v)] if it has qv−6
or qv − 8 blocks in common with a nearly resolvable [resp. resolvable] S(2; 4; v).
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Theorem 2. If S =(S;B) is an ANRS(2; 4; v), then its hereditary closure Sˆ is
resolvable.

Proof. Let H=(S; C) be an NRS(2; 4; v), de6ned as Theorem 1, and let S =(S;B) be
an ANRS(2; 4; v) having qv−6 or qv−8 blocks in common with H. From Theorem 1,
H ˆ is resolvable having a resolution �′= [�′; T ′; P′].
Suppose that

(1) |B∩C|= qv − 6 and let

B− C: C −B:
{1′; 3′; 4′; 5′} {1′; 3′; 6′; 9′}
{1′; 6′; 7′; 8′} {1′; 4′; 7′; 0′}
{1′; 9′; 0′; A′} {1′; 5′; 8′; A′}
{2′; 3′; 6′; 9′} {2′; 3′; 4′; 5′}
{2′; 4′; 7′; 0′} {2′; 6′; 7′; 8′}
{2′; 5′; 8′; A′} {2′; 9′; 0′; A′}

(2) |B∩C|= qv − 8;
and let

B− C: C −B:
{1′; 2′; 3′; 4′} {1′; 2′; 5′; 8′}
{1′; 5′; 6′; 7′} {1′; 3′; 6′; B′}
{1′; 8′; 9′; A′} {1′; 4′; 9′; C′}
{1′; B′; C′; D′} {1′; 7′; A′; D′}
{0′; 2′; 5′; 8′} {0′; 2′; 3′; 4′}
{0′; 3′; 6′; B′} {0′; 5′; 6′; 7′}
{0′; 4′; 9′; C′} {0′; 8′; 9′; A′}
{0′; 7′; A′; D′} {0′; B′; C′; D′}:

We can observe that in both the cases (1) and (2), the quadruples of B–C and C–B
can be partitioned into a same set U of pairs as follows:
(1.1)

B− C: C −B:
{1′; 3′ − 4′; 5′} {1′; 3′ − 6′; 9′}
{1′; 7′ − 6′; 8′} {1′; 7′ − 4′; 0′}
{1′; A′ − 9′; 0′} {1′; A′ − 5′; 8′}
{2′; 3′ − 6′; 9′} {2′; 3′ − 4′; 5′}
{2′; 7′ − 4′; 0′} {2′; 7′ − 6′; 8′}
{2′; A′ − 5′; 8′} {2′; A′ − 9′; 0′};
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(2.1)

B− C: C −B:
{1′; 2′ − 3′; 4′} {1′; 2′ − 5′; 8′}
{1′; 6′ − 5′; 7′} {1′; 6′ − 3′; B′}
{1′; 9′ − 8′; A′} {1′; 9′ − 4′; C′}
{1′; D′ − B′; C′} {1′; D′ − 7′; A′}
{0′; 2′ − 5′; 8′} {0′; 2′ − 3′; 4′}
{0′; 6′ − 3′; B′} {0′6′ − 5′7′}
{0′; 9′ − 4′; C′} {0′; 9′ − 8′; A′}
{0′; D′ − 7′; A′} {0′D′ − B′C′};

we can 6nd another set V of pairs with the same property and without pairs in common
with U:
(1.2)

B− C: C −B:
{1′; 4′ − 3′; 5′} {1′; 4′ − 7′; 0′}
{1′; 8′ − 6′; 7′} {1′; 8′ − A′; 5′}
{1′; 9′ − 0′; A′} {1′; 9′ − 3′; 6′}
{2′; 4′ − 7′; 0′} {2′; 4′ − 3′; 5′}
{2′; 8′ − A′; 5′} {2′; 8′ − 6′; 7′}
{2′; 9′ − 3′; 6′} {2′; 9′ − 0′; A′}

(2.2)

B− C: C −B:
{1′; 4′ − 2′; 3′} {1′; 4′ − 9′; C′}
{1′; 5′ − 6′; 7′} {1′; 5′ − 2′; 8′}
{1′; A′ − 8′; 9′} {1′; A′ − 7′; D′}
{1′; B′ − C′; D′} {1′; B′ − 3′; 6′}
{0′; 4′ − 9′; C′} {0′; 4′ − 2′; 3′}
{0′; 5′ − 2′; 8′} {0′; 5′ − 6′; 7′}
{0′; A′ − 7′; D′} {0′; A′ − 8′; 9′}
{0′; B′ − 3′; 6′} {0′; B′ − C′; D′}:

Therefore:
(i) if {1; v}; {v−2; v−1} �∈U [this implies that {1; v−2; v−1; v}∈B∩C or, otherwise,

that this quadruple is partitioned into two pairs of U diEerent from {1; v}; {v−2; v−1}],
it is possible to consider the collection P′ (de6ned by a factorization F, see Theorem 1)
in such a way that
(1)

{1′; 3′ − 6′; 9′}∈P′
2

{1′; 7′ − 4′; 0′}∈P′
3

{2′; 3′ − 4′; 5′}∈P′
1

{2′; 7′ − 6′; 8′}∈P′
5

{1′; A′ − 5′; 8′}∈P′
4

{2′; A′ − 9′; 0′}∈P′
6 :
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(2)

{1′; 2′ − 5′; 8′}∈P′
3

{1′; 6′ − 3′; B′}∈P′
4

{1′; 9′ − 4′; C′}∈P′
2

{1′; D′ − 7′; A′}∈P′
5

{0′; 2′ − 3′; 4′}∈P′
6

{0′; 6′ − 5′; 7′}∈P′
1

{0′; 9′ − 8′; A′}∈P′
7

{0′; D′ − B′; C′}∈P′
8 :

and we can de6ne a resolution �′′= [�′′; T ′′; P′′] of Sˆ as follows:
for every {x; y; z; t}∈B − C, if �j is the class of �′ such that {x; y; z; t}∈�j

and {(x; y}; {z; t}∈U; then this class in �′′ becomes �′
j =�j − {{x; y; z; t}}∪ {{x; y};

{z; t}};
for every {a; b}; {c; d}∈U such that {a; b; c; d}∈C−B, if P′

i is the class of �
′ such

that {{a; b}; {c; d}∈P′
i , then this class in �

′′ becomes P′′
i =P

′
i −{{a; b}; {c; d}}∪ {a; b;

c; d}}.
(ii) if {1; v}; {v − 1; v}∈U [this implies that {1; v − 2; v − 1; v}∈B − C], then

{1; v}; {v − 2; v − 1} �∈V and we can apply the same technique of (i), using the pairs
of V instead of the pairs of U .

By the same technique, used in Theorem 2, it is possible to prove the following
theorem.

Theorem 3. If S =(S;B) is an ARS(2; 4; v), then its heredity Sˆ is resolvable.

Proof. If S =(S;B) is an ARS(2; 4; v), then exists a resolvable S(2; 4; v) H=(S; C)
having qv − 6 or qv − 8 blocks in common with S. The closure Hˆ has a resolution,
which can be obtained by

1. the resolution � of H,
2. the family {�1; �2; : : : ; �v}, with �i containing {i} and all the triples {xi; yi; zi} such
that {i; xi; yi; zi}∈C,

3. a factorization F = {F1; F2; : : : ; Fv−1} of Kv.

If B−C and C −B are de6ned as in Theorem 2, for both cases (1) and (2), since
it is possible to de6ne F in such a way as to the conditions on Pi of Theorem 2 are
veri6ed, then we can use the same technique of case (i) of Theorem 2 and we can
also prove that S =(S;B) has the closure Sˆ with a resolution.

In conclusion: “All resolvable S(2; 4; v), all nearly resolvable S(2; 4; v), all
almost nearly resolvable S(2; 4; v) verify the conjecture of Berge on linear
hypergraphs”.
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4. A nearly resolvable S(2; 4; 25)

The 6rst value of v to obtain are NRS(2; 4; v) is v=25. The following is an NRS
(2; 4; 25).

C:
{1; 2; 3; 4} {1; 11; 12; 13} {1; 20; 21; 22}
{1; 5; 6; 7} {1; 14; 15; 16} {1; 23; 24; 25}
{1; 8; 9; 10} {1; 17; 18; 19}
�1: �2: �3:
{2; 5; 8; 11} {2; 7; 14; 19} {2; 6; 21; 23}
{3; 6; 9; 12} {3; 5; 15; 17} {3; 7; 22; 24}
{4; 7; 10; 13} {4; 6; 16; 18} {4; 5; 20; 25}
{14; 17; 20; 23} {8; 13; 22; 23} {8; 12; 14; 18}
{15; 18; 21; 24} {9; 11; 20; 24} {9; 13; 15; 19}
{16; 19; 22; 25} {10; 12; 21; 25} {10; 11; 16; 17}
�4: �5: �6: �7:
{2; 10; 15; 22} {2; 9; 17; 25} {2; 12; 16; 24} {2; 13; 18; 20}
{3; 8; 16; 20} {3; 10; 18; 23} {3; 13; 14; 25} {3; 11; 19; 21}
{4; 9; 14; 21} {4; 8; 19; 24} {4; 11; 15; 23} {4; 12; 17; 22}
{5; 12; 19; 23} {5; 13; 16; 21} {5; 9; 18; 22} {5; 10; 14; 24}
{6; 13; 17; 24} {6; 11; 14; 22} {6; 10; 19; 20} {6; 8; 15; 25}
{7; 11; 18; 25} {7; 12; 15; 20} {7; 8; 17; 21} {7; 9; 16; 23}:
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