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1. INTRODUCTION 

Duality in nonlinear programming is usually treated using the scheme of 
Wolfe [9], in which the formation of a dual involves the introduction of 
new variables corresponding to primal constraints. Thus, except in linear 
programs, the primal cannot be obtained by forming the dual of the dual. 

The concept of symmetric dual programs, in which the dual of the dual 
equals the primal, was introduced and developed in papers such as Dorn 
[2], and Dantzig, Eisenberg, and Cottle [ 11. Mond and Hanson [S] 
extended symmetric duality to variational problems, giving continuous 
analogues of the previous results. 

Assumptions common to these works are those of convexity and con- 
cavity. Since the identification of invex functions in Hanson [3], many 
results which formerly required convexity have been extended using 
invexity, including the variational problems discussed in Mond, Chandra, 
and Husain [4]. In this paper, we apply invexity to a symmetric dual 
variational problem, without the positivity constraints of Mond and 
Hanson [S], but with an extra condition on the invexity. The special case 
of self-dual variational problems, along with the reduction to static sym- 
metric dual programs without positivity constraints when there is no time 
dependency, is presented. 

2. NOTATION 

Consider the real scalar function f(t, x, x’, y, u’), where t E [to, tf], x 
and y are functions of t with x(t) E R” and y(t) E KY”, and x’ and y’ denote 
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derivatives of x and y, respectively, with respect to t. Assume that f has 
continuous fourth-order partial derivatives with respect to x, x’, y, y’. 

f, and j”,, denote the gradient vectors off with respect to x and x’, i.e., 

Similarly, .fV and j$ denote the gradient vectors off with respect to y 
and y’. 

The following observations are used for proving strong duality: 

Consequently, 

The analogous properties of (d/dt)fYZ could be employed for a converse 
duality theorem, but such a result is more efficiently established via 
symmetry. 

Note that vector inequalities are defined component by component. 

3. SYMMETRIC DUALITY 

We consider the problem of finding functions x: [to, tr] + R” and 
Y: t&b +I + R”, with (x’(t), y’(t)) piecewise smooth on [to, zr], to solve 
the following pair of optimization problems. 
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(P) Minimize 

III 
” f( 4 x, x’, y, Y’) - v(t)Tf”(t, 4 x’, y3 Y’) 
hl 

+ y(t)‘; f,O, x, x’, Y, Y’) 1 dt 

subject to: x( to) = x0, x( tr) = xr, y( to) = y,, JJ( t,.) = y, 

t, x, x’, L’, Y’) >fy(tt 4 x’, Y, Y’), t E [It03 IfI 

(1) 

(2) 

(D) Maximize 

d 
+ -WTz .Mt, x, x’, Y, $1 1 dt 

subject to: x( to) = x0, x(t,) = xf, y(to) = y,, y(tr) = y, 

$ .Mt> x, x’, Y, Y’) ~.L(L 4 x’, 4’3 Y’), t E [to, lfl, (3) 

where (2) and (3) may fail to hold at corners of (x’(t), y’(t)), but must be 
satisfied for unique right- and left-hand limits. 

These are Problems I and II stated in Mond and Hanson [S], with the 
constraint x(t) 2 0 removed from I, and y(t) 2 0 removed from II. 

DEFINITION. The functional l:{f (f as g iven above) is invex in x and x’ 
if for each y: [to, t/l --) R”, with y’ piecewise smooth, there exists a 
function q: [to, tr] x R” x R” x R” x R” -+ 54” such that 

s *; Cf(c x, x’, Y, Y’) -At, u, u’, Y, ~‘11 dt 

s 
‘i 

k rl(t, x, x’, u, u’)’ 
10 

x 
[ 
f&t, u, ~‘7 Y, y’) -$&, u, u’, Y, Y’) dt 1 

for all x: [to, tf] + RF, 24: [to, tr] -+ KY with (x’(t), u’(t)) piecewise smooth 
on [to, tfl. 
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Similarly, the functional -ji; f is invex in y and y’ if for each 
x: [t,, ty] --) R”, with x’ piecewise smooth, there exists a function 
5: [to, tr] x R” x R” x R” x R” + R”’ such that 

- s ” IIf(t, x, x’, v, 0’) -At, x, x’, Y, ~71 dt 
10 

2 - (’ Qt, v, 0’9 Y, Y’)’ s 10 
x f,.k x, x’, Y, Y’) - $ .fJt, x, x’, Y, Y’) 1 dt 

for all u: [to, tr] --f R”, y: [to, fr] --) R” with (v’(t), v’(t)) piecewise smooth 
on Cb trl. 

In the sequel, we will write ~(x, u) for ~(t, x, x’, U, u’), and ((0, y) for 
((4 0, v’, Y, Y’). 

As shown in Mond and Smart [7], j$ fis invex in x and x’ iff, for each 
fixed y, a critical point yields a global minimum; and -j:‘, f is invex in y 
and y’ iff, for each fixed x, a critical point yields a global maximum of j:{,f: 

THEOREM 1 (Weak Duality). rf Ii’, f is inuex in x and x’, and - j$ f is 
invex in y and y’, with q(x, u) + u(t) 20 and ((v, y)+ y(t)20 fir all 
t E [to, fr] (except perhaps at corners of (x’(t), y’(t)) or (u’(t), u’(t))) 
whenever (x, y) is feasible for (P) and (u, u) is feasible ,for (D), then 
inf( P) 3 sup(D). 

Proof. Let (x, y) be feasible for (P), and (u, v) be feasible for (D). 
Then 

d 
+ y(tF&fJt. x, -‘i’, y, y’) 

- 
[ 
“/It, K u’, v, 0’) - f4t)TfJt, 4 u’, v, v’) 

d 
+ u(t)Tdrf& u, u’, v, v’) 11 dt 

2 - 'ft(u, Y)’ s f,.(t, x, x', Y, Y') - $ f,,,(tt x, x', Y, Y') dt 10 1 
t, u, u’, v, v’) -$ f&, u, u’, v, u’) 

1 
dt 



540 SMART AND MOND 

for some functions q and < by assumptions of invexity 

d 
x I$, x, x’, Y, Y’) -z f,& x> x’, Y, Y) 

1 
dt 

+ s ,; ol(4 u) + 4t))’ 

d 
x f,( t, u, u’, u, u’) - z f,,( t, u, u’, v, u’) 1 dt 

2 0 by (2) and (3) with ~(x, U) + u(t) 20 and {(u, y) + y(t) 20. Hence, 
inf( P) 3 sup(D). 1 

Remark. If the invexity assumptions of Theorem 1 are replaced by con- 
vexity and concavity (i.e., j:{ f is convex in x and x’ for each y, and J”:{f 
is concave in y and y’ for each x), then the conditions ~(x, U) + u(t) k 0 and 
t(u, v) + y(t) > 0 become x(t) 3 0 and u(t) B 0. These constraints may be 
added to Problems (P) and (D), respectively, to obtain the dual pair of 
Mond and Hanson [S]. 

In the following theorem and proof, f * represents f(t, x*, x*‘, y*, y*‘) 
and partial derivatives are similarly denoted. 

THEOREM 2 (Strong Duality). Let (x*, y*) he optimal for (P), and 
assume that the system 

P(t)T 
( 

f.?” -of f$ 
> [ 

+$ p(t)‘$f,*,, 1 [ +f -p(t)Tfy*,.“, =o 1 
only has the solution p(t) = 0, t E [to, tr]. Then (x*, y*) is feasible for (D). 
If, in addition, the invexity conditions of Theorem 1 are satisfied, then 
(x*, y*) is optimalfor (D), and the extreme values of(P) and (D) are equal. 

Remark. This theorem also serves to correct the statement of the 
system of differential equations given in Theorem 2 of Mond and Hanson 
c51. 
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Proof. Applying the necessary conditions of Valentine [S], if (x*, y*) 
minimizes (P), then there exists A0 E [w and I: [to, fr] + R” such that 

satisfies 

and 

(4) 

A,30 (7) 

A>0 (8) 

throughout [to, fr] (except at corners of (x*‘(t), y*‘(t)) where (4) and (5) 
hold for unique right- and left-hand limits). I, and L(t) cannot be 
simultaneously zero at any t E [to, tr], and d is continuous except perhaps 
at corners of (x*‘(t), y*‘(t)). 

Using the observations on (d/dr)f,, from the notation section, (4) 
becomes 

(i-;,,“)‘(f:,-~f~“,j+&[(i-i~y*)‘~ff,,] 

+$ [-(~-&Y*)Tf:,J =o (9) 

and (5) becomes 

+-g [-(~-n,y*)Tfy*‘r’]=O. (10) 
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By assumption, the only solution of (9) is 2 - 1, y* = 0. This gives i, > 0, 
since if 2, =0 then 2 =0 everywhere, contradicting the necessary condi- 
tions. 

Equation (10) now becomes 

l.()f,* - & f f: = 0, 

i.e., 

f:.-$f:,=o. 
Equation (6) gives 

&Y *T -$f)?)=O, 
( 

i.e., 

-Y*Tf; + y*‘~f:=O. 

(11) 

By (1 l), (x*, y*) is feasible for (D). From (11) and (12), (P) and (D) have 
equal objective values at (x*, y*), namely S:{f(l, x*, x*‘, y*, ,v*‘) dt. 

If the invexity conditions of Theorem 1 are satisfied, then, by weak 
duality, (x*, y*) is optimal for (D), and the extreme values of (P) and (D) 
are equal. 1 

A converse duality theorem may be stated; the proof would be analogous 
to that of Theorem 2. 

THEOREM 3 (Converse Duality). Let (x*, y*) he optimal for (D), and 
assume that the system 

p(t)’ st--$.r.S 
( > [ 

+; P(t)~;f.:Y 1 +$ C-P(t)‘&1 =o 

onZy has the solution p(t) = 0, t E [t,, / . t ] Then (x*, y*) is feasible for (P). 
IS, in addition, the invexity conditions of Theorem 1 are satisfied, then 
(x*, y*) is optimal for (P), and the extreme values of(P) and (D) are equal. 

Remark. The system of differential equations in Theorem 2 may be 
rewritten as 
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Iff does not explicitly depend on y’, this reduces to p( t)Tf& = 0, which has 
only a zero solution iff f-zJ is nonsingular for all t E [to, tr]. 

4. SELF-DUALITY 

Assume that m = n, f(t, x, x’, y, y’) = -f(t, y, y’, x, x’) (i.e., fskew-sym- 
metric) for all (x(t), y(z)), t E [to, tY] such that (x’(t), y’(t)) is piecewise 
smooth on [to, rr] and that x,, = y,, xr= y,. 

It follows that (D) may be rewritten as a minimization problem: 

(D’) Minimize 

” 
I[ 

f(t, Y, Y’, x, x’) - x(t)‘fr(t, Y, Y’, x^, x’) 
10 

+ x(l)T&(r, y, y', x, x') 
I 

dt 

subject to: x( to) = x0, x( tr) = x1., y( to) = x0, y( tr) = 5, 

x, x’) 3fAt, Y, Y’, 4 x’). 

(D’) is formally identical to (P); that is, the objective and constraint 
functions and initial conditions of (P) and (D’) are identical. This problem 
is said to be self-dual. 

It is easily seen that whenever (x, y) is feasible for (P), then (y, x) is 
feasible for (D), and vice versa. 

THEOREM 4. Assume (P) is self-dual and that the invexity conditions of 
Theorem 1 are satisfied. If (x*, y*) is optimalfor (P), and the system given 
in Theorem 2 only has a zero solution, then (y*, x*) is optimal for both (P) 
and (D), and the common optimal value is 0. 

Proof. By Theorem 2, (x*, y*) is optimal for (D), and the extreme 
values of (P) and (D) are equal to j:{f(t, x*, x*‘, y*, y*‘) dt. 

From self-duality, (y*, x*) is feasible for both (P) and (D), so 
Theorems 1 and 2 give optimality in both problems, and thus objective 
values of j:‘,f(t, y*, y*‘, x*, x*‘) dt. 

But ji;f(t, y*, y*‘, x*, x*‘) dt = -j:‘,f(t, x*, x*‘, y*, y*‘) dt by skew- 
symmetry. 

Hence f:;f(t, x*, x*‘, y*, y*‘) dt= -{;/,f(t, x*, x*', y*, y*‘) dt=O. 1 
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Natural boundary conditions may be dealt with as in Mond and Hanson 
[S], since the extra transversality conditions required for the formulation 
of (P) and (D) are independent of any positivity constraints on x and y. 

5. STATIC SYMMETRIC DUAL PROGRAMS 

If the time dependency of Problems (P) and (D) is removed, and f is 
considered to have domain R” x R”, we obtain the symmetric dual pair 
given by 

(SP) Minimize f(x, y) - yTfl,(x, y) 

subject to: fi,(x, y) < 0 

(SD) Maximize f(x, y) - xrfX(x, v) 

subject to:f,(x, y) 2 0. 

These are the programs considered in Dantzig, Eisenberg, and Cottle [l] 
and Mond and Hanson [6], except that here the positivity constraints 
have been omitted. 

DEFINITION. The function f: R” x R” -+ R is invex in x if for each 
y E IF!“, there exists a function q: R” x R” + R” such thatf(x, v) -f(u, v) > 
~(x, u)~~*(u, y) for all x, UE R”, and -f is invex in y if for each XE R”, 
there exists a function t: W” x KY’ + R” such that -f(x, u) +f(x, y) > 
-c(v, ~)~f,,(x, y) for all v, YE R”. 

The following theorems may be proved along the lines of Theorems 1, 2, 
and 3. 

THEOREM 5. Zf f is invex in x, and -f is inuex in y, with n(x, u) + u > 0 
and t(u, y) + y 2 0 wheneoer (x, y) is feasible for (SP) and (u, u) is feasible 
for (SD), then inf(SP) 3 sup(SD). 

THEOREM 6. Let (x*, y*) be optimal for (SP), and assume that f$ is 
nonsingular. Then (x*, y*) is feasible for (SD). Zf, in addition, the invexity 
conditions of Theorem 5 are satisfied, then (x*, y*) is optimalfor (SD) and 
the extreme values of (SP) and (SD) are equal. 

THEOREM 7. Let (x*, y*) be optimal for (SD), and assume that fT.% is 
nonsingular. Then (x*, y*) is feasible for (SP). Zf; in addition, the invexity 
conditions of Theorem 5 are satisfied, then (x*, y*) is optimal for (SP), and 
the extreme values of (SP) and (SD) are equal. 
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The pair (SP) and (SD) will be self-dual when m = n and f is skew- 
symmetric (i.e., f(x, y) = -f( y, x) for all x, y E KY). 

We state without proof a static version of Theorem 4. 

THEOREM 8. Assume (SP) is self-dual and that the invexity conditions of 
Theorem 5 are satisfied. Zf (x*, y*) is optimal for (SP), and f& is non- 
singular (equivalently, f $ is nonsingular), then (y*, x*) is optimal for both 
(SP) and (SD), and the common optimal value is 0. 
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