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ABSTRACT 

The Burpala alkaline massif contains rocks with more than 50 minerals rich in Zr, Nb, Ti, 

Th, Be and rare earth elements (REE). The rocks vary in composition from shonkinite, 

melanocratic syenite, nepheline and alkali syenites to alaskite and alkali granite and contain up to 

10% LILE and HSFE,  3.6%  of REE and varying amounts of other trace elements (4% Zr, 0.5% 

Y, 0.5% Nb, 0.5% Th and 0.1% U). Geological and geochemical data suggest that  all the rocks 

in the Burpala massif were derived from alkaline magma enriched in rare earth elements.. The 

extreme products of magma fractionation are REE rich pegmatites, apatite–fluorite bearing rocks 

and carbonatites. The Sr and Nd isotope data suggest that the source of primary melt is enriched 

mantle (EM-II). We correlate the massif to mantle plume impact on the active margin of the 

Siberian continent. 

Keywords: Syenite; Pegmatite, Rare metal and rare earths; Petrology; Geochemistry.    

 

1. Introduction 

The Burpala alkaline massif is located in the North Baikal Highland and occurs at height 

of about 3500 m (Fig. 1). The North Baikal alkaline province is composed of the largest Synnyr 

ultrapotassic alkaline massif (covering an area of over 800 km2) and some smaller massifs of 

alkaline rocks (Zhidkov, 1961). Over 50 minerals rich in Zr, Nb, Ti, Th, Be, and REE have been 

identified in the rare-metal syenite of this massif (Sotnikova, 2009). The rocks contain up to 10% 

of LILE and HSFE, 3.6% of REE and varying amount of other trace elements (4% Zr, 0.5% Y, 

0.5% Nb, 0.5% Th and 0.1% U) of economic grade (Vladykin, 1997; Vladykin and Miuzaki, 

2001; Sotnikova, 2009, 2012). Hence the study of the Burpala massif is critical to understand the 

processes of formation of large rare-metal provinces with strategic mineral resources. In this 

paper, we integrate data on the geology, age, element and isotope geochemistry of the intrusive 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

2 
 

rocks and rare metal mineralization in the Burpala massif. We also attempt to relate this massif 

to the alkaline magmatism in Central Asian fold belt (Vladykin, 1997; Kovalenko et al., 2002, 

2006; Yarmolyuk and Kovalenko, 2003; Yarmolyuk and Kuz’min, 2012). 

 

2. Geological setting of the Burpala massif  

 

The Burpala massif is a concentrically zoned intrusion covering an area about 250 km2. It 

intrudes into the Vendian terrigenous rocks of the Kholodninsky Formation (Fig. 1). The 

temporal sequence of the main magmatic units in the massif is summarized in Table 1.  

Shonkinite and melanocratic syenite dikes, which cut the country rocks in the western margin of 

the massif, have been considered as the early intrusive phase (Fig. 1). The dikes vary in size 

from 1 to 5 m width and extend for about 100 m. The emplacement of alkaline magma of the 

main intrusive phase and its fractionation resulted in the formation of nepheline syenite, 

pulaskite and quartz syenite. Nepheline syenite occupies the center of the massif (Fig. 1) and the 

other parts are composed of pulaskite. Close to the contact with country rocks, pulaskite 

transforms to alkaline quartz syenite. The intrusive contact between pulaskite and quartz syenite 

and country rocks (sandstone and siltstone) is sharp. In the contact zone (50–100 m) the country 

rocks experienced intense metasomatic modification, resulting in the formation of cordierite and 

biotite hornfels. A series of small rare-metal pegmatite veins of 10 cm to 1 m thick and 3 to10 m 

long are observed in nepheline syenite. 

The vein phase occupies about 30% of the massif area. The earliest dikes of fine- and 

medium-grained leuco- and mesocratic nepheline and alkali syenites cut across the rocks of the 

main phase. The dikes of eudialyte–sodalite syenite (mariupolite) (1–3 m thick and some 

hundred meters in extent) occur in the central massif. Similar rocks were reported from the 

Ukranian shield (Dumańska-Słowik et al., 2015) in West Bengal, India (Mitchell and 

Chakrabarty, 2012) and other main shield environments. 

The rare-metal pegmatites are fine-equigranular (medium and locally coarse-grained) 

rocks frequently displaying banded or trachytic texture. Three areas with presumably economic 

dikes and veins of rare-metal pegmatites have been mapped and contoured (Figs. 1, 2). The first 

area is hosted by the left wall of the Left Upper Creek close to the drainage divide. The rare-

metal pegmatite veins found in nepheline syenite contain pegmatoid segregations enriched in 

rare-element minerals. This poorly studied zone extends to the northern contact of the massif, 

where larger bodies are noticed. The second britholite-bearing area is located at the right wall of 

the Right Upper Creek (Fig. 2) enclosing several bodies of rare-metal pegmatites with britholite. 

The largest body, up to 20 m in thick, is extended up to 50 m. The third area occurs at the 
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western contact of the massif (Fig. 1). Two ore zones extend for 10 km in the area (Fig. 2), 

where numerous near-vertical rare-metal pegmatite veins containing about 30% rare-element 

minerals have been documented in the trenches. The thickness of pegmatite bodies varies from 1 

to 10 m in the upper parts of slopes and up to 15–10 m in the lower parts within the vertical 

range of 250–300 m. Separate veins of rare-metal syenite possibly merge into a single large body 

at deeper levels. 

In some cases, fenite zones with rare-metal mineralization (5–10 m thick) are formed at 

the contact of rare-metal pegmatites with siltstone of the Kholodninsky Formation. 

 A large dike of medium to coarse-grained apatite–fluorite rock of 10–20 m thick and up 

to 300 m length occurs in the vein phase of the Burpala massif. This dike cuts pulaskite of the 

main phase and, in turn, is crosscut by the alaskite vein. The dike contacts with country rocks 

look sharp. 

Alaskite (leucogranite) and alkali granite occur as numerous dikes of 1 to 100 m thick 

and 200 m to few kilometers in extent.   

Two small dikes of carbonate–silicate rocks, geochemically resembling carbonatite, have 

been discovered in the central and contact zones of the Burpala massif (Vladykin, 1997). One of 

them, 20–30 cm thick, crosscuts the nepheline syenite and extends for 50 m.  

 

3. Analytical methods 

 

Representative rock samples collected from the Burpala massive were ground and fused with 

LiBO2. Over 70 samples were analyzed for major oxides using the SRM-25 multichannel XRF 

spectrometer (Nauchpribor, Orel, Russia). The XRF spectroscopy was performed with 

calibration of international standards ST-2 (alkaline nepheline syenite) and J-2 (basalt, Japan). 

Fe2O3 and FeO were separated by titration. 

Trace elements were measured by ICP-MS spectroscopy under the standard conditions with 

Thermo Finnigan Element 2 single-collector at low (LR)-300, medium (MR)-4000, and high 

(HR)-10000 M/∆M resolution. The measurement results and instrumental drift were checked 

against international standards BHVO-1, STM-1 at every 5–6 samples. The glasses obtained by 

fusion with LiBO2 were dissolved in ultrapure HNO3 to prepare sample solutions. 

TOTALQUANT software was used to process data, and certified multi-element solutions were 

employed for constructing calibration graphs. Water for solutions was purified using Millipore-

ELIX-3 device in Irkutsk. An internal Rh standard was applied to correct the signal drift. The 

element isotopes were selected with regard to possible interferences with isobaric and molecular 

ions. Interference corrections were routinely applied to correct analyses of 151Eu isotopes (from 
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BaO, BaOH) and 159Tb (from NdO, NdOH). The oxide production ratio was <3%. The 

uncertainties are estimated to be better than 2–10%.  

 

4. Results  

4.1 Mineralogic and petrographic features of major intrusive phases 

 

The dikes of melanocratic syenites and shonkinites of the first magmatic stage are composed 

of K-feldspar (80–60%) and dark-color minerals (20–40%) represented by augite, biotite, and 

garnet. Minor amounts of magmatic calcite were found in the interstices between K-feldspar 

grains of shonkinite. 

Nepheline syenite is medium-grained and composed of microcline-perthite (60–70%) and 

nepheline (10–25%). The dark-color minerals (5–10%) are augite and biotite; titanite, zircon, 

apatite, and magnetite are accessory minerals. Pulaskite has medium-grained structure and shows 

pronounced trachytic texture caused by the planar orientation of microcline perthite crystals, 

which occupy 80–85% of the rock volume; nepheline occupies 5–8%; alkaline amphibole 

(hastingsite) and aegirine-augite are the main dark-color minerals. Astrophyllite is a rare mineral; 

titanite, zircon, apatite, and magnetite are accessory minerals. 

        Quartz syenite consists of microcline-perthite (70–80%), quartz (5–10%) and dark-color 

minerals (5–15%): amphibole (edenite–hastingsite), aegirine diopside, and biotite; titanite, 

zircon, apatite, and magnetite are accessory minerals.  

Syenite dikes are composed of microcline-perthite (60–80%), nepheline (5–10%), alkali 

amphibole (cataphorite) and aegirine-augite (10–20%). Magmatic calcite is occasionally 

observed in small amounts. Eudialyte–sodalite syenite veins are composed of perthitic K–Na 

feldspar (70–90%), sodalite (5–15%), eudialyte (1–10%), arfvedsonite, and aegirine (5–10%). 

Nepheline is identified in some varieties of eudialyte-sodalite syenite, which was termed as 

“mariupolite” by Andreev (1981), although they do not contain albite—the major mineral of true 

mariupolite (Mitchell and Chakrabarty, 2012). In rare-metal pegmatites microcline, albite, 

aegirine, arfvedsonite, and nepheline are the major minerals, as well as numerous rare element 

minerals and are discussed in the next section.  

Apatite–fluorite dike is composed primarily of apatite (10–30%) and fluorite (20–70%). 

In the near contact zones of this dike, magnetite (1–10%), biotite (3–15%), diopside augite (2–

10%), and nepheline (1–5%) occur. Hambergite and needle-shaped X-ray amorphous zirconium 

silicate occur as accessory minerals in the apatite–fluorite rock. 

The apatite–fluorite dike incorporates calcite (70–90%), microcline (25–10%), and Sr-

zeolite brewsterite (1–3%). The second dike, 20 cm thick and 3 m long, is composed of calcite 
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(75%), quartz (20%) and pyrite (5%); this dike cuts terrigenous rocks of the Kholodninsky 

Formation. 

        Alaskite is largely composed of quartz (20–30%), microcline perthite (~70%) and augite 

(1–5%). Alkali granite consists of quartz (up to 30%), latticed microcline, alkali cataphorite (1–

5%) and aegirine (1–5%). Pegmatoid schlierens with rare-metal mineralization (elpidite, Pb-

betafite, bafertisite, thorite, strophyllite, neptunite, cryolite) has been found in alkali granite dike 

(Efimov and Ganzeev, 1972). This mineralization significantly differs from that in rare-metal 

pegmatites. Similar associations were determined in pegmatites from Strange Lake Canada (Gysi 

and Williams-Jones, 2013) 

           

4.2 Mineralogy of rare- metal pegmatites 

 

Rare-metal pegmatites in nepheline syenites are composed of microcline, albite, 

arfvedsonite, aegirine, apatite and fluorite. The rare-element minerals are represented by zircon, 

astrophyllite, titanite, ilmenite, Sr-perrierite, eudialyte, and lеvenite (Figs. 3, 4). The rare-metal 

(britholite) pegmatites from the second group contain segregations consisting of coarse-grained 

microcline, fine britholite disseminations, and monomineralic britholite aggregates reaching 1.1 

m in size. 

Fluorite vein with arfvedsonite and aegirine, as well as 10% REE minerals (fluocerite and 

metamictic REE–Ti silicate) occurs in this area.  

The rare-metal syenites in the western area frequently display trachytoid and banded texture 

caused by non-uniform distribution of arfvedsonite and aegirine. The trachytic texture is 

conformable to banding. The concentration of rare element minerals reaches 30%. They occur in 

both melano- and leucocratic segments of the veins. Diverse mineral species are represented by 

zircon silicates (zircon, eudialyte, lеvenite, Ti-lеvenite, wohlerite, burpalite, seidozerite, Ca-

seidozerite, osenbuschite, vlasovite, catapleiite, Ca-catapleiite); Ti minerals (titanite, 

astrophyllite, amsayite, loparite, metaloparite, rinkolite, Mn-neptunite, bafertesite, chevkinite, 

Mn-ilmenite, pyrophanite, Srperrierite, landauite, rutile, anatase, brookite); REE minerals 

(loparite, metaloparite, rinkolite, melanocerite, bastnaesite, parasite, fluocerite, ankilite, onazite, 

TR-apatite); and other rare minerals (hambergite, eudidymite, pyrochlore, thorite, taeniolite, 

etc.). Melanocerite, rinkoliote, and zircon are present in fenite related to the rare-metal 

pegmatites. Zircon silicates from rare-metal pegmatites were formed in the following sequence: 

zircon → lеvenite type zirconosilicate → eudialyte (Figs. 3, 4; Supplementary File 4).  

 

4.3 Geochemistry of major rock types in the Burpala massif 
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The chemical compositions of igneous rocks in the Burpala massif are presented in 

Supplementary Tables 1, 2 and Fig. 5. In the TAS classification diagram the data points of 

igneous rocks from the Burpala massif show a continuous series from shonkinite and 

melanocratic syenite of the early phase to alaskite and alkali granite of the final phase.  

The light rare-earth elements (LREE) and high field strength elements (HFSE), such as 

niobium and zirconium concentrations show good correlation (Fig. 6). However, some of the 

deviations show that fractionation was also accompanied by precipitation of mineral 

concentrators of HFSE. The branched nature of the (La/Yb)n –(La/Sm)n diagram indicate that the 

source magmas have undergone LREE fractionation (Fig. 6). In addition, variations on the La–

Eu diagram point to the difference in plagioclase precipitation for different rock groups. 

(La/Yb)n–(La/Sm)n variations also suggest that fractionation was controlled both by feldspars 

and minerals with REE partition coefficient similar to garnets. The major variations of REE and 

HFSE components found for pegmatites may be determined by the abundance of some rare 

minerals concentrating REE and other trace elements like apatite and monazite. The average 

total REE content in rocks from the Burpala massif is higher than the global mean value for 

syenite (Supplementary Table 2). The REE content in melanocratic syenite of the early phase 

reaches 3000–4000 ppm, whereas in syenite of the main phase, and in nepheline and eudialyte–

sodalite syenites of the vein phase, the REE content is 450–500 ppm.  

 The rare-metal pegmatites related to the vein phase of the Burpala massif are subdivided 

into six groups depending on the REE pattern and mineral assemblages (Fig. 7). The first group 

is characterized by weakly fractionated LREE and almost unfractionated HREE patterns 

combined with poorly expressed negative Eu anomaly (Fig. 7a, c). This group comprises three 

varieties of rare-metal pegmatites, where eudyalite, minerals of the lеvenite–seidozerite group, 

and catapleiite are the major REE enriched minerals. All these varieties of rare-metal pegmatites 

are peralkaline rocks with an agpaitic index >1, which contain zirconium silicates, rather than 

zircon. Astrophyllite is the major REE concentrator in rare-metal pegmatites of the second 

group. In addition, loparite and zircon silicates vary in amounts. Pegmatites of this group have a 

sinusoidal REE pattern (Fig. 7b) with fractionated LREE and negative Eu and positive Ho 

anomalies. The third group of rare-metal pegmatites is distinguished by an assemblage consisting 

of manganil menite, loparite, and zircon silicates with prevalence of the former minerals. The 

REE pattern is not fractionated and is devoid of Eu anomaly (Fig. 7c). In the fourth group of 

rare-metal leucocratic nepheline-bearing pegmatites, the major REE concentrators are loparite 

and zircon silicates. As shown in Fig. 7, LREEs are fractionated; the negative Eu anomaly is 

obvious, and HREEs are poorly fractionated. The fifth group is made up of relatively 
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melanocratic aegirine–arfvedsonite rare-metal pegmatites with loparite, ilmenite, and occasional 

pyrochlore as concentrators of minor elements. The REE pattern is generally similar to that of 

the fourth group (Fig. 7e). The rare-metal pegmatites of the sixth group are leucocratic rocks 

composed primarily of albite. Rare element minerals are insignificant in amount. In contrast to 

the other varieties of rare-metal syenites, the rare-metal pegmatites of this group have a weakly 

fractionated REE pattern and positive Eu anomaly (Fig. 7). 

In rare-metal syenite of the vein phase, as well as in and quartz syenite of the main phase, the 

total REE content varies widely. All these rocks are characterized by elevated Ba and Sr contents 

and negative Nd and Ta anomalies. In contrast to shonkinite of the early phase and syenite of the 

main phase, negative Nb and Ta anomalies in eudialyte–sodalite syenite of the vein phase are 

expressed less distinctly; in addition, positive Zr and Hf anomalies appear (Fig. 5). Despite the 

significant difference in ore-bearing mineral assemblages, various rare-metal syenites of the vein 

phase show similar distribution of minor elements with sharp negative Ba, Nb, Ta, Sr and 

positive Th, U, Zr, Hf anomalies (Fig. 5).  

 

5 Thermobarometry 

 

Saline inclusions with homogenization temperature above 560°С have been recorded 

from fluorite in apatite–fluorite rocks (Fig. 8), and inclusions of crystallized melt with 

homogenization temperature higher than 800°
С have been reported in fluorite (Sotnikova et al., 

2011). Investigations of fluid inclusions in fluorite shows predominance of Na, Ca and 

sometimes Mg chlorides in the brines trapped within these inclusions. These rocks are analogs of 

phoscorites from carbonatite massifs, where fluorite crystallized instead of calcite (Fig. 9). The 

major and trace element compositions of fluid inclusions were analyzed by ICP-MS (Fig. 3).  

The brines of inclusions are dominated by Na and Ca chlorides, and occasionally Mg. 

The composition is also confirmed by chloride eutectics of inclusion fluids in the interval –53 to 

–56°C and also by the occurrence of daughter halite identified by its transition into hydrohalite 

upon freezing (a reverse transition is possible at 0.0–0.5°C). Anisotropic phases are the first to 

dissolve at 40–80°C. Isotropic chloride crystals dissolve at 460–480°C, which corresponds to salt 

concentrations 55–57 wt.%, equivalent to NaCl. Brine inclusions are homogenized completely at 

520–560°C. The composition of fluids from inclusions is given in Supplementary Table 3 and 

Fig. 8 containing data on gases, anions, cations, and microelements. The predominant anions are 

hydrocarbonates and chlorides, and there are also high concentrations of sulfate ions. All these 

compounds can form solid phases. The predominant cations are sodium and calcium. Judging 

from analytical data, solid phases include halite, sodium hydrocarbonate, and calcium sulfate. 
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Microelements are dominated by strontium, barium, boron, iron, manganese, lithium, rubidium, 

and cesium, i.e. components characteristic of magmatic fluids.  

 

6. Discussion 

6.1. Models of origin  

Early studies in the 1950s on Burpala massif considered all rare-metal silicate rocks, 

including rare-metal alkali and Li–F granites, as well as carbonatites  to be metasomatic in 

origin. Therefore, formation of this massif and related rare-metal mineralization was interpreted 

according to this concept (Zhidkov, 1956; Arkhangel’skaya, 1967; Mineralogiya, 1974; 

Andreev, 1981). However, subsequent studies challenged the metasomatic origin of alkaline 

rocks of the Burpala massif by Portnov (1966) and Portnov and Nechaeva (1967), and the 

concept of magmatic origin has been developed Vladykin, (2005, 2007) and Vladykin and 

Miuzaki, (2002). It was shown that the rare-metal pegmatites originated from fractionation of a 

melt, which resulted in the formation of nepheline syenite, pulaskite, and quartz syenite of the 

early intrusive phase. 

The geochemical data also indicate that all varieties of rocks in the Burpala massif are 

products of alkaline magma fractionation, and that this magma was initially enriched in rare 

elements. The massif is composed of shonkinite and melanocratic syenite, nepheline and alkali 

syenites, alaskite and alkali granite. Rare-metal pegmatites, apatite–fluorite rock, and 

carbonatites are the final products of magmatic differentiation. Based on the available data, we 

conclude that the apatite–fluorite rocks in the Burpala pluton share genetic nature with foskorites 

of carbonatite complexes. However, the apatite–fluorite rocks contain fluorite instead of calcite 

due to the high activity of fluorine in the ore–forming carbonate–chloride fluid. 

The shonkinite and melano-syenite enriched in minor elements are correlated to the early 

phase, and their composition corresponds to that of the primary melt of the massif. The 

geochemical features of eudialyte–sodalite syenite of the vein phase show transitional phase 

between rocks of the early and main phases (Fig. 5), whereas the rare-metal syenite (Fig. 5) is 

distinct. This suggests that peralkaline vein rocks of the Burpala massif are the products of 

crystallization of residual derivatives of primary magma corresponding to the main phase. 

The evolution of primary magma may be essentially controlled by volatiles. It has been 

shown   that hydrous fluids can trigger the mobilization of REE and Zr (Thomas and Davidson, 

2012; Gysi and Williams-Jones, 2013). However, abundant F in volatiles might result in 

immiscibility (Hulsbosch et al., 2016) and formation of apatite – fluorite dike. The carbonatites 

could also be the result of the liquid immiscibility forming separate phases and their own 

metallogenic specialization (Pirajno, 2015). 
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Among igneous rocks of the Burpala massif, the rare-metal pegmatites of the vein phase 

are the most potential source of REE, Zr, Y, and Nb. These types of rocks related to alkaline 

magmatism (Smith et al., 2016) are the major source of Zr, U, Th and other lithophile 

components. Similar type of plume-related deposits is common in the Kola Peninsula in the 

Khibin massif (Kogarko, et al., 2012). However the ore of the Burpala massif is more complex 

and variable. 

6.2. Isotope and trace element geochemistry  

The Rb–Sr and Sm–Nd isotopic compositions of rare-metal  pegmatites and carbonatites 

from the Burpala massif (Fig. 10) lie in the field of the enriched mantle source (EM-II) 

characteristic of major fold belts (Vladykin, 2005). This trend could result from the mixing of 

crustal components, although it is difficult to establish a petrogenetic model due to limited data. 

However, plots in the in Sr–Nd diagram are close to the mixing lines between mantle plume 

magma and lower crust (Wang et al., 2015).     

The rare-metal  mineralization in the Burpala massif is primarily linked with rare-metal  

pegmatites with anomalously high REE, Zr, Y and Nb contents, which allow us to regard this 

massif as promising for mining REE minerals. The evidence presented in this study significantly 

contributes to understanding the rare-metal magmatism in the geological history of the fold 

framework of the Siberian Platform. Our data not only point out the early Permian impulse of 

alkaline magmatism, but also provide insights on its tectonic setting. In addition to the Burpala 

massif, the coeval ultrapotassic syenite (295 Ma) and Yaksha massifs formed in the northern 

Baikal region are also potential zones (Pokrovsky and Zhidkov, 1993; Pokrovsky, 2000). This 

makes it possible to extrapolate the conclusion onto the early Permian alkaline magmatism over 

the entire North Baikal zone, including the rare-metal (Ta, Nb, Zr, Y, REE) Akit massif located 

in this zone.  

 

7. Conclusions                        

(1) The Burpala alkaline massif hosts over 50 minerals rich in rare metals and rare-earth 

elements. 

(2)  The formation of the massif is correlate to mantle plume event and forms part of the 

regional alkaline magmatic province of North Baikal. 

(3)  The major and trace element data for the different rocks types in the Burpala massif 

establish their common parentage.  

(4)  The fluid inclusions from fluorite-bearing agpaitic rocks indicate high temperatures of 

crystallization ranging from 500 to 800°C. 
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(5)  The Sr and Nd isotope data suggest that the primary magmas   were generated from the 

enriched mantle (EM- II) source. 
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Figure captions 

 

Figure 1. Schematic geological map of Burpala massif. (1) Quaternary sediments, (2) 

carbonatite, (3) alaskite and alkali granite, (4) apatite–fluorite rock, (5) rare-metal  pegmatite, (6) 

quartz syenite, (7) pulaskite, (8) nepheline syenite, (9) shonkinite and melanocratic syenite, (10) 

hornfels, (11) Upper Vendian sandstone and siltstone of Kholodninsky Formation, (12) location 

of samples for U–Pb geochronological study: 1, sample Bur 30510 and 2, sample Bur 31310. 

Figure 2. Schematic geological map of the western area. (1) Sandstone and siltstone of the 

Kholdninsky Formation; (2) horhfels; (3) pulaskite; (4) quartz syenite; (5) zone of rare-metal 

pegmatite veins: (a) mapped and (b) inferred; (6) apatite–fluorite ore; (7) shonkinite and 

melanocratic syenite. 

Figure 3 Lеvenite at the contact of zircon–eudialyte. Fsp, microcline; Arf, arfvedsonite; Zr, 

zircon; Eud, eudialyte; Lov, lovenite; Ne, nepheline. Magn. ×20. 

Figure 4.  Photomicrographs of A-A’(left: lovenite + albite + arfvedsonite; right: catapleite (red) 

+ albite), B-B’ (left: loparite twins; right: zircon poikilocrystals), C-C’(Burpalite twins), D-D’  

(Melanocerite tetrahedrons). 

Figure 5. Chemical composition of igneous rocks from Burpala massif plotted on TAS 

classification diagram. (1) Shonkinite and melanocratic syenite, (2) nepheline syenite, (3) 

pulaskite, (4) quartz syenite, (5) nepheline and alkali syenites (veins), (6) eudyalite-sodalite 

syenite (veins), (7) rare-metal pegmatite (veins), (8) alaskite and alkali granite (veins), (9) fenite. 

Figure 6. Correlations between the rare earth elements and other trace elements normalized to 

primitive mantle (after McDonough and Sun, 1995).  (1) syenite of main phase and shonkinite; 

(2) eudialyte–sodalite syenite (mariupolite); (3) pegmatite; (4) Fenite; (5) apatite–fluorite ore; (6) 

carbonatite. 

Figure 7. Trace element distribution and primitive mantle-normalized REE pattern of rare-metal 

pegmatites from Burpala massif. Rare-metal in igneous rocks from Burpala massif: (a) syenite of 

main phase and shonkinite; (b) eudialyte–sodalite syenite (mariupolite); (c) pegmatite; (d) fenite; 

(e) apatite–fluorite ore; (f) carbonatite. Normalization to primitive mantle only after McDonough 

and Sun (1991). 

Figure 8. Multiphase fluid inclusions of chloride brines in fluorite of Burpala massif. a, c, e, f–

parallel nicols; b, d–crossed nicols. Scale: 50 µm. 

Figure 9. Concentrations of different components in fluid inclusions in fluorite of Burpala 

deposit. There are four groups: gases, anions, cations and trace elements. 
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Figure 10. Sr–Nd isotopic systematics of alkaline rocks from Burpala massif (after Vladykin, 

2005).  
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Vein phase Carbonatite 

↑ 

Alaskite and alkali granite 

↑ 

Apatite–fluorite rock 

↑ 

Rare-metal pegmatite 

↑ 

Eudyalite–sodalite syenite 

↑ 

Nepheline and alkali syenites 

Main phase 

 

Quartz syenite 

↑ 

Pulaskite 

↑ 

Nepheline syenite 

Early phase Shonkinite and melanocratic syenite 

Table 1 Temporal sequence of igneous rocks from Burpala massif (Vladykin, 1997; 
Sotnikova, 2009). 
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Research highlights  

• Burpala alkaline massif is unique for hosting more than 50 minerals rich in rare metal and REE 

• Sr and Nd isotope data suggest enriched mantle (EM-II) source for the mamga 

• Mantle plume beneath active margin of the Siberian continent triggered the alkaline magmatism 

 


