-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Elsevier - Publisher Connector

Available at
. . JOURNAL or
www.ElsevierComputerScience.com COMPUTER
of - POWERED BY SCIENCE @DIRECT' AND SYSTEM
SeeaSiles ‘ SCIENCES
ELSEVIER Journal of Computer and System Sciences 68 (2004) 657674

http://www.el sevier.com/l ocate/jcss

Tight lower bounds on the ambiguity of strong, total,
associative, one-way functions™

Christopher M. Homan

Department of Computer Science, University of Rochester, Rochester, NY 14627, USA
Received 25 October 2002; revised 27 October 2003

Abstract

We study the ambiguity, or ‘“many-to-one”-ness, of two-argument, one-way functions that are strong
(that is, hard to invert even if one of their arguments is given), total, and associative. Such powerful one-
way functions are the basis of a cryptographic paradigm described by Rabi and Sherman (Inform. Process.
Lett. 64(2) (1997) 239) and were shown by Hemaspaandra and Rothe (J. Comput. System Sci. 58(3) (1999)
648) to exist exactly if standard one-way functions exist.

Rabi and Sherman (1997) show that no total, associative function defined over a universe having at least

two elements is one-to-one. We show that if P# UP, then, for every de N, there is an @(logé n)-to-one,
strong, total, associative, one-way function g;. We argue that this bound is tight in the sense that any total,
associative function having similar properties to g, but not necessarily strong or one-way must have at least
the same order of magnitude of ambiguity as o, has. We demonstrate that the techniques used in proving
the above-stated results easily apply to other classes of total, associative functions.

We provide a complete characterization for the existence of strong, total, associative, one-way functions
whose ambiguity approaches the lower bounds we provide. We say a language is in PolylogP if there exists
a polynomial-time Turing machine M accepting the language such that for some ¢ € R™ it holds that M has
on each string x at most ¢(log? n) accepting paths, where n = |x|. We show that P PolylogP if and only
for some deR" there exists an (O(logd n)-to-one, strong, total, associative, one-way function.
© 2003 Elsevier Inc. All rights reserved.

Keywords: Associativity; Computational complexity; Cryptocomplexity; Cryptography; Ambiguity; One-way
functions

*Supported in part by Department of Education (GAAN program) Grant EIA-0080124 and by Grants NSF/
CRCD-EEC-98-13002, NSF-INT-9815095/DAAD-315-PPP-gii-ab, and NSF-CCR-9322513.
E-mail address: choman@cs.rochester.edu.

0022-0000/$ - see front matter © 2003 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2003.10.004

https://core.ac.uk/display/82765172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

658 C.M. Homan | Journal of Computer and System Sciences 68 (2004) 657—674
1. Introduction

An important, natural property of functions is their degree of ambiguity, or ‘““‘many-to-one’-
ness. We say a function ¢ : 2* — 2™ is h-to-one, where h : N — N, if for each y in the image of ¢ it
holds that ||[{x | a(x) = y}||<h(]y|) (the definition of A-to-one for k-ary functions, where ke N is
analogous).

We study the ambiguity of two-argument, one-way functions that are strong (that is, hard to
invert even if one of their arguments is given), total, and associative. Such powerful one-way
functions are the basis of cryptographic protocols described by Rabi and Sherman [RS97] (and
due, according to Rabi and Sherman [RS97], to Rivest and Sherman) for two-party, secret-key
agreement and for digital signatures. Strong, total, associative one-way functions were shown by
Hemaspaandra and Rothe [HR99] to exist exactly if standard one-way functions exist.

Rabi and Sherman [RS97] show that no total, associative function (over a universe having at
least two elements) can be unambiguous (i.e., one-to-one). Prior to the present paper, the result of
Rabi and Sherman was also the best known lower bound on the ambiguity of strong, total,
associative, one-way functions.

We prove that, for each total, associative function o, if for some d,eN™ the length of each
output string is bounded in the lengths of the corresponding input strings by a polynomial of

1
degree d,, then for any e R™ it holds that ¢ is not ((logé*+log 4 n)-to-one. Thus, we obtain a lower
bound on ambiguity that simultaneously is greater than the lower bound provided by Rabi and
Sherman and depends only on how fast the output lengths grow relative to the input lengths.
How close to optimal is this lower bound? Grollmann and Selman [GS88] and, independently,
Ko [Ko085] and Berman [Ber77] show that P UP if and only if there exists a total, one-to-one,
one-way function. UP [Val76] is the class of all languages accepted by a nondeterministic Turing
machine that runs in polynomial time and has on any input at most one accepting path. We show
that if P#UP, then for any deN™ there exists an h-to-one, strong, total, associative, one-way

1
function, where 4 : N— N is ()(logd n). Moreover, the lengths of the outputs of this function are
bounded in the lengths of the inputs by a polynomial of degree 2¢. Thus, in conjunction with our

lower bound result, there is no d'>d such that this function is (ﬁ(logi n)-to-one. Intuitively
speaking, this means, first, that under a standard complexity-theoretic assumption we can
construct a strong, total, associative, one-way function ¢ whose ambiguity depends only on how
long the outputs grow with respect to the length of the inputs and, second, that no total,
associative function having the same output-length bounds as ¢ can achieve less ambiguity (up to
a constant factor). Thus the lower bounds we provide are quite tight.

The techniques we use to prove the above-mentioned claims can be applied to other classes of
total, associative functions. We show that the same tightness argument presented above applies
unconditionally (i.e., without requiring that P#UP) to the class of all total, associative,
polynomial-time computable functions. We provide improved lower bounds on the ambiguity
(over the bound provided by Rabi and Sherman [RS97]) for the class of all total, associative,
recursive functions, and the class of all total, associative functions (where in both cases the
functions are defined over the set of all finite strings). In both cases we argue that the bounds are
quite tight.

C.M. Homan | Journal of Computer and System Sciences 68 (2004) 657—674 659

Finally, we provide a complete complexity-theoretic characterization for the existence of strong,
total, associative, one-way functions whose ambiguity approaches the lower bounds we provide.
We define PolylogP to be the class of all languages for which there exists a nondeterministic
Turing machine that runs in polynomial time and has on each input xe 2* at most /s(n) accepting
paths, where n = |x| and for some d € R™ it holds that 4 : N— N is ¢(log? n). PolylogP is a promise
class that is quite naturally analogous to the previously-studied classes UP [Val79], FewP [ARS&S],
and Uy, P [Bei89], each of which, like PolylogP, is based on a promise that for every language
belonging to the class in question there exists a nondeterministic Turing machine that accepts the
language with only a limited number of accepting paths. We show that P # PolylogP if and only if
for some deR" and some O(log” n)-to-one function / : N— N there exists an A-to-one, strong,
total, associative, one-way function.

The rest of this paper is organized as follows. In the second section we present preliminaries. In
the third section we provide lower bounds on the ambiguity of a variety of classes of total,
associative functions, each of which includes the strong, total, associative, one-way functions. In
the fourth section we prove, unconditionally in some cases and under standard complexity-
theoretic assumptions in others, that the lower bounds from the third section are tight. The fifth
section concludes the paper and suggests possible future directions.

2. Preliminaries

Fix the alphabet 2 to be {0, 1}. We denote the set of all real numbers by R, the set of all natural
numbers by N, the set of all positive real numbers by R™, and the set of all positive natural
numbers by NT. As is standard, we will sometimes use a regular expression to denote the set of all
strings satisfying the regular expression, i.e., 2* denotes the set of all finite-length strings, and 2*1
denotes the set of all finite-length strings ending with a 1. Throughout this paper, “log” denotes
the base two logarithm.

A language L<2™ is in UP [Val76] if there exists a nondeterministic Turing machine that
accepts L, runs in polynomial time, and for all inputs has at most one accepting path. A language

L is in PolylogP if there exists a number deR", an @‘(logd n) function h: N—-N, and a
nondeterministic Turing machine accepting L that runs in polynomial time and on each input
x€X* has at most h(n) accepting paths, where n = |x|.

Let f: A— B denote the function f that maps elements of A4 to elements of B. We say f
is ftotal if it is defined on each element of 4. The image of f, denoted im(f), is defined as
the set {beB|(JacA)[f(a) is defined and equal to b|}. The preimage set of beB, denoted
f~Y(b), is defined as the set {ae 4 |f(a) is defined and equal to b}. A (possibly partial) function
g : B— A inverts f if for each beim(f') it holds that g(b) is defined and f(g(b)) is defined and
equal to b. A function is in FP if and only if it is total and computable in deterministic
polynomial time. We say that f:A4—-2" is polynomial-time invertible if there exists a
function g : 2* — A that inverts f and is computable in polynomial time in the length of its
input. For k-ary functions (where ke N™) the terms in this paragraph are defined analogously.
For 2-ary functions, we will sometimes use infix notation (e.g., “xo)”) instead of prefix notation

(e.g., “a(x,y)").

660 C.M. Homan | Journal of Computer and System Sciences 68 (2004) 657—674

For each total function f : 4— A, each ke N™, and each ae 4, we denote by f*(a) the depth-k
recursive composition of £ on a, e.g., f>(a) = f(f(f(a))).

A function f": N— N is unbounded if for all neN there exists an meN such that f(m) > n.

Grollmann and Selman [GS88] (see also independent work by Ko [Ko85] and Berman [Ber77])
provided the first independent study of complexity-theoretic, single-argument, one-to-one, one-
way functions. The definition of a one-way function depends on a notion called honesty, defined as
follows.

Definition 2.1 (Grollmann and Selman [GS88]) (see [Ko85,Ber77,Wat88,Sel92]). A function f :
2*— 2" is honest if there exists some polynomial p such that for each zeim(f') there exists an

xef~!(z) such that |x|<p(|z]).

Intuitively speaking, honesty guarantees that the function is not hard to invert merely because it

shrinks the input too much. For instance, the function f(x) = 1'°¢* is not honest and is trivially
not polynomial-time invertible.

In this paper, we do not require one-way functions to be one-to-one. Such one-way functions
have been studied in the past. Watanabe, for instance, defines one-way functions as we do below
and calls one-to-one, one-way functions strictly one-way [Wat88].

Definition 2.2 (Watanabe [Wat88]). (see [GS88,K085,Ber77,S¢192]). A function f : X* — X* is one-
way if f is honest, polynomial-time computable, and not polynomial-time invertible.

We can modify the above definitions in a natural way to account for two-argument one-way
functions [RS97,HR99].

Definition 2.3 (Rabi and Sherman [RS97]; Hemaspaandra and Rothe [HR99]). We say a two-
argument function ¢ : X* x X* — 2™ is honest if there exists some polynomial p such that for each
zeim(o) there exists a pair of strings (x,y)eo~'(z) such that max{|x|, [y|} <p(|z]).

We now define two-argument, one-way functions.

Definition 2.4 (Rabi and Sherman [RS97]; Hemaspaandra and Rothe [HR99]). Let o : 2™ x
2*—2" be an arbitrary two-argument function. We say ¢ is a one-way function if ¢ is honest,
polynomial-time computable, and not polynomial-time invertible.

Strong noninvertibility captures the possibility that some two-argument, one-way function may
still be difficult to invert even when one of its input arguments is known. Strong noninvertibility,
in turn, depends on a variation of honesty called s-honesty.

Definition 2.5 (Hemaspaandra et al. [HPROI1]). A two-argument function ¢ is called s-honest if
there exists a polynomial p : N— N such that both 1 and 2 below are true.

1. For each x,y,ze 2* such that xoy = z there exists a '€ 2" such that |y'| <p(max{]|x|,|z|}) and
xoy = z.

C.M. Homan | Journal of Computer and System Sciences 68 (2004) 657—674 661

2. For each x, y,ze 2* such that xoy = z there exists an x' € 2* such that |x'| <p(max{|y|,|z|}) and
Xoy =z

Definition 2.6 (Rabi and Sherman [RS97]; Hemaspaandra and Rothe [HR99]). A total, two-argument
function ¢ is said to be strongly noninvertible (or strong) if ¢ is s-honest and neither 1 nor 2 holds.

1. There exists a g, eFP such that for each zeim(s) and each (x,y)ec !(z) it holds that
xog)(x,z) = z.

2. There exists a g»eFP such that for each zeim(s) and each (x,y)ec !(z) it holds that
92(y,2)oy = z.

Strong noninvertibility does not necessarily imply invertibility; it is known that if P NP, then
some strongly noninvertible functions are invertible [HPRO1].

The definition below is the standard definition of associativity found in the mathematics
literature. We include it here because previous work on associative one-way functions
[RS97,HR99] dealt with a notion known (in the nomenclature of Hemaspaandra and Rothe
[HR99]) as weak associativity. The difference between the two notions is not relevant for us since
for total functions the two notions are known to coincide [HR99].

Definition 2.7 (Rabi and Sherman [RS97]; Hemaspaandra and Rothe [HR99]). Let ¢ : 2" x
2*— 2" be any total, two-argument function. We say o is associative if for all x,y,ze 2" it holds
that xo(yoz) = (xay)oz.

3. Lower bounds

In this section, we provide lower bounds on the ambiguity of several classes of total, associative
functions. As stated in the introduction, our primary goal is to construct strong, total, associative,
one-way functions that have low ambiguity. We first provide a lower bound on the ambiguity of
such functions that actually applies to a// total, associative, polynomial-time computable (but not
necessarily strong or one-way) functions.

Theorem 3.1. For all ke N, no total, associative function from X* x X* to X* is k-to-one.

We do not provide a proof for Theorem 3.1 as it follows almost directly from Lemma 3.2, which
is presented below.

Lemma 3.2. For each total, associative function o :X* x X*—3* and each keN™, there exist
Strings Xxi, ..., Xgr1 €2" for which both 1 and 2 below hold. (Let x = x16...0Xj11.)

1. max{|xi], ..., |xk11]} <log(k* + 1), and
2. at least one of the following holds.

(a) There exist distinct ay, ...,ar€2* and (possibly not distinct) by, ...,br€ X" such that for each
ie{l,...,k} it holds that a;ob; = x and a;# x, or

662 C.M. Homan | Journal of Computer and System Sciences 68 (2004) 657—674

(b) there exist distinct by, ..., b€ X* and (possibly not distinct) ay, ...,ar€2* such that for each
ie{l,...,k} it holds that a;ob; = x and b; # x.

Proof. We prove the lemma by induction on k. Let ¢: 2" x 2*—2" be a total, associative
function.

For the basis, let k = 1, x; = ¢, and x = 0. Since max{|¢|, |0} <log(1? + 1), item 1 holds. Since
¢#0, it holds that one of 2(a) or 2(b) is satisfied, even if a0 e {¢,0}.

For the induction hypothesis, choose keN™* and suppose that xi,...,x;.1€2* satisfy
conditions 1 and 2(a) (the proof is analogous if conditions 1 and 2(b) are instead satisfied). Let
X = X10...0X,11. By condition 2(a) we can choose distinct «y, ..., ax, and (possibly not distinct)
bi,...,bx in X* such that for each ie{l,...,k} it holds that a,cb; = x and a;#x. Choose
V1 -y Vicsks1 to be the k*+k+1 lexicographically smallest strings in X* such that
{-X,al,---,ak}m{yh---,yk2+k+]}:®- (NOte that ||{x7a17'--7ak}u{y17--'>yk2+k+1}||:k2+
2k +2 = (k+1)*+1.) Since there are no fewer than (k + 1)>+ 1 strings of length at most
log((k +1)*41), it follows that max{|yi|, ..., [pesrs1|}<log((k +1)* 4+ 1). Consider the
following two cases, which cover all possibilities.

For the first case, suppose that there exists a ye{yi, ..., yi21 141} such that xey ¢ {x,ai, ..., ar}.
Since ¢ is associative and since for each ie{l, ..., k} it holds that a; #a,0b; = x, it follows that

ayo(byoy) = aya(byoy)

=ayo(broy)

=X0).
Since ay, ...,ar, and x are by hypothesis distinct and distinct from xoy, there exist distinct
dy,...,a,,; (namely ai,...,a, and x) and (possibly not distinct) 5}, ...,b;,, (namely

bioy,....broy, and y) in 2* such that for each ie{l,...,k+ 1} it holds that a.cbh.=

/ / ! / / .. . /o -l / _
X10...0x;,, and d;#xj0...0x;, (where, for j:1<j<k+1, x;=x;, and x;, =y). Thus,

condition 2(a) holds for k + 1. Since X}, ..., x)_,, are each of length less than log((k + 1)2 +1),
condition 1 also holds.

For the second case, suppose that for each ye{y1, ..., yx2, 411} it holds that xeye {x,a, ..., ar}.
By the pigeonhole principle there exists an ae{x,a;,...,ax} and a set
D o Ve YE1, -+ Viesks - such that for each ye{y, ..., } it holds that xoy = a. Since
each such y was chosen to be distinct from a, there exist distinct b}, ..., b}, (namely |, ...,y)
and (possibly not distinct) @}, ..., a;_, (indeed in this case they are all the same string, namely x)
such that for each ie {1, ...,k + 1} it holds that ajob} = a = xjo...0x]_, (Where, for j : 1<j<k +
1, x; = x;, and x,, is any particular y;) and b;#a. Thus condition 2(b) holds for k + 1. Since

X}, ..., Xp,, are each shorter than log((k + 1)* + 1), condition 1 also holds. [

As mentioned at the beginning of this section, Theorem 3.1 easily follows from Lemma 3.2.
Theorem 3.3 provides a better lower bound for the case of polynomial-time computable, total,
associative functions.

C.M. Homan | Journal of Computer and System Sciences 68 (2004) 657—674 663

Theorem 3.3. For each total, associative function c€FP there exists a deN™ such that for each

1
O(logd n) function h : N— N it holds that o is not h-to-one.

Note that both Theorems 3.1 and 3.3 provide better lower bounds for their respective classes of
functions than does the one-to-one lower bound provided by Rabi and Sherman [RS97].
We will show in Section 4 that the lower bound provided by Theorem 3.3 is tight in the sense

1
that for each deN™ there is a total, associative, (/(logd n)-to-one, polynomial-time computable
function ¢ such that for all x, ye 2* it holds that |xoy| is O((max{]|x], |y|})2d) and for all 6eR™ it

holds that ¢ is not (ﬁ(logéﬁ n)-to-one. Moreover, if P# UP, then it is also tight (in the same sense
as above) for the class of all strong, total, associative, one-way functions. Thus, intuitively
speaking, under a standard complexity-theoretic assumption restricting the set of all total,
associative functions in FP to the set of strong, total, associative, one-way functions comes at little
cost in the form of increased ambiguity.

Theorem 3.3 follows almost directly from Lemma 3.4, stated below.

Lemma 3.4. For each total, associative function ¢ : X* x X*— X*, if for some eeN" it holds that

1
|xay| is O((max{|x|,|y|})"), where x,yeX*, then for each 5€ R" and each O(logé+oe¢ n) function
h: N—N it holds that o is not h-to-one.

Lemma 3.4 provides a lower bound on the ambiguity of total, associative functions whose
output lengths are polynomially bounded by their input lengths (clearly, all polynomial-time
computable, total, associative functions have this property). Moreover, Lemma 3.4 relates the
degree of the polynomial bounding the output length to the degree of the radical used in
expressing the lower bound on ambiguity.

The following is a brief sketch of how we prove Lemma 3.4. Lemma 3.2 shows that for every
keN™ we can find k + 1 strings xi, ..., X;1 such that max{|xi|, ..., |xx+1]} <log(k? + 1) and the
cardinality of the preimage of x0...0x;4 is at least k. We apply Proposition 3.5 (stated below) to
show that if the output string lengths are bounded in the length of the input strings by a
polynomial of degree e, then for all positive integers ¢ and real numbers J there exists a constant C

d+log e

k
such that |xj0...0x¢ 1| <(max{C, |xi|, ..., |xer1 /D) . Putting Lemma 3.2 and Proposition 3.5
together lets us express |xjo...0x;;1| as a function of k, which when solved for k can prove
Lemma 3.4.

Proposition 3.5. For each total, associative function o :2* x 2*—2* if for some total,
nondecreasing polynomial p : N— N, there exists a CeN such that for each x,yeX™ it holds that
p(max{|x|, |y|, C}) =max{|xoy|, C}, then for each xi,...,xxeZ* it follows that
Ix10...0x;| <ploekl(max{C, |xi|, ..., |xk|}).

Proof of Proposition 3.5. Suppose that ¢ : 2* x 2* - X* is a total, associative function such that
for some nondecreasing polynomial p : N— N there exists a CeN such that for each x,yeX™ it
holds that p(max{|x|,|y|,C})>max{|xcy|, C}. Since ¢ is total and associative, for each

664 C.M. Homan | Journal of Computer and System Sciences 68 (2004) 657—674

X1, ..., xp € 2" it follows that x;o...0x; is equal to (xla...akaJ)a(xlkhla...axk). We may group
2 2

both xj0...0x ; and x & ...0Xxy in a similar fashion, etc., to a maximum recursion depth of

15 LN
[log k], so that

Ix10...0x !<{P(maX{C7lea---axtk/zﬂa|xtk/2+1J“-""xk|}) if k>2,
10...0x;| < p(max{C, x|, [x2[}) otherwise.

Since for each x,yeX* it holds that p(max{|x|,|y|, C})=>max{|xcy|, C}, it follows that
Ix10...ox%| <plot*¥l(max{C, |x|, ..., |x|}). O

We can now prove Lemma 3.4.

Proof of Lemma 3.4. Suppose that ¢ : 2* x 2*— 2" is a total, associative function such that for
some eeN™ it holds that, for all x,yeX*, |xay| is O((max{|x],|y|})?). Suppose that for some

1
deR™ and some O(logtloge n) function i : N— N it holds that ¢ is h-to-one. By assumption, there

1
exist ¢,C;eN such that for each neN if n>C), then h(n)<clogitlogen. Since |xoy| is
O((max{|x|, [y|})?), where x, ye X*, there exists a C; €N such that for each x,ye 2" it holds that
5

(maX{Cz,\x],\y\})zze>max{]xay\,Cz}. Choose keN such that k£ has each of the following
properties.

o log(k? +1)=>C,.
e Foreach zeim(o) if |[67!(2)|| >k, then |z| > C) (such a k exists, since otherwise ¢ would have an
image element with an infinite preimage and so ¢ could not be A-to-one).
e [log(k+1)] =log(k+1).
é+log e 2 k é+10g e
o (k+1)4 loglog(k® 4+ 1)< ()2 .
By Lemma 3.2 there exist xi,...,xry1€2* such that max{|xi|,...,|xc1]|} <log(k*+ 1) and

l[6="(x10...0x141)||=k. By Proposition 3.5,

0
4 o\ [log(k+1)]
IX16...0x041| < (max{C, |x1], ..., |xxs1 | 1) :

Since max{|xi|, ..., |xk11|} <log(k* + 1), since k was chosen so that log(k* + 1)>C,, and since
[log(k +1)] =log(k + 1),

5
3 yloslkc+1)
|x10...0x%1| < (log(k* + 1))(24‘) ¢

0
Zﬂog e

= (log(k? + 1))*+D

s
2(k+1)4*‘°g “log log(k2+1)

C.M. Homan | Journal of Computer and System Sciences 68 (2004) 657—674 665

. é+log e 2 k {_S+10g e
Since k& was chosen so that (k + 1)4 loglog(k” + 1)< ()2 ,

k %+log 13

\xlc...crxkﬂ\ <2(€)

Thus solving for k yields
1

g+log e(

k>clog |X10...0X41])- (1)

Since ||o~!(x10...0x41)||=k, by our choice of k it follows that |xio...6xt.1|=>C). Thus by
1

assumption, |[o~!(xj0...0x,41)||<clogitloge(|x 0...0x,41|). But this contradicts Eq.(1). We

1
conclude that ¢ is not (¢(logo+logen)-to-one. [

4. Tightness of lower bounds

Our goal in this section is to first provide a theoretical framework for constructing total,
associative, one-way functions of low ambiguity (in light of the lower bounds from the previous
section) and then use this framework to prove that the lower bounds provided in Section 3 are
(assuming in some cases certain complexity-theoretic assumptions) tight. We prove that the lower
bound provided in Section 3 on the ambiguity of total, associative functions is tight.

Theorem 4.1. 1. For every nondecreasing, unbounded function p : N— N there exists a p-to-one,
total, associative function.

2. For every recursive, nondecreasing, unbounded function p : N — N there exists a p-to-one, total,
associative, recursive function.

We prove unconditionally that the lower bound provided in Section 3 on the ambiguity of total,
associative functions in FP is tight. We prove that if P UP, then there exists a strong, total,
associative, one-way function whose ambiguity matches the lower bound from the previous
section. Finally, we provide a complete complexity-theoretic characterization for the existence of
strong, total, associative, one-way functions whose ambiguity approaches the lower bound from
the previous section.

Theorem 4.2. 1. For each deN™ there exists a polynomial-time computable, total, associative, g-to-

1 a
one function g : 2* x X*— 2% where q : N— N is O(logd n), and |xoy| is O((max{|x|, |y|})2’), where

x,yeX’.
2. If P#£UP, then for each deN™ there exists a strong, total, associative, g-to-one, one-way

function ¢ : X* x X*—> X" where ¢ : N—>N is @(logc_ll n), and |xay| is O((max{|x|, |y|})2d), where
x,yeX’.

3. P#PolylogP if and only if there exists a strong, total, associative, g-to-one, one-way function,
where for some deR*, ¢ : N—>N is O(log? n).

666 C.M. Homan | Journal of Computer and System Sciences 68 (2004) 657—674

Note that the bound on the output length provided by parts 1 and 2 shows that the lower bound
that Lemma 3.4 provides is tight up to a constant factor.

The theoretical framework we use to prove the above theorems is based on a family of total,
associative functions of the form o ;4 : 2% x 2*—>2% Let (-, ...,-) 1 2" X -+« x X" > 2" be a

multiarity grouping function that is total, bijective, polynomial-time invertible, and for all ke N

and all xq, ..., x;€2" is polynomial-time computable in k + Zf;l |x;| and nondecreasing in k +
>y xil, and
k k
2k+2z|xi|>|<xla--'7xk>|>z|xi| and (2)
i=1 i=1
| <Xty ooy X0 |+ 12k (3)

Note that we require the running time of the function to be polynomially bounded in k + Zf;l | x|

rather than simply Zf;l |x;| in order, for example, to account for the overhead of grouping an
arbitrarily long sequence of empty strings. An example of such a function is one that on input
(X1, ..., xx), where xi,...,x,€2* and keN*, regards xj,...,x; as the nth string in the
lexicographical order over all finite strings of the alphabet “0” and ““1”” and *,” (for whichever
value of n is appropriate) and maps it to the nth element in the lexicographical order of X*.

For each total function f : 2*— X" and each total, nondecreasing, unbounded function g :
N—N we define o7/ : 2* x 2* - 2" on input (x,y)e2” x 2" as

xo-[f-,.‘l]y = <x10m17 ~--axi0m[7y10nlv --'>y.f0nj>a

where

® X1y, Xi) =Y11g(X) (V7 g 1 27— 2" is defined below),
® Y1y i) =190

o (Vke{l,...,i})[my = max{0,g(i +j) — |x|}], and

o (Vke{l,....j})lm = max{0,g(i +j) — [y[}].

The function y; ;) : 2" —> 2" mentioned in the first two lines of the list above is a subroutine of
0| s that determines when to apply f to x or y. The function | ; interprets its single string input

as an encoding of a sequence of strings via the mapping <, ..., > that was described above. We
define yj; : 2° > 2" on input {xi,...,x,» €2" as
(X1, ooy Xk if k>1 and

(je{l,....kD)[(Ix;] = g(k) and
%407 or (jx|>g(k) and
x €27 1)),

Sx) if k=1,

{f(x1y .oy Xk)1y otherwise.

Essentially, the first condition above guarantees that f is not applied to elements in the image of
o(rg- We shall see that this property of y;,, helps us prove that g is associative.

g (<X15 oo X)) =

C.M. Homan | Journal of Computer and System Sciences 68 (2004) 657—674 667

The intuition behind the design of g/ is as follows. Each function g is based on the well-
known, total, associative function concatenation, but with three key modifications. First, o7
pads its output in such a way that associativity is preserved and the cardinality of the preimage of
the padded string is about the same as the cardinality of the preimage that the unpadded string
would have under normal concatenation. Since, however, the padding increases (relative to
normal concatenation) the length of the output, the ambiguity increases more slowly than it
would if the outputs had not been padded. The function g controls the amount of padding.
Second, g s, Tuns some of its inputs through the function /" before it pads and outputs them. We
will show that whenever /" is assumed to be a one-way function, we can choose a g such that o/
is a strong, total, associative, one-way function. Finally, g differs from simple concatenation in
that rather than conjoining its two inputs side-by-side, it views each string input as an encoding of
a sequence of strings and joins the two inputs together by joining together the sequence of strings
each input encodes.

In order to get a feel for how o[,) works, consider the following example. For any string xe 2™,

let xR denote the reversal of x, that is, X = ¢ and, for any aeX and any weX*, (aw)® = wRa.

Define f(x) = xR. Note that f is one-to-one and polynomial-time computable and invertible.
Define g(n) = 2n.

Now, for any y, w, and z in 2*, {y>ajsg<w> = {(PRI0",wR10") and (w)ep,m<{z> =
(wR10m, zR107) , where m (respectively, n, p) is the least number that makes [p®10”| (respectively,
|[wR107|, |zR107|) greater than or equal to ¢(2) =4. One can easily check that
R0 wWRI0" Y 014 <2 = CpYapr g <wR10", ZR10P Y = (pR10™ wR10",zR107), where m/
(respectively, #', p') is the least number that makes [yR10™| (respectively, |wR10”|, |zR107|)
greater than or equal to g(3) = 6. We will later prove that o[, for any total / and any total,
nondecreasing g, is associative. It is also easy to check that there are only two elements in the
preimage of yR10™ , wR10 2R 107"y namely (<yR10™ wR10my | (2)) and
({y>, <wR10" zR107»), and that this preimage ambiguity is in some sense due to the
associativity of o(. Note that the padding provided by the string of zeros at the end of each
element in the output effectively allows us to use g to control the amount of ambiguity in o
that is ““‘due” to associativity.

The following proposition collects some of the basic properties of o[/, and y;,, that we will
use in later proofs.

Proposition 4.3. For each total f : X*— X" and each total, nondecreasing g : N—N the following
hold.

L yir4 and a4 are both total.

2. For each zeim(ays) there exist x, ...,x;€X" — 0%, where k> 1, such that z = {x1, ..., Xy).

3. For all x,ye 2™ it holds that s ;(x0(sg¥) = X0[7 .

4. For each zeim(y[f,g]) there exist xi, ..., x €2* and ny, ...,n €N, where k=1, such that z =
<x10M, o, X 10> and if for some Z'eim(y ;) there exist ny, ...,m €N such that z' =

Cx 107 L x 10%) | then 2/ = z.

668 C.M. Homan | Journal of Computer and System Sciences 68 (2004) 657—674

5. For each xeZX* such that <x>eim(y[/»7g]) there exists a yelX* such that x =yl and

(M2 1 0l
6. For each {xi,...,xx) €im(ys), where k>1, it holds that y[_flvg](<x1,...,xk>):
{<X1,...,Xk>}~

7. If f is honest, then v ; o is honest and oy 5 is honest and s-honest.

Proof.

1. Clearly, both |, and o[/, are by their definitions total.

2. Choose zeim(o(s). By the definition of Vrg> there exist xi, ..., xx€2" with k>1 such that
z={Xj,...,X;y, and for each je{l, ..., k} it holds that x;¢0".

3. Choose zeim(a(s). By the definitions of gy, and y;,,, z satisfies the first of the three
conditions listed in the definition of y, g, i.e., for some xi, ..., xx € 2™ with k> 1 it holds that
z={X1,...,xxy and for each je{l,...,k} either |x;| = g(k) and x;¢0* or |x;|>g(k) and
x;€2”1. Thus, 1.l (z) =z

4. Choose zeim(y(/). Clearly, by the definition of y(/), there exist a ke N, xq, ..., x,€2%, and
ny, ..., m such that z = (x;10™M, ..., x,10™ . Suppose for some z'€im(y(,,) that there exist
ny, ...,nm eN such that 2/ = (x 10", ..., x, 10" > . Consider two cases. First, suppose that k =

1. Then z and Z' are each the output of some string that satisfied one of the last two conditions
in the definition of ;. Thus by the definition of y, 4, n1 = n} = 0. Second, suppose that

k>1. In this case choose /e{l, ..., k}. By the definition of y,, both [x;10™| and |x;10"| are
greater than or equal to g(k). If either |x;10"| or |x;10”| is greater than g(x), then by the
definition of y(, 1, m = nj = 0. Otherwise, both |x;10"| and |x;101| are equal to g(k), and so
clearly n; = nj. Since / was chosen arbitrarily from {1, ..., k}, for all /e {1, ..., k} it holds that

n; = nj. We conclude that z =2/,

5. If for some xe 2" it holds that {x) eim(y;,), then by the definition of y; ,, x has a trailing 1.
Thus for some ye2* it follows that x = y1. Choose we 2 such that y;, »(w) = (x> = {y1).
Then, by the definition of y(, , either f(w) = y or f(w') =y, where {W') =w.

6. If {x1,...,xx» €im(ys), where k>1, then {(xj,...,xx) is the output of some string that
satisfies the first of the three conditions listed in the definition of 7| ;. Choose we 2 such that
Vs (W) = X1, ..., Xk ». By the definition of y, 4, it follows that w = {x1, ..., X%).

7. Suppose f is honest, via polynomial p : N —N. We may assume without loss of generality that p
is nondecreasing and that for all ne N, p(n) >n. By the definition of y(, , for each zeim(y; ;)
either i, ,(z) =z or {{y) | {fW)1) = z}gy[‘]{g] (z). Let ¢: N->N be a nondecreasing
polynomial witnessing that for all (xi, ..., xx) such that x, ..., x; € 2* with k>0 it holds that
(-, ..., 1s polynomial-time computable in k + Zf‘ |xi|. Either y(;4 (z) = z or, since f is honest
via p and p is nondecreasing, there exists some <{)'>e{<y) |<{f(y)1> =z} such that
p(lz) =[] In either case q(p(|z]))=|z|, where z'e{z,{)y'>}. Thus y;,, is honest. Since

(-, ..., is nondecreasing in k + Zf;l |xi|, by the definition of o, for each x, ye X it holds

C.M. Homan | Journal of Computer and System Sciences 68 (2004) 657—674 669

that |xo(sgy|=max{|y;q(X)|, [yrg W)} Thus if 7., is honest, then clearly there exist
polynomials that witness that o|/ is honest and s-honest. [

Next, we prove that each function o[/ is indeed associative.

Proposition 4.4. For each total f : 2" —X* and each total, nondecreasing g : N— N it holds that
(14 IS associative.

Proof. Choose total f:X*—2* total, nondecreasing ¢g:N—N, and x,y,zeX* Choose

i,j,keNT and xi,...,x; ., €X* such that {xiy,...,x;)> :y[f“q](x), X1y ooy Xigj) ZV[f.,g](y)a

and (X1, oo Xigjik) = V[1,g)(2) (Such X1, ..., X4y exist by number 4 of Proposition 4.3).
By the definition of o[/, by number 3 of Proposition 4.3, and since g is nondecreasing,

(X017 g0)01 17 = <0107 s 60070 D 0 1)z
=<{x0M, ..., Xi+j+k0ni+j+k S,

where for each /e {1, ...,7+j} it holds that m; = max{0, g(i + /) — |x;|} and foreach /e{l, ... i +
Jj+k} it holds that nm; = max{0,g(i+j+ k) — |x;|} (note that m; = max{0,g(i+j+ k) — |x/|}
holds because g(i +j + k) >g(i + j), which holds because g is nondecreasing). Likewise,

X016 (401 1.617) = X011, X107 iy g0y
= <x10n’1’ R xi+j+k0n;+j+k >)
where for each /e{i+1,...,i+j+ k} it holds that m) = max{0,9(j + k) — |x;|} and for each
le{l,...,i+j+k} it holds that nj = max{0,g(i +j + k) — |x;|}. But then for each /e{l, ...,i +

J + k}, it follows that nj = n;. Thus (xo[;4y)0(192 = X0[4 (Vo[r42). We conclude that o, is
associative. [

The next proposition provides bounds on the ambiguity of o[/ .
Proposition 4.5. For each total, nondecreasing g : N— N, define p : N— N on input neN as p(n) =
max{m | g(m)<n}. If for some total f : * — X" and some total, nondecreasing q : N— N, f is g-to-

one, then oy is (44*(n) + p(n))-to-one.

Proof. Choose total, nondecreasing g : N— N, total f : X*— 2* total, nondecreasing ¢ : N—> N
such that /" is g-to-one, and zeim(o(;). Define p : N—N on input neN as max{m | g(m)<n}.

By number 2 of Proposition 4.3, there exist a ke N, xy, ..., x,€2*, and my, ..., m; €N such that
k>1and z = {(x;10™, ..., x4 10" ». For each ie{l, ...,k — 1}, let L; (respectively, R;;;) be the
set of all y such that yeim(y[ﬁg]) and for some ny, ...,n;eN (respectively, n; 1, ...,n€N), y =

Cx10m, L, x;10™) (respectively, y = {x;110"+1, ..., x, 10"). By the definition of g/, if
(x’,y’)ea[ff{g](z), then for some ie{l, ...,k — 1} it holds that y;,,(x')eL; and y[;;()') € Riy1.

_ k— * *
Clearly. then, [|o7} ()| T4 1 (xe 2" 177 () e LI [Hye X" 177 (0) € R .

670 C.M. Homan | Journal of Computer and System Sciences 68 (2004) 657—674

We now calculate for each ie{l,...,k—1} the product [{xeZ*|y;, (x)eLi}|l-
|{y€Z* 774 () € Ris1}[|.- By number 4 of Proposition 4.3, the cardinality of each L; or R; is
either one or zero.

If i=1, then by number 5 of Proposition 4.3, if {(x;10">eL;, then n =0 and
g (< t)I<2-|If'(x)l[. By Eq.(2) and since ¢ is nondecreasing, 2-
IIF =1 (x1)]|<2q(]x11])<2¢(|z]). Since the cardinality of L; is either one or zero,
{xe 2" |7,4(x) e Li}I| <2q(J2]).

If i>1, then by number 6 of Proposition 4.3, if <{x;10™, ..., x;10%>eL; then
|\y[*j}7g](<x110”‘, <, x;10%3)||<1. Since the cardinality of L; is either one or zero,
xS (7,9 (0) e LII<1.

By a similar argument, if i =k — 1, then [[{xeX" |y, ,(x) € Riy1}|<2¢(|z]), and if i<k — 1,
then [{ye2" |y () R }H||<1.

Now, if k=2, there is only one possible choice for i, in which case i=1=k—1, so
HO'[}l’g] (2)||<4¢*(|z|). If k>2, then there are at least two choices for i, one of which is 1, another of
which is k — 1, and k — 1#1. For the remaining k — 3 choices, i is neither 1 nor kK — 1. Thus
o)/ (@) <4q(jz]) + &k = 3.

By the definition of o/, for each /{1, ..., k} it holds that |x;10"|>g(k). From this and by
Eq. (2) it follows that |z|>g¢g(k). But then, by the definition of p, k<p(]z]).

We conclude that o, is (4¢*(n) + p(n))-to-one. [

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let p : N— N be total, nondecreasing, and unbounded. Define g : N—> N
on input n as g¢g(n) =min{meN |p(m)—4=n}. Thus, for all aeN it holds that
max{beN | g(b)<a}<p(a) — 4. Note that g is total and nondecreasing and that if p is recursive,
then so is g. Let f : 2*— 2™ be the identity. Thus f is one-to-one and total. By Proposition 4.5,
0(fg 18 p-to-one. [

Lemma 4.6. For each deN and each total f eFP, if g : N—N is defined on each neN as 2”d, then
o1 rg €FP. If |f(2)| is C”(|z|2d), where z€ X", then |xo| s gy| is O((max{]|x|, |y|})2d), where x,yeX*.

Proof. Choose deN and total f e FP. Define g : N— N on each neN as o' Clearly, ¢ is total and
nondecreasing. Since f is in FP, y, is clearly in FP. By number 1 of Proposition 4.5, a(; is

total. Since essentially all o[, does is call y| ; » multiple (but polynomially bounded in the length
of the input) times, pad the outputs of each call to y;,, and group the padded outputs together
via -, ..., >, and since y; o and (-, ...,-) are in FP, all that remains to be proven in order to
show that o, is polynomial-time computable is that the padding can be performed in

polynomial time.
Choose x,yeX*. Thus, by number 2 of Proposition 4.3, for some 7,jeN and some
Xy eees Xiy 1y ooey y €27 — 07 it follows that {xi, ..., x> = y;74(x) and {yi, ..., 30 =7790)

C.M. Homan | Journal of Computer and System Sciences 68 (2004) 657—674 671

Suppose without loss of generality that i>;. Consider the two cases, which cover all possibilities,
below.

First, suppose that i =j = 1. Then <{xi,...,x;> = <{x1), {y1,....,»;> =<1y, and xoy =
{x10", 3,02 where I, and I, are both less than 22, which is constant in max{|x], |y|}. Thus, Ol /]

is polynomial-time computable when restricted to strings satisfying the constraints of this case.
Next, suppose that i>1. By number 6 of Proposition 4.3, x = <{xy,...,x;». For each

x'e{xi, ...,x;} and by the definition of y;, ;, || >2" from which it follows (due to Eq. (2)) that
max{|x|,|y]}=i2". Furthermore, by the definition of Olrgs X0 gy = <x10M, ...

X0, y10%1, .. ;0%) where each le{l}, ..., I;;;} is less than or equal to 200" — (2"(’)2‘} and

thus is less than or equal to (max{|x|, |y\})2d. It follows that o[, can pad such inputs in

polynomial time, and is thus polynomial-time computable (via a polynomial of degree at least 29)
when restricted to strings satisfying the constraints of this case. Because o[/ is polynomial-time
computable when restricted to either case, g is polynomial-time computable.

Now, suppose that [f(z)] is (9(|z\2d). By the definition of y;, ;, then, there exists a ce N such that
for all x,y,x1,x2,...,X;, 1,02, ...,»j€2" chosen as in the first part of the proof it holds that
x| + - x|l <e(max{ x|, |y|})2d + ¢. Since each /e {/,, ..., [;;;} is less than or
equal to (2"‘1)2{1, it follows, by Egs. (2) and(3) (and recall that, by assumption, 2i>i + j),

id

|<x1011, ...,x,-O"',ylol"“, ...,y_,-Ol'*f >|< 4i + 2(c(max{]x]|, \y!})zd + ¢+ 2i(2)2(])
< 4(max{|x], |y[} + 1)
+2(c(max{]x|, [y} +¢
+ 2(max{|x|, [y}, 2})*).

. d
Thus |[{x10%, ..., x0%, 3105, . y,0%) | is O((max{|x], [v[})*).

Lemma 4.7 below shows that if f is a total, one-way function and ¢ is chosen properly, then
0|74 18 a strong, total, associative, one-way function.

Lemma 4.7. For each deN, if g : N—N is defined on each input neN as o and f : 2" >2"is a
total, one-way function, then oy, is a strong, total, associative, one-way function.

Proof. Choose deN, define g(n) = 27" and choose f to be a total, one-way function. By
Proposition 4.4, o[, is associative. By Lemma 4.6, o7 1s in FP (and thus total). By number 7 of
Proposition 4.3, (4 is honest and s-honest. Suppose there is some function 4 FP such that for
each zeim(a|) it holds that | 4 (4(z)) = z. We could then invert / in polynomial time as follows.

On input ye X*, let (x1,x2) = h({y10/,y10">), where / = max{0, g(2) — |y1|}. By the definition
of g{ s, either f(x1) = y or there exists an xe X" such that {x) = xj and f(x) = y. If such an x
exists, then output it. Otherwise output x;.

672 C.M. Homan | Journal of Computer and System Sciences 68 (2004) 657—674

To see that g is strongly noninvertible, suppose that there exists a function € FP such that for
each x,y,zeX* such that xoy = z it holds that /(z, y)oy = z (the proof is analogous if we instead
assume that there exists a function € FP such that for each x, y, ze 2* such that xoy = z it holds
that xoh(z, x) = z). We could then invert f in polynomial time as follows.

On input yeX*, let x' =h({yl0" £(0)102>,<0>), where [=max{0,g(2)— [y1]}
and = max{0,9(2) — |f(0)1|}. By the definition of oy, 4, either f(x')=y or there
exists an xe X" such that (x)» = x’ and f(x) = y. If such an x exists, then output it. Otherwise
output x'.

We conclude that g/ is a strong, total, associative, one-way function. [

We now prove Theorem 4.2.

Proof of Theorem 4.2. For part 2, if P#UP, then by the well-known result of Grollmann and
Selman [GS88] (and independently Ko [Ko85] and, essentially, Berman [Ber77]), there exists a
one-to-one, total, one-way function f where the length of each output is linear in the length of the

corresponding input. Choose deN™ and define g : N—N on input n to be g(n) = o, Clearly,
1 1
If (z)] is (9(|z|2d), where ze 2*. By Proposition 4.5, a7 is (4 + logd n)-to-one. Clearly, 4 + logd n is
1
O(logd n). By Lemma 4.7, o[, is a strong, total, associative, one-way function. By Proposition

4.6, |xo(7gy| is O((max{|x], [y|})*), where x,ye".

For the right-to-left direction of part 3 of Theorem 4.2, suppose that for some d e R™ and some
@(logd n) function ¢ : N—> N, ¢ is a g-to-one, strong, total, associative, one-way function. Let
h : N — N witness that ¢ is honest. We may assume without loss of generality that 4 is total and
nondecreasing. Then the language {{x,y,z)eX*| (AKX, Y) eXZ¥)[x'ay =z and
max{|x'], [)/|} <h(|]z]) and {x',)y") is lexicographically greater than {x,y>]} is in NP via a
nondeterministic Turing machine that runs in polynomial time and on input <{x,y,z)eX*
nondeterministically guesses a pair of strings {x’,)" > such that max{|x'|, |)'|} </(|z|) and accepts
{x,y,zy ifand only if {x’,)’) is both lexicographically greater than {x,y), and xX'6)' = z. Since
o is g-to-one, there are at most ¢(|z|) such pairs {x’,y"). Since ¢ is honest via A, if zeim(o), then
there is at least one such pair {(x’,)’>. Since, by Eq.(2), |{x,»,z>|>|z| and since ¢ is
nondecreasing, ¢(|<{x,y,z>|)>¢(|z|). Thus the nondeterministic Turing machine described above
has on any input w at most ¢(|w|) accepting paths. Thus the language in question is in PolylogP.
Also, the language is not in P, since otherwise we could invert ¢ in polynomial time via binary
search.

For the left-to-right direction, suppose that P# PolylogP via a polynomial-time Turing machine
M for which there exists a d e R™ such that for some ¢/(log? n) function ¢ : N— N it holds that for
all xe2*, M has at most ¢(|x|) accepting paths. We may assume without loss of generality that ¢
is total and nondecreasing. Adapting the construction of Grollmann and Selman [GS88] for
creating a one-to-one, one-way function if P#UP, we can create a g-to-one, one-way function
f:X*=X* Choose eeN such that e>d. We then define g : N—N on input n to be 2”. By

C.M. Homan | Journal of Computer and System Sciences 68 (2004) 657—674 673

1 1
Proposition 4.5, o[/, is (4¢*(n) + loge n)-to-one. Clearly, for some d'eR*, 4¢*(n) + loge n is
6’(logd/ n). By Lemma 4.7, |/ is a strong, total, associative, one-way function.

The argument for part 1 is similar to the argument for part 2 except that we let f : 2*— 2" be
the identity. O

5. Conclusion

We extend a result of Rabi and Sherman [RS97], who showed no strong, total, associative, one-
way function is one-to-one. We prove that for every total, associative, polynomial-time

computable function ¢ : X* x X* — X* there exists a deN™ such that for each (O‘(logé n) function
h:N—N, ¢ is not h-to-one. We prove that this lower bound is tight. Moreover, if P = UP, then
this lower bound is also tight when restricted to the class of strong, total, associative, one-way
functions. We provide a complete complexity-theoretic characterization for the existence of
strong, total, associative, one-way functions whose ambiguity approaches the lower bounds we

provide, namely that P#PolylogP if and only if there exists a deR", a (0(logd n) function 4 :
N —N, and an A-to-one, strong, total, associative, one-way function. Finally, we prove that no
total, associative function over an infinite universe is constant-to-one, and that this bound is tight.

We mention possible future directions. Do any of our results translate into average-case (i.c.,
cryptographic) one-way function theory? Also, as average-case complexity is to worst-case
complexity, can we study average-case ambiguity as an alternate to the ‘“worst-case’ ambiguity
defined and studied in this paper? What properties might associative functions with average-case
ambiguity constraints exhibit?

Acknowledgments

I am grateful to Lane Hemaspaandra for suggesting this topic and for his continual guidance
and encouragement and to Alina Beygelzimer, Edith Elkind, Lane Hemaspaandra, Harald
Hempel, Jorg Rothe, Alan Selman, Rahul Tripathi, and Mayur Thakur for their careful reviews
and numerous suggestions.

References

[AR88] E. Allender, R. Rubinstein, P-printable sets, SIAM J. Comput. 17 (6) (1988) 1193-1202.

[Bei89] R. Beigel, On the relativized power of additional accepting paths, in: Proceedings of the Fourth Annual
Conference on Structure in Complexity Theory, 1989, pp. 216-224. Note added in [Bei95].

[Bei95] R. Beigel, On the relativized power of additional accepting paths, 1995. Manuscript. Updates [Bei89].

[Ber77] L. Berman, Polynomial reducibilities and complete sets, Ph.D. Thesis, Cornell University, Ithaca, NY, 1977.

[GS88] J. Grollmann, A. Selman, Complexity measures for public-key cryptosystems, SIAM J. Comput. 17 (2)
(1988) 309-335.

674 C.M. Homan | Journal of Computer and System Sciences 68 (2004) 657—674

[HPRO1] L. Hemaspaandra, K. Pasanen, J. Rothe, If P#NP then some strongly noninvertible functions are
invertible, in: Proceedings of the 13th International Symposium on Fundamentals of Computation Theory,
Riga, Latvia, 2001, pp. 162-171.

[HR99] L. Hemaspaandra, J. Rothe, Creating strong, total, commutative, associative one-way functions from any
one-way function in complexity theory, J. Comput. System Sci. 58 (3) (1999) 648—659.

[Ko85] K. Ko, On some natural complete operators, Theoret. Comput. Sci. 37 (1) (1985) 1-30.

[RS97] M. Rabi, A. Sherman, An observation on associative one-way functions in complexity theory, Inform.
Process. Lett. 64 (2) (1997) 239-244.

[Sel92] A. Selman, A survey of one-way functions in complexity theory, Math. Systems Theory 25 (3) (1992)
203-221.

[Val76] L. Valiant, The relative complexity of checking and evaluating, Inform. Process. Lett. 5 (1) (1976) 20-23.

[Val79] L. Valiant, The complexity of enumeration and reliability problems, SIAM J. Comput. 8 (3) (1979) 410-421.

[Wat88] O. Watanabe, On hardness of one-way functions, Inform. Process. Lett. 27 (1988) 151-157.

	Tight lower bounds on the ambiguity of strong, total, associative, one-way functions
	Introduction
	Preliminaries
	Lower bounds
	Tightness of lower bounds
	Conclusion
	Acknowledgements
	References

