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Abstract

We study the ambiguity, or ‘‘many-to-one’’-ness, of two-argument, one-way functions that are strong
(that is, hard to invert even if one of their arguments is given), total, and associative. Such powerful one-
way functions are the basis of a cryptographic paradigm described by Rabi and Sherman (Inform. Process.
Lett. 64(2) (1997) 239) and were shown by Hemaspaandra and Rothe (J. Comput. System Sci. 58(3) (1999)
648) to exist exactly if standard one-way functions exist.
Rabi and Sherman (1997) show that no total, associative function defined over a universe having at least

two elements is one-to-one. We show that if PaUP; then, for every dANþ; there is an Oðlog
1
d nÞ-to-one,

strong, total, associative, one-way function sd :We argue that this bound is tight in the sense that any total,
associative function having similar properties to sd but not necessarily strong or one-way must have at least
the same order of magnitude of ambiguity as sd has. We demonstrate that the techniques used in proving
the above-stated results easily apply to other classes of total, associative functions.
We provide a complete characterization for the existence of strong, total, associative, one-way functions

whose ambiguity approaches the lower bounds we provide. We say a language is in PolylogP if there exists

a polynomial-time Turing machine M accepting the language such that for some dARþ it holds that M has

on each string x at most Oðlogd nÞ accepting paths, where n ¼ jxj: We show that PaPolylogP if and only

for some dARþ there exists an Oðlogd nÞ-to-one, strong, total, associative, one-way function.
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1. Introduction

An important, natural property of functions is their degree of ambiguity, or ‘‘many-to-one’’-
ness. We say a function s : S�-S� is h-to-one, where h : N-N; if for each y in the image of s it

holds that jjfx j sðxÞ ¼ ygjjphðjyjÞ (the definition of h-to-one for k-ary functions, where kANþ; is
analogous).
We study the ambiguity of two-argument, one-way functions that are strong (that is, hard to

invert even if one of their arguments is given), total, and associative. Such powerful one-way
functions are the basis of cryptographic protocols described by Rabi and Sherman [RS97] (and
due, according to Rabi and Sherman [RS97], to Rivest and Sherman) for two-party, secret-key
agreement and for digital signatures. Strong, total, associative one-way functions were shown by
Hemaspaandra and Rothe [HR99] to exist exactly if standard one-way functions exist.
Rabi and Sherman [RS97] show that no total, associative function (over a universe having at

least two elements) can be unambiguous (i.e., one-to-one). Prior to the present paper, the result of
Rabi and Sherman was also the best known lower bound on the ambiguity of strong, total,
associative, one-way functions.

We prove that, for each total, associative function s; if for some dsANþ the length of each
output string is bounded in the lengths of the corresponding input strings by a polynomial of

degree ds; then for any dARþ it holds that s is not Oðlog
1

dþlog ds nÞ-to-one. Thus, we obtain a lower
bound on ambiguity that simultaneously is greater than the lower bound provided by Rabi and
Sherman and depends only on how fast the output lengths grow relative to the input lengths.
How close to optimal is this lower bound? Grollmann and Selman [GS88] and, independently,

Ko [Ko85] and Berman [Ber77] show that PaUP if and only if there exists a total, one-to-one,
one-way function. UP [Val76] is the class of all languages accepted by a nondeterministic Turing
machine that runs in polynomial time and has on any input at most one accepting path. We show

that if PaUP; then for any dANþ there exists an h-to-one, strong, total, associative, one-way

function, where h : N-N is Oðlog
1
d nÞ: Moreover, the lengths of the outputs of this function are

bounded in the lengths of the inputs by a polynomial of degree 2d : Thus, in conjunction with our

lower bound result, there is no d 04d such that this function is Oðlog
1
d 0 nÞ-to-one. Intuitively

speaking, this means, first, that under a standard complexity-theoretic assumption we can
construct a strong, total, associative, one-way function s whose ambiguity depends only on how
long the outputs grow with respect to the length of the inputs and, second, that no total,
associative function having the same output-length bounds as s can achieve less ambiguity (up to
a constant factor). Thus the lower bounds we provide are quite tight.
The techniques we use to prove the above-mentioned claims can be applied to other classes of

total, associative functions. We show that the same tightness argument presented above applies
unconditionally (i.e., without requiring that PaUP) to the class of all total, associative,
polynomial-time computable functions. We provide improved lower bounds on the ambiguity
(over the bound provided by Rabi and Sherman [RS97]) for the class of all total, associative,
recursive functions, and the class of all total, associative functions (where in both cases the
functions are defined over the set of all finite strings). In both cases we argue that the bounds are
quite tight.
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Finally, we provide a complete complexity-theoretic characterization for the existence of strong,
total, associative, one-way functions whose ambiguity approaches the lower bounds we provide.
We define PolylogP to be the class of all languages for which there exists a nondeterministic
Turing machine that runs in polynomial time and has on each input xAS� at most hðnÞ accepting
paths, where n ¼ jxj and for some dARþ it holds that h : N-N is Oðlogd nÞ: PolylogP is a promise
class that is quite naturally analogous to the previously-studied classes UP [Val79], FewP [AR88],
and Uf ðnÞP [Bei89], each of which, like PolylogP; is based on a promise that for every language

belonging to the class in question there exists a nondeterministic Turing machine that accepts the
language with only a limited number of accepting paths. We show that PaPolylogP if and only if

for some dARþ and some Oðlogd nÞ-to-one function h : N-N there exists an h-to-one, strong,
total, associative, one-way function.
The rest of this paper is organized as follows. In the second section we present preliminaries. In

the third section we provide lower bounds on the ambiguity of a variety of classes of total,
associative functions, each of which includes the strong, total, associative, one-way functions. In
the fourth section we prove, unconditionally in some cases and under standard complexity-
theoretic assumptions in others, that the lower bounds from the third section are tight. The fifth
section concludes the paper and suggests possible future directions.

2. Preliminaries

Fix the alphabet S to be f0; 1g:We denote the set of all real numbers by R; the set of all natural

numbers by N; the set of all positive real numbers by Rþ; and the set of all positive natural

numbers by Nþ: As is standard, we will sometimes use a regular expression to denote the set of all
strings satisfying the regular expression, i.e., S� denotes the set of all finite-length strings, and S�1
denotes the set of all finite-length strings ending with a 1. Throughout this paper, ‘‘log’’ denotes
the base two logarithm.
A language LDS� is in UP [Val76] if there exists a nondeterministic Turing machine that

accepts L; runs in polynomial time, and for all inputs has at most one accepting path. A language

L is in PolylogP if there exists a number dARþ; an Oðlogd nÞ function h : N-N; and a
nondeterministic Turing machine accepting L that runs in polynomial time and on each input
xAS� has at most hðnÞ accepting paths, where n ¼ jxj:
Let f : A-B denote the function f that maps elements of A to elements of B: We say f

is total if it is defined on each element of A: The image of f ; denoted imðf Þ; is defined as
the set fbAB j ð(aAAÞ½ f ðaÞ is defined and equal to b�g: The preimage set of bAB; denoted

f �1ðbÞ; is defined as the set faAA j f ðaÞ is defined and equal to bg: A (possibly partial) function
g : B-A inverts f if for each bAimðf Þ it holds that gðbÞ is defined and f ðgðbÞÞ is defined and
equal to b: A function is in FP if and only if it is total and computable in deterministic
polynomial time. We say that f : A-S� is polynomial-time invertible if there exists a
function g : S�-A that inverts f and is computable in polynomial time in the length of its

input. For k-ary functions (where kANþ) the terms in this paragraph are defined analogously.
For 2-ary functions, we will sometimes use infix notation (e.g., ‘‘xsy’’) instead of prefix notation
(e.g., ‘‘sðx; yÞ’’).
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For each total function f : A-A; each kANþ; and each aAA; we denote by f kðaÞ the depth-k
recursive composition of f on a; e.g., f 3ðaÞ ¼ f ðf ðf ðaÞÞÞ:
A function f : N-N is unbounded if for all nAN there exists an mAN such that f ðmÞ4n:
Grollmann and Selman [GS88] (see also independent work by Ko [Ko85] and Berman [Ber77])

provided the first independent study of complexity-theoretic, single-argument, one-to-one, one-
way functions. The definition of a one-way function depends on a notion called honesty, defined as
follows.

Definition 2.1 (Grollmann and Selman [GS88]) (see [Ko85,Ber77,Wat88,Sel92]). A function f :
S�-S� is honest if there exists some polynomial p such that for each zAimðf Þ there exists an

xAf �1ðzÞ such that jxjppðjzjÞ:

Intuitively speaking, honesty guarantees that the function is not hard to invert merely because it

shrinks the input too much. For instance, the function f ðxÞ ¼ 1log jxj is not honest and is trivially
not polynomial-time invertible.
In this paper, we do not require one-way functions to be one-to-one. Such one-way functions

have been studied in the past. Watanabe, for instance, defines one-way functions as we do below
and calls one-to-one, one-way functions strictly one-way [Wat88].

Definition 2.2 (Watanabe [Wat88]). (see [GS88,Ko85,Ber77,Sel92]). A function f : S�-S� is one-
way if f is honest, polynomial-time computable, and not polynomial-time invertible.

We can modify the above definitions in a natural way to account for two-argument one-way
functions [RS97,HR99].

Definition 2.3 (Rabi and Sherman [RS97]; Hemaspaandra and Rothe [HR99]). We say a two-
argument function s : S�  S�-S� is honest if there exists some polynomial p such that for each

zAimðsÞ there exists a pair of strings ðx; yÞAs�1ðzÞ such that maxfjxj; jyjgppðjzjÞ:

We now define two-argument, one-way functions.

Definition 2.4 (Rabi and Sherman [RS97]; Hemaspaandra and Rothe [HR99]). Let s : S� 
S�-S� be an arbitrary two-argument function. We say s is a one-way function if s is honest,
polynomial-time computable, and not polynomial-time invertible.

Strong noninvertibility captures the possibility that some two-argument, one-way function may
still be difficult to invert even when one of its input arguments is known. Strong noninvertibility,
in turn, depends on a variation of honesty called s-honesty.

Definition 2.5 (Hemaspaandra et al. [HPR01]). A two-argument function s is called s-honest if
there exists a polynomial p : N-N such that both 1 and 2 below are true.

1. For each x; y; zAS� such that xsy ¼ z there exists a y0AS� such that jy0jppðmaxfjxj; jzjgÞ and
xsy0 ¼ z:
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2. For each x; y; zAS� such that xsy ¼ z there exists an x0AS� such that jx0jppðmaxfjyj; jzjgÞ and
x0sy ¼ z:

Definition 2.6 (Rabi and Sherman [RS97]; Hemaspaandra and Rothe [HR99]). A total, two-argument
function s is said to be strongly noninvertible (or strong) if s is s-honest and neither 1 nor 2 holds.

1. There exists a g1AFP such that for each zAimðsÞ and each ðx; yÞAs�1ðzÞ it holds that
xsg1ðx; zÞ ¼ z:

2. There exists a g2AFP such that for each zAimðsÞ and each ðx; yÞAs�1ðzÞ it holds that
g2ðy; zÞsy ¼ z:

Strong noninvertibility does not necessarily imply invertibility; it is known that if PaNP; then
some strongly noninvertible functions are invertible [HPR01].
The definition below is the standard definition of associativity found in the mathematics

literature. We include it here because previous work on associative one-way functions
[RS97,HR99] dealt with a notion known (in the nomenclature of Hemaspaandra and Rothe
[HR99]) as weak associativity. The difference between the two notions is not relevant for us since
for total functions the two notions are known to coincide [HR99].

Definition 2.7 (Rabi and Sherman [RS97]; Hemaspaandra and Rothe [HR99]). Let s : S� 
S�-S� be any total, two-argument function. We say s is associative if for all x; y; zAS� it holds
that xsðyszÞ ¼ ðxsyÞsz:

3. Lower bounds

In this section, we provide lower bounds on the ambiguity of several classes of total, associative
functions. As stated in the introduction, our primary goal is to construct strong, total, associative,
one-way functions that have low ambiguity. We first provide a lower bound on the ambiguity of
such functions that actually applies to all total, associative, polynomial-time computable (but not
necessarily strong or one-way) functions.

Theorem 3.1. For all kAN; no total, associative function from S�  S� to S� is k-to-one.

We do not provide a proof for Theorem 3.1 as it follows almost directly from Lemma 3.2, which
is presented below.

Lemma 3.2. For each total, associative function s : S�  S�-S� and each kANþ; there exist

strings x1;y;xkþ1AS� for which both 1 and 2 below hold. (Let x ¼ x1sysxkþ1:)

1. maxfjx1j;y; jxkþ1jgplogðk2 þ 1Þ; and

2. at least one of the following holds.

(a) There exist distinct a1;y; akAS� and (possibly not distinct) b1;y; bkAS� such that for each

iAf1;y; kg it holds that aisbi ¼ x and aiax; or
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(b) there exist distinct b1;y; bkAS� and (possibly not distinct) a1;y; akAS� such that for each

iAf1;y; kg it holds that aisbi ¼ x and biax:

Proof. We prove the lemma by induction on k: Let s : S�  S�-S� be a total, associative
function.

For the basis, let k ¼ 1; x1 ¼ e; and x2 ¼ 0: Since maxfjej; j0jgplogð12 þ 1Þ; item 1 holds. Since
ea0; it holds that one of 2(a) or 2(b) is satisfied, even if es0Afe; 0g:
For the induction hypothesis, choose kANþ and suppose that x1;y;xkþ1AS� satisfy

conditions 1 and 2(a) (the proof is analogous if conditions 1 and 2(b) are instead satisfied). Let
x ¼ x1sysxkþ1: By condition 2(a) we can choose distinct a1;y; ak; and (possibly not distinct)
b1;y; bk in S� such that for each iAf1;y; kg it holds that aisbi ¼ x and aiax: Choose

y1;y; yk2þkþ1 to be the k2 þ k þ 1 lexicographically smallest strings in S� such that

fx; a1;y; akg-fy1;y; yk2þkþ1g ¼ |: (Note that jjfx; a1;y; akg,fy1;y; yk2þkþ1gjj ¼ k2þ
2k þ 2 ¼ ðk þ 1Þ2 þ 1:) Since there are no fewer than ðk þ 1Þ2 þ 1 strings of length at most

logððk þ 1Þ2 þ 1Þ; it follows that maxfjy1j;y; jyk2þkþ1jgplogððk þ 1Þ2 þ 1Þ: Consider the
following two cases, which cover all possibilities.
For the first case, suppose that there exists a yAfy1;y; yk2þkþ1g such that xsyefx; a1;y; akg:

Since s is associative and since for each iAf1;y; kg it holds that aiaaisbi ¼ x; it follows that

a1sðb1syÞ ¼ a2sðb2syÞ
^ ^

¼ aksðbksyÞ
¼ xsy:

Since a1;y; ak; and x are by hypothesis distinct and distinct from xsy; there exist distinct
a01;y; a0kþ1 (namely a1;y; ak; and x) and (possibly not distinct) b0

1;y; b0
kþ1 (namely

b1sy;y; bksy; and y) in S� such that for each iAf1;y; k þ 1g it holds that a0
isb0i ¼

x0
1sysx0

kþ2 and a0
iax0

1sysx0
kþ2 (where, for j : 1pjpk þ 1; x0

j ¼ xj; and x0
kþ2 ¼ y). Thus,

condition 2(a) holds for k þ 1: Since x0
1;y;x0

kþ2 are each of length less than logððk þ 1Þ2 þ 1Þ;
condition 1 also holds.
For the second case, suppose that for each yAfy1;y; yk2þkþ1g it holds that xsyAfx; a1;y; akg:

By the pigeonhole principle there exists an aAfx; a1;y; akg and a set
fy0

1;y; y0
kþ1gDfy1;y; yk2þkþ1g such that for each yAfy0

1;y; y0
kþ1g it holds that xsy ¼ a: Since

each such y was chosen to be distinct from a; there exist distinct b0
1;y; b0

kþ1 (namely y0
1;y; y0

kþ1)

and (possibly not distinct) a0
1;y; a0

kþ1 (indeed in this case they are all the same string, namely x)

such that for each iAf1;y; k þ 1g it holds that a0
isb0i ¼ a ¼ x0

1sysx0
kþ2 (where, for j : 1pjpk þ

1; x0
j ¼ xj; and x0

kþ2 is any particular y0i) and b0
iaa: Thus condition 2(b) holds for k þ 1: Since

x0
1;y; x0

kþ2 are each shorter than logððk þ 1Þ2 þ 1Þ; condition 1 also holds. &

As mentioned at the beginning of this section, Theorem 3.1 easily follows from Lemma 3.2.
Theorem 3.3 provides a better lower bound for the case of polynomial-time computable, total,

associative functions.
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Theorem 3.3. For each total, associative function sAFP there exists a dANþ such that for each

Oðlog
1
d nÞ function h : N-N it holds that s is not h-to-one.

Note that both Theorems 3.1 and 3.3 provide better lower bounds for their respective classes of
functions than does the one-to-one lower bound provided by Rabi and Sherman [RS97].
We will show in Section 4 that the lower bound provided by Theorem 3.3 is tight in the sense

that for each dANþ there is a total, associative, Oðlog
1
d nÞ-to-one, polynomial-time computable

function s such that for all x; yAS� it holds that jxsyj is Oððmaxfjxj; jyjgÞ2
d

Þ and for all dARþ it

holds that s is not Oðlog
1

dþd nÞ-to-one. Moreover, if PaUP; then it is also tight (in the same sense
as above) for the class of all strong, total, associative, one-way functions. Thus, intuitively
speaking, under a standard complexity-theoretic assumption restricting the set of all total,
associative functions in FP to the set of strong, total, associative, one-way functions comes at little
cost in the form of increased ambiguity.
Theorem 3.3 follows almost directly from Lemma 3.4, stated below.

Lemma 3.4. For each total, associative function s : S�  S�-S�; if for some eANþ it holds that

jxsyj is Oððmaxfjxj; jyjgÞeÞ; where x; yAS�; then for each dARþ and each Oðlog
1

dþlog e nÞ function
h : N-N it holds that s is not h-to-one.

Lemma 3.4 provides a lower bound on the ambiguity of total, associative functions whose
output lengths are polynomially bounded by their input lengths (clearly, all polynomial-time
computable, total, associative functions have this property). Moreover, Lemma 3.4 relates the
degree of the polynomial bounding the output length to the degree of the radical used in
expressing the lower bound on ambiguity.
The following is a brief sketch of how we prove Lemma 3.4. Lemma 3.2 shows that for every

kANþ we can find k þ 1 strings x1;y; xkþ1 such that maxfjx1j;y; jxkþ1jgplogðk2 þ 1Þ and the
cardinality of the preimage of x1sysxkþ1 is at least k:We apply Proposition 3.5 (stated below) to
show that if the output string lengths are bounded in the length of the input strings by a
polynomial of degree e; then for all positive integers c and real numbers d there exists a constant C

such that jx1sysxkþ1jpðmaxfC; jx1j;y; jxkþ1jgÞð
k
c
Þdþlog e

: Putting Lemma 3.2 and Proposition 3.5
together lets us express jx1sysxkþ1j as a function of k; which when solved for k can prove
Lemma 3.4.

Proposition 3.5. For each total, associative function s : S�  S�-S�; if for some total,
nondecreasing polynomial p : N-N; there exists a CAN such that for each x; yAS� it holds that
pðmaxfjxj; jyj;CgÞXmaxfjxsyj;Cg; then for each x1;y; xkAS� it follows that

jx1sysxkjppJlog knðmaxfC; jx1j;y; jxkjgÞ:

Proof of Proposition 3.5. Suppose that s : S�  S�-S� is a total, associative function such that
for some nondecreasing polynomial p : N-N there exists a CAN such that for each x; yAS� it
holds that pðmaxfjxj; jyj;CgÞXmaxfjxsyj;Cg: Since s is total and associative, for each
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x1;y; xkAS� it follows that x1sysxk is equal to ðx1sysx
Ik
2
m
Þsðx

Ik
2
mþ1

sysxkÞ: We may group

both x1sysx
Ik
2
m
and x

Ik
2
mþ1

sysxk in a similar fashion, etc., to a maximum recursion depth of

Jlog kn; so that

jx1sysxkjp
pðmaxfC; jx1sysxIk=2mj; jxIk=2þ1msysxkjgÞ if k42;

pðmaxfC; jx1j; jx2jgÞ otherwise:

�

Since for each x; yAS� it holds that pðmaxfjxj; jyj;CgÞXmaxfjxsyj;Cg; it follows that

jx1sysxkjppJlog knðmaxfC; jx1j;y; jxkjgÞ: &

We can now prove Lemma 3.4.

Proof of Lemma 3.4. Suppose that s : S�  S�-S� is a total, associative function such that for

some eANþ it holds that, for all x; yAS�; jxsyj is Oððmaxfjxj; jyjgÞeÞ: Suppose that for some

dARþ and some Oðlog
1

dþlog e nÞ function h : N-N it holds that s is h-to-one. By assumption, there

exist c;C1AN such that for each nAN if nXC1; then hðnÞpc log
1

dþlog e n: Since jxsyj is

Oððmaxfjxj; jyjgÞeÞ; where x; yAS�; there exists a C2AN such that for each x; yAS� it holds that

ðmaxfC2; jxj; jyjgÞ2
d
4e
Xmaxfjxsyj;C2g: Choose kAN such that k has each of the following

properties.

* logðk2 þ 1ÞXC2:
* For each zAimðsÞ if jjs�1ðzÞjjXk; then jzjXC1 (such a k exists, since otherwise s would have an
image element with an infinite preimage and so s could not be h-to-one).

* Jlogðk þ 1Þn ¼ logðk þ 1Þ:
* ðk þ 1Þ

d
4
þlog elog logðk2 þ 1Þoðk

c
Þ
d
2
þlog e:

By Lemma 3.2 there exist x1;y; xkþ1AS� such that maxfjx1j;y; jxkþ1jgplogðk2 þ 1Þ and

jjs�1ðx1sysxkþ1ÞjjXk: By Proposition 3.5,

jx1sysxkþ1jpðmaxfC2; jx1j;y; jxkþ1jgÞð2
d
4eÞJlogðkþ1Þn :

Since maxfjx1j;y; jxkþ1jgplogðk2 þ 1Þ; since k was chosen so that logðk2 þ 1ÞXC2; and since
Jlogðk þ 1Þn ¼ logðk þ 1Þ;

jx1sysxkþ1jp ðlogðk2 þ 1ÞÞð2
d
4eÞlogðkþ1Þ

¼ ðlogðk2 þ 1ÞÞðkþ1Þ
d
4þlog e

¼ 2ðkþ1Þ
d
4þlog e

log logðk2þ1Þ:
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Since k was chosen so that ðk þ 1Þ
d
4
þlog elog logðk2 þ 1Þoðk

c
Þ
d
2
þlog e;

jx1sysxkþ1jo2ð
k
c
Þ
d
2
þlog e

:

Thus solving for k yields

k4c log

1
d
2
þlog eðjx1sysxkþ1jÞ: ð1Þ

Since jjs�1ðx1sysxkþ1ÞjjXk; by our choice of k it follows that jx1sysxkþ1jXC1: Thus by

assumption, jjs�1ðx1sysxkþ1Þjjpc log
1

dþlog eðjx1sysxkþ1jÞ: But this contradicts Eq. (1). We

conclude that s is not Oðlog
1

dþlog enÞ-to-one. &

4. Tightness of lower bounds

Our goal in this section is to first provide a theoretical framework for constructing total,
associative, one-way functions of low ambiguity (in light of the lower bounds from the previous
section) and then use this framework to prove that the lower bounds provided in Section 3 are
(assuming in some cases certain complexity-theoretic assumptions) tight. We prove that the lower
bound provided in Section 3 on the ambiguity of total, associative functions is tight.

Theorem 4.1. 1. For every nondecreasing, unbounded function p : N-N there exists a p-to-one,
total, associative function.

2. For every recursive, nondecreasing, unbounded function p : N-N there exists a p-to-one, total,
associative, recursive function.

We prove unconditionally that the lower bound provided in Section 3 on the ambiguity of total,
associative functions in FP is tight. We prove that if PaUP; then there exists a strong, total,
associative, one-way function whose ambiguity matches the lower bound from the previous
section. Finally, we provide a complete complexity-theoretic characterization for the existence of
strong, total, associative, one-way functions whose ambiguity approaches the lower bound from
the previous section.

Theorem 4.2. 1. For each dANþ there exists a polynomial-time computable, total, associative, q-to-

one function s : S�  S�-S�; where q : N-N is Oðlog
1
d nÞ; and jxsyj is Oððmaxfjxj; jyjgÞ2

d

Þ; where

x; yAS�:
2. If PaUP; then for each dANþ there exists a strong, total, associative, q-to-one, one-way

function s : S�  S�-S�; where q : N-N is Oðlog
1
d nÞ; and jxsyj is Oððmaxfjxj; jyjgÞ2

d

Þ; where

x; yAS�:
3. PaPolylogP if and only if there exists a strong, total, associative, q-to-one, one-way function,

where for some dARþ; q : N-N is Oðlogd nÞ:
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Note that the bound on the output length provided by parts 1 and 2 shows that the lower bound
that Lemma 3.4 provides is tight up to a constant factor.
The theoretical framework we use to prove the above theorems is based on a family of total,

associative functions of the form s½ f ;g� : S�  S�-S�: Let /�;y; �S : S� ? S�-S� be a

multiarity grouping function that is total, bijective, polynomial-time invertible, and for all kANþ

and all x1;y;xkAS� is polynomial-time computable in k þ
Pk

i¼1 jxij and nondecreasing in k þPk
i¼1 jxij; and

2k þ 2
Xk

i¼1
jxijXj/x1;y;xkSjX

Xk

i¼1
jxij and ð2Þ

j/x1;y;xkSj þ 1Xk: ð3Þ

Note that we require the running time of the function to be polynomially bounded in k þ
Pk

i¼1 jxij
rather than simply

Pk
i¼1 jxij in order, for example, to account for the overhead of grouping an

arbitrarily long sequence of empty strings. An example of such a function is one that on input

ðx1;y;xkÞ; where x1;y;xkAS� and kANþ; regards x1;y; xk as the nth string in the
lexicographical order over all finite strings of the alphabet ‘‘0’’ and ‘‘1’’ and ‘‘,’’ (for whichever
value of n is appropriate) and maps it to the nth element in the lexicographical order of S�:
For each total function f : S�-S� and each total, nondecreasing, unbounded function g :

N-N we define s½ f ;g� : S�  S�-S� on input ðx; yÞAS�  S� as

xs½ f ;g�y ¼ /x10
m1 ;y;xi0

mi ; y10
n1 ;y; yj0

njS;

where

* /x1;y;xiS ¼ g½ f ;g�ðxÞ (g½ f ;g� : S
�-S� is defined below),

* /y1;y; yjS ¼ g½ f ;g�ðyÞ;
* ð8kAf1;y; igÞ½mk ¼ maxf0; gði þ jÞ � jxkjg�; and
* ð8kAf1;y; jgÞ½nk ¼ maxf0; gði þ jÞ � jykjg�:

The function g½ f ;g� : S
�-S� mentioned in the first two lines of the list above is a subroutine of

s½ f ;g� that determines when to apply f to x or y: The function g½ f ;g� interprets its single string input

as an encoding of a sequence of strings via the mapping /�;y; �S that was described above. We
define g½ f ;g� : S

�-S� on input /x1;y; xkSAS� as

g½ f ;g�ð/x1;y; xkSÞ ¼

/x1;y; xkS if k41 and

ð8jAf1;y; kgÞ½ðjxjj ¼ gðkÞ and
xje0�Þ or ðjxjj4gðkÞ and
xjAS�1Þ�;

/f ðx1Þ1S if k ¼ 1;

/f ð/x1;y; xkSÞ1S otherwise:

8>>>>>>>><
>>>>>>>>:

Essentially, the first condition above guarantees that f is not applied to elements in the image of
s½ f ;g�: We shall see that this property of g½ f ;g� helps us prove that s½ f ;g� is associative.
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The intuition behind the design of s½ f ;g� is as follows. Each function s½ f ;g� is based on the well-

known, total, associative function concatenation, but with three key modifications. First, s½ f ;g�
pads its output in such a way that associativity is preserved and the cardinality of the preimage of
the padded string is about the same as the cardinality of the preimage that the unpadded string
would have under normal concatenation. Since, however, the padding increases (relative to
normal concatenation) the length of the output, the ambiguity increases more slowly than it
would if the outputs had not been padded. The function g controls the amount of padding.
Second, s½ f ;g� runs some of its inputs through the function f before it pads and outputs them. We

will show that whenever f is assumed to be a one-way function, we can choose a g such that s½ f ;g�
is a strong, total, associative, one-way function. Finally, s½ f ;g� differs from simple concatenation in

that rather than conjoining its two inputs side-by-side, it views each string input as an encoding of
a sequence of strings and joins the two inputs together by joining together the sequence of strings
each input encodes.
In order to get a feel for how s½ f ;g� works, consider the following example. For any string xAS�;

let xR denote the reversal of x; that is, eR ¼ e and, for any aAS and any wAS�; ðawÞR ¼ wRa:

Define f ðxÞ ¼ xR: Note that f is one-to-one and polynomial-time computable and invertible.
Define gðnÞ ¼ 2n:

Now, for any y; w; and z in S�; /ySs½ f ;g�/wS ¼ /yR10m;wR10nS and /wSs½ f ;g�/zS ¼
/wR10n; zR10pS; where m (respectively, n; p) is the least number that makes jyR10mj (respectively,
jwR10nj; jzR10pj) greater than or equal to gð2Þ ¼ 4: One can easily check that

/yR10m;wR10nSs½ f ;g�/zS ¼ /ySs½ f ;g�/wR10n; zR10pS ¼ /yR10m0
;wR10n0 ; zR10p0S; where m0

(respectively, n0; p0) is the least number that makes jyR10m0 j (respectively, jwR10n0 j; jzR10p0 j)
greater than or equal to gð3Þ ¼ 6: We will later prove that s½ f ;g�; for any total f and any total,

nondecreasing g; is associative. It is also easy to check that there are only two elements in the

preimage of /yR10m0
;wR10n0 ; zR10p0S; namely ð/yR10m;wR10nS;/zSÞ and

ð/yS;/wR10n; zR10pSÞ; and that this preimage ambiguity is in some sense due to the
associativity of s½ f ;g�: Note that the padding provided by the string of zeros at the end of each

element in the output effectively allows us to use g to control the amount of ambiguity in s½ f ;g�
that is ‘‘due’’ to associativity.
The following proposition collects some of the basic properties of s½ f ;g� and g½ f ;g� that we will

use in later proofs.

Proposition 4.3. For each total f : S�-S� and each total, nondecreasing g : N-N the following

hold.

1. g½ f ;g� and s½ f ;g� are both total.

2. For each zAimðs½ f ;g�Þ there exist x1;y;xkAS� � 0�; where k41; such that z ¼ /x1;y;xkS:

3. For all x; yAS� it holds that g½ f ;g�ðxs½ f ;g�yÞ ¼ xs½ f ;g�y:

4. For each zAimðg½ f ;g�Þ there exist x1;y;xkAS� and n1;y; nkAN; where kX1; such that z ¼
/x110

n1 ;y; xk10
nkS and if for some z0Aimðg½ f ;g�Þ there exist n01;y; n0kAN such that z0 ¼

/x110
n0
1 ;y; xk10

n0
kS; then z0 ¼ z:
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5. For each xAS� such that /xSAimðg½ f ;g�Þ there exists a yAS� such that x ¼ y1 and

jjg�1½ f ;g�ð/xSÞjjp2 � jjf �1ðyÞjj:
6. For each /x1;y; xkSAimðg½ f ;g�Þ; where k41; it holds that g�1½ f ;g�ð/x1;y;xkSÞ ¼

f/x1;y;xkSg:
7. If f is honest, then g½ f ;g� is honest and s½ f ;g� is honest and s-honest.

Proof.

1. Clearly, both g½ f ;g� and s½ f ;g� are by their definitions total.

2. Choose zAimðs½ f ;g�Þ: By the definition of g½ f ;g�; there exist x1;y;xkAS� with k41 such that

z ¼ /x1;y;xkS; and for each jAf1;y; kg it holds that xje0�:
3. Choose zAimðs½ f ;g�Þ: By the definitions of s½ f ;g� and g½ f ;g�; z satisfies the first of the three

conditions listed in the definition of g½ f ;g�; i.e., for some x1;y; xkAS� with k41 it holds that

z ¼ /x1;y;xkS and for each jAf1;y; kg either jxjj ¼ gðkÞ and xje0� or jxjj4gðkÞ and

xjAS�1: Thus, g½ f ;g�ðzÞ ¼ z:

4. Choose zAimðg½ f ;g�Þ: Clearly, by the definition of g½ f ;g�; there exist a kANþ; x1;y;xkAS�; and

n1;y; nk such that z ¼ /x110
n1 ;y;xk10

nkS: Suppose for some z0Aimðg½ f ;g�Þ that there exist
n01;y; n0kAN such that z0 ¼ /x110

n0
1 ;y;xk10

n0
kS: Consider two cases. First, suppose that k ¼

1: Then z and z0 are each the output of some string that satisfied one of the last two conditions
in the definition of g½ f ;g�: Thus by the definition of g½ f ;g�; n1 ¼ n0

1 ¼ 0: Second, suppose that

k41: In this case choose lAf1;y; kg: By the definition of g½ f ;g�; both jxl10
nl j and jxl10

n0
l j are

greater than or equal to gðkÞ: If either jxl10
nl j or jxl10

n0
l j is greater than gðxÞ; then by the

definition of g½ f ;g�; nl ¼ n0l ¼ 0: Otherwise, both jxl10
nl j and jxl10

n0
l j are equal to gðkÞ; and so

clearly nl ¼ n0
l: Since l was chosen arbitrarily from f1;y; kg; for all lAf1;y; kg it holds that

nl ¼ n0l : We conclude that z ¼ z0:
5. If for some xAS� it holds that /xSAimðg½ f ;g�Þ; then by the definition of g½ f ;g�; x has a trailing 1.

Thus for some yAS� it follows that x ¼ y1: Choose wAS� such that g½ f ;g�ðwÞ ¼ /xS ¼ /y1S:

Then, by the definition of g½ f ;g�; either f ðwÞ ¼ y or f ðw0Þ ¼ y; where /w0S ¼ w:

6. If /x1;y; xkSAimðg½ f ;g�Þ; where k41; then /x1;y; xkS is the output of some string that

satisfies the first of the three conditions listed in the definition of g½ f ;g�: Choose wAS� such that

g½ f ;g�ðwÞ ¼ /x1;y;xkS: By the definition of g½ f ;g�; it follows that w ¼ /x1;y; xkS:

7. Suppose f is honest, via polynomial p : N-N:We may assume without loss of generality that p

is nondecreasing and that for all nAN; pðnÞXn: By the definition of g½ f ;g�; for each zAimðg½ f ;g�Þ
either g½ f ;g�ðzÞ ¼ z or f/yS j/f ðyÞ1S ¼ zgDg�1½ f ;g�ðzÞ: Let q : N-N be a nondecreasing

polynomial witnessing that for all ðx1;y; xkÞ such that x1;y; xkAS� with kX0 it holds that

/�;y; �S is polynomial-time computable in k þ
Pk

i jxij: Either g½ f ;g�ðzÞ ¼ z or, since f is honest

via p and p is nondecreasing, there exists some /y0SAf/yS j/f ðyÞ1S ¼ zg such that
pðjzjÞXjy0j: In either case qðpðjzjÞÞXjz0j; where z0Afz;/y0Sg: Thus g½ f ;g� is honest. Since

/�;y; �S is nondecreasing in k þ
Pk

i¼1 jxij; by the definition of s½ f ;g�; for each x; yAS� it holds
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that jxs½ f ;g�yjXmaxfjg½ f ;g�ðxÞj; jg½ f ;g�ðyÞjg: Thus if g½ f ;g� is honest, then clearly there exist

polynomials that witness that s½ f ;g� is honest and s-honest. &

Next, we prove that each function s½ f ;g� is indeed associative.

Proposition 4.4. For each total f : S�-S� and each total, nondecreasing g : N-N it holds that
s½ f ;g� is associative.

Proof. Choose total f : S�-S�; total, nondecreasing g : N-N; and x; y; zAS�: Choose

i; j; kANþ and x1;y;xiþjþkAS� such that /x1;y; xiS ¼ g½ f ;g�ðxÞ; /xiþ1;y;xiþjS ¼ g½ f ;g�ðyÞ;
and /xiþjþ1;y; xiþjþkS ¼ g½ f ;g�ðzÞ (such x1;y;xiþjþk exist by number 4 of Proposition 4.3).

By the definition of s½ f ;g�; by number 3 of Proposition 4.3, and since g is nondecreasing,

ðxs½ f ;g�yÞs½ f ;g�z ¼/x10
m1 ;y;xiþj0

miþjSs½ f ;g�z

¼/x10
n1 ;y; xiþjþk0

niþjþkS;

where for each lAf1;y; i þ jg it holds that ml ¼ maxf0; gði þ jÞ � jxljg and for each lAf1;y; i þ
j þ kg it holds that nl ¼ maxf0; gði þ j þ kÞ � jxljg (note that nl ¼ maxf0; gði þ j þ kÞ � jxljg
holds because gði þ j þ kÞXgði þ jÞ; which holds because g is nondecreasing). Likewise,

xs½ f ;g�ðys½ f ;g�zÞ ¼ xs½ f ;g�/xiþ10
miþ1 ;y;xiþjþk0

m0
iþjþkS

¼/x10
n0
1 ;y; xiþjþk0

n0
iþjþkS;

where for each lAfi þ 1;y; i þ j þ kg it holds that m0
l ¼ maxf0; gðj þ kÞ � jxljg and for each

lAf1;y; i þ j þ kg it holds that n0
l ¼ maxf0; gði þ j þ kÞ � jxl jg: But then for each lAf1;y; i þ

j þ kg; it follows that n0l ¼ nl : Thus ðxs½ f ;g�yÞs½ f ;g�z ¼ xs½ f ;g�ðys½ f ;g�zÞ: We conclude that s½ f ;g� is

associative. &

The next proposition provides bounds on the ambiguity of s½ f ;g�:

Proposition 4.5. For each total, nondecreasing g : N-N; define p : N-N on input nAN as pðnÞ ¼
maxfm j gðmÞpng: If for some total f : S�-S� and some total, nondecreasing q : N-N; f is q-to-

one, then s½ f ;g� is ð4q2ðnÞ þ pðnÞÞ-to-one.

Proof. Choose total, nondecreasing g : N-N; total f : S�-S�; total, nondecreasing q : N-N

such that f is q-to-one, and zAimðs½ f ;g�Þ: Define p : N-N on input nAN as maxfm j gðmÞpng:
By number 2 of Proposition 4.3, there exist a kAN; x1;y; xkAS�; and m1;y;mkAN such that

k41 and z ¼ /x110
m1 ;y;xk10

mkS: For each iAf1;y; k � 1g; let Li (respectively, Riþ1) be the
set of all y such that yAimðg½ f ;g�Þ and for some n1;y; niAN (respectively, niþ1;y; nkAN), y ¼
/x110

n1 ;y;xi10
niS (respectively, y ¼ /xiþ110

niþ1 ;y;xk10
nkS). By the definition of s½ f ;g�; if

ðx0; y0ÞAs�1½ f ;g�ðzÞ; then for some iAf1;y; k � 1g it holds that g½ f ;g�ðx0ÞALi and g½ f ;g�ðy0ÞARiþ1:

Clearly, then, jjs�1½ f ;g�ðzÞjjp
Pk�1

i¼1 jjfxAS� j g½ f ;g�ðxÞALigjj � jjfyAS� j g½ f ;g�ðyÞARiþ1gjj:
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We now calculate for each iAf1;y; k � 1g the product jjfxAS� j g½ f ;g�ðxÞALigjj �
jjfyAS� j g½ f ;g�ðyÞARiþ1gjj: By number 4 of Proposition 4.3, the cardinality of each Li or Riþ1 is

either one or zero.
If i ¼ 1; then by number 5 of Proposition 4.3, if /x110

n1SALi; then n1 ¼ 0 and

jjg�1½ f ;g�ð/x11SÞjjp2 � jjf �1ðx1Þjj: By Eq. (2) and since q is nondecreasing, 2 �
jjf �1ðx1Þjjp2qðjx11jÞp2qðjzjÞ: Since the cardinality of Li is either one or zero,
jjfxAS� j g½ f ;g�ðxÞALigjjp2qðjzjÞ:
If i41; then by number 6 of Proposition 4.3, if /x110

n1 ;y;xi10
niSALi; then

jjg�1½ f ;g�ð/x110
n1 ;y;xi10

niSÞjjp1: Since the cardinality of Li is either one or zero,

jjfxAS� j g½ f ;g�ðxÞALigjjp1:

By a similar argument, if i ¼ k � 1; then jjfxAS� j g½ f ;g�ðxÞARiþ1gjjp2qðjzjÞ; and if iok � 1;

then jjfyAS� j g½ f ;g�ðyÞARiþ1gjjp1:

Now, if k ¼ 2; there is only one possible choice for i; in which case i ¼ 1 ¼ k � 1; so

jjs�1½ f ;g�ðzÞjjp4q2ðjzjÞ: If k42; then there are at least two choices for i; one of which is 1; another of

which is k � 1; and k � 1a1: For the remaining k � 3 choices, i is neither 1 nor k � 1: Thus

jjs�1½ f ;g�ðzÞjjp4qðjzjÞ þ k � 3:

By the definition of s½ f ;g�; for each lAf1;y; kg it holds that jxl10
ml jXgðkÞ: From this and by

Eq. (2) it follows that jzjXgðkÞ: But then, by the definition of p; kppðjzjÞ:
We conclude that s½ f ;g� is ð4q2ðnÞ þ pðnÞÞ-to-one. &

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let p : N-N be total, nondecreasing, and unbounded. Define g : N-N

on input n as gðnÞ ¼ minfmAN j pðmÞ � 4Xng: Thus, for all aAN it holds that
maxfbAN j gðbÞpagppðaÞ � 4: Note that g is total and nondecreasing and that if p is recursive,
then so is g: Let f : S�-S� be the identity. Thus f is one-to-one and total. By Proposition 4.5,
s½ f ;g� is p-to-one. &

Lemma 4.6. For each dAN and each total fAFP; if g : N-N is defined on each nAN as 2nd

; then

s½ f ;g�AFP: If jf ðzÞj is Oðjzj2
d

Þ; where zAS�; then jxs½ f ;g�yj is Oððmaxfjxj; jyjgÞ2
d

Þ; where x; yAS�:

Proof. Choose dAN and total fAFP: Define g : N-N on each nAN as 2nd

: Clearly, g is total and
nondecreasing. Since f is in FP; g½ f ;g� is clearly in FP: By number 1 of Proposition 4.5, s½ f ;g� is

total. Since essentially all s½ f ;g� does is call g½ f ;g� multiple (but polynomially bounded in the length

of the input) times, pad the outputs of each call to g½ f ;g� and group the padded outputs together

via /�;y; �S; and since g½ f ;g� and /�;y; �S are in FP; all that remains to be proven in order to

show that s½ f ;g� is polynomial-time computable is that the padding can be performed in

polynomial time.
Choose x; yAS�: Thus, by number 2 of Proposition 4.3, for some i; jAN and some

x1;y; xi; y1;y; yjAS� � 0� it follows that /x1;y; xiS ¼ g½ f ;g�ðxÞ and /y1;y; yjS ¼ g½ f ;g�ðyÞ:
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Suppose without loss of generality that iXj: Consider the two cases, which cover all possibilities,
below.

First, suppose that i ¼ j ¼ 1: Then /x1;y; xiS ¼ /x1S; /y1;y; yjS ¼ /y1S; and xsy ¼
/x10

l1 ; y10
l2S; where l1 and l2 are both less than 2

2d

; which is constant in maxfjxj; jyjg: Thus, s½ f ;g�
is polynomial-time computable when restricted to strings satisfying the constraints of this case.
Next, suppose that i41: By number 6 of Proposition 4.3, x ¼ /x1;y;xiS: For each

x0Afx1;y;xig and by the definition of g½ f ;g�; jx0jX2id

; from which it follows (due to Eq. (2)) that

maxfjxj; jyjgXi2id

: Furthermore, by the definition of s½ f ;g�; xs½ f ;g�y ¼ /x10
l1 ;y;

xi0
li ; y10

liþ1 ;y; yj0
liþjS; where each lAfl1;y; liþjg is less than or equal to 2ð2iÞd ¼ ð2id Þ2

d

and

thus is less than or equal to ðmaxfjxj; jyjgÞ2
d

: It follows that s½ f ;g� can pad such inputs in

polynomial time, and is thus polynomial-time computable (via a polynomial of degree at least 2d)
when restricted to strings satisfying the constraints of this case. Because s½ f ;g� is polynomial-time

computable when restricted to either case, s½ f ;g� is polynomial-time computable.

Now, suppose that jf ðzÞj is Oðjzj2
d

Þ: By the definition of g½ f ;g�; then, there exists a cAN such that

for all x; y;x1; x2;y; xi; y1; y2;y; yjAS� chosen as in the first part of the proof it holds that

jx1j þ?þ jxij þ jy1j þ?þ jyjjpcðmaxfjxj; jyjgÞ2
d

þ c: Since each lAfl1;y; liþjg is less than or

equal to ð2id Þ2
d

; it follows, by Eqs. (2) and(3) (and recall that, by assumption, 2iXi þ j),

j/x10
l1 ;y;xi0

li ; y10
liþ1 ;y; yj0

liþjSjp 4i þ 2ðcðmaxfjxj; jyjgÞ2
d

þ c þ 2ið2id Þ2
d

Þ
p 4ðmaxfjxj; jyjg þ 1Þ

þ 2ðcðmaxfjxj; jyjgÞ2
d

þ c

þ 2ðmaxfjxj; jyj; 2gÞ2
d

Þ:

Thus j/x10
l1 ;y; xi0

li ; y10
liþ1 ;y; yj0

liþjSj is Oððmaxfjxj; jyjgÞ2
d

Þ:

Lemma 4.7 below shows that if f is a total, one-way function and g is chosen properly, then
s½ f ;g� is a strong, total, associative, one-way function.

Lemma 4.7. For each dAN; if g : N-N is defined on each input nAN as 2nd

and f : S�-S� is a

total, one-way function, then s½ f ;g� is a strong, total, associative, one-way function.

Proof. Choose dAN; define gðnÞ ¼ 2nd

; and choose f to be a total, one-way function. By
Proposition 4.4, s½ f ;g� is associative. By Lemma 4.6, s½ f ;g� is in FP (and thus total). By number 7 of

Proposition 4.3, s½ f ;g� is honest and s-honest. Suppose there is some function hAFP such that for

each zAimðs½ f ;g�Þ it holds that s½ f ;g�ðhðzÞÞ ¼ z:We could then invert f in polynomial time as follows.

On input yAS�; let ðx1;x2Þ ¼ hð/y10l; y10lSÞ; where l ¼ maxf0; gð2Þ � jy1jg: By the definition
of s½ f ;g�; either f ðx1Þ ¼ y or there exists an xAS� such that /xS ¼ x1 and f ðxÞ ¼ y: If such an x

exists, then output it. Otherwise output x1:
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To see that s½ f ;g� is strongly noninvertible, suppose that there exists a function hAFP such that for

each x; y; zAS� such that xsy ¼ z it holds that hðz; yÞsy ¼ z (the proof is analogous if we instead
assume that there exists a function hAFP such that for each x; y; zAS� such that xsy ¼ z it holds
that xshðz;xÞ ¼ z). We could then invert f in polynomial time as follows.

On input yAS�; let x0 ¼ hð/y10l1 ; f ð0Þ10l2S;/0SÞ; where l1 ¼ maxf0; gð2Þ � jy1jg
and l2 ¼ maxf0; gð2Þ � jf ð0Þ1jg: By the definition of s½ f ;g�; either f ðx0Þ ¼ y or there

exists an xAS� such that /xS ¼ x0 and f ðxÞ ¼ y: If such an x exists, then output it. Otherwise
output x0:

We conclude that s½ f ;g� is a strong, total, associative, one-way function. &

We now prove Theorem 4.2.

Proof of Theorem 4.2. For part 2, if PaUP; then by the well-known result of Grollmann and
Selman [GS88] (and independently Ko [Ko85] and, essentially, Berman [Ber77]), there exists a
one-to-one, total, one-way function f where the length of each output is linear in the length of the

corresponding input. Choose dANþ and define g : N-N on input n to be gðnÞ ¼ 2nd

: Clearly,

jf ðzÞj is Oðjzj2
d

Þ; where zAS�: By Proposition 4.5, s½ f ;g� is ð4þ log
1
d nÞ-to-one. Clearly, 4þ log

1
d n is

Oðlog
1
d nÞ: By Lemma 4.7, s½ f ;g� is a strong, total, associative, one-way function. By Proposition

4.6, jxs½ f ;g�yj is Oððmaxfjxj; jyjgÞ2
d

Þ; where x; yAS�:

For the right-to-left direction of part 3 of Theorem 4.2, suppose that for some dARþ and some

Oðlogd nÞ function q : N-N; s is a q-to-one, strong, total, associative, one-way function. Let
h : N-N witness that s is honest. We may assume without loss of generality that h is total and
nondecreasing. Then the language f/x; y; zSAS� j ð(/x0; y0SAS�Þ½x0sy0 ¼ z and
maxfjx0j; jy0jgphðjzjÞ and /x0; y0S is lexicographically greater than /x; yS�g is in NP via a
nondeterministic Turing machine that runs in polynomial time and on input /x; y; zSAS�

nondeterministically guesses a pair of strings /x0; y0S such that maxfjx0j; jy0jgphðjzjÞ and accepts
/x; y; zS if and only if /x0; y0S is both lexicographically greater than /x; yS; and x0sy0 ¼ z: Since
s is q-to-one, there are at most qðjzjÞ such pairs /x0; y0S: Since s is honest via h; if zAimðsÞ; then
there is at least one such pair /x0; y0S: Since, by Eq. (2), j/x; y; zSjXjzj and since q is
nondecreasing, qðj/x; y; zSjÞXqðjzjÞ: Thus the nondeterministic Turing machine described above
has on any input w at most qðjwjÞ accepting paths. Thus the language in question is in PolylogP:
Also, the language is not in P, since otherwise we could invert s in polynomial time via binary
search.
For the left-to-right direction, suppose that PaPolylogP via a polynomial-time Turing machine

M for which there exists a dARþ such that for some Oðlogd nÞ function q : N-N it holds that for
all xAS�; M has at most qðjxjÞ accepting paths. We may assume without loss of generality that q
is total and nondecreasing. Adapting the construction of Grollmann and Selman [GS88] for
creating a one-to-one, one-way function if PaUP; we can create a q-to-one, one-way function

f : S�-S�: Choose eAN such that eXd: We then define g : N-N on input n to be 2ne

: By
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Proposition 4.5, s½ f ;g� is ð4q2ðnÞ þ log
1
e nÞ-to-one. Clearly, for some d 0ARþ; 4q2ðnÞ þ log

1
e n is

Oðlogd 0
nÞ: By Lemma 4.7, s½ f ;g� is a strong, total, associative, one-way function.

The argument for part 1 is similar to the argument for part 2 except that we let f : S�-S� be
the identity. &

5. Conclusion

We extend a result of Rabi and Sherman [RS97], who showed no strong, total, associative, one-
way function is one-to-one. We prove that for every total, associative, polynomial-time

computable function s : S�  S�-S� there exists a dANþ such that for each Oðlog
1
d nÞ function

h : N-N; s is not h-to-one. We prove that this lower bound is tight. Moreover, if P ¼ UP; then
this lower bound is also tight when restricted to the class of strong, total, associative, one-way
functions. We provide a complete complexity-theoretic characterization for the existence of
strong, total, associative, one-way functions whose ambiguity approaches the lower bounds we

provide, namely that PaPolylogP if and only if there exists a dARþ; a Oðlogd nÞ function h :
N-N; and an h-to-one, strong, total, associative, one-way function. Finally, we prove that no
total, associative function over an infinite universe is constant-to-one, and that this bound is tight.
We mention possible future directions. Do any of our results translate into average-case (i.e.,

cryptographic) one-way function theory? Also, as average-case complexity is to worst-case
complexity, can we study average-case ambiguity as an alternate to the ‘‘worst-case’’ ambiguity
defined and studied in this paper? What properties might associative functions with average-case
ambiguity constraints exhibit?
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