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Let G be a graph with n vertices and e(G) edges, and let μ1(G) ≥
μ2(G) ≥ · · · ≥ μn(G) = 0 be the Laplacian eigenvalues of G. Let

Sk(G) = ∑k
i=1 μi(G), where 1 ≤ k ≤ n. Brouwer conjectured that

Sk(G) ≤ e(G)+
(
k+1

2

)
for 1 ≤ k ≤ n. It has been shown in Haemers

et al. [7] that the conjecture is true for trees. We give upper bounds

for Sk(G), and in particular, we show that the conjecture is true for

unicyclic and bicyclic graphs.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a simple graphwith vertex set V(G) and edge set E(G). The Laplacianmatrix of G is defined

as L(G) = D(G)−A(G), where D(G) is the diagonal matrix of vertex degrees of the graph G, and A(G)
is the adjacency matrix of G. Let μ1(G) ≥ μ2(G) ≥ · · · ≥ μn(G) = 0 be the Laplacian eigenvalues of

G, i.e., the eigenvalues of L(G), where n = |V(G)|. Let Sk(G) = ∑k
i=1 μi(G), where 1 ≤ k ≤ n.

Let dv be the degree of v in G. Let d∗
i (G) = |{v ∈ V(G) : dv ≥ i}| for i = 1, 2, . . . , n. Obviously

d∗
1(G) ≥ d∗

2(G) ≥ · · · ≥ d∗
n(G). If G is a graph with n vertices, then the Grone–Merris conjecture

states that [6]

Sk(G) ≤
k∑

i=1

d∗
i (G)

for 1 ≤ k ≤ n. Very recently, it was proven by Bai [1].
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Let e(G) = |E(G)| for the graphG. As a variation of theGrone–Merris conjecture, Brouwer proposed

the following conjecture, see [3,7].

Conjecture 1.1. Let G be a graph with n vertices. Then

Sk(G) ≤ e(G) +
(
k + 1

2

)

for 1 ≤ k ≤ n.

Brouwer verified Conjecture 1.1 by computer for all graphs with at most 10 vertices, see [7]. For

k = n − 1 or n, Conjecture 1.1 follows trivially because Sk(G) = 2e(G). For k = 1, Conjecture 1.1

follows from thewell-known inequalityμ1(G) ≤ n, see [5]. Haemers et al. [7] showed that Conjecture

1.1 is true for all graphs when k = 2 and is true for trees. See [3] for progress of Conjecture 1.1.

Recall that an n-vertex connected graph G is unicyclic (bicyclic, respectively) if e(G) = n (e(G) =
n + 1, respectively).

In this paper, we give various upper bounds for Sk(G), and in particular, we show that Conjecture

1.1 is true for unicyclic and bicyclic graphs.

2. Preliminaries

Let λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) be the eigenvalues of the n × n symmetric matrix A.

Lemma 2.1 [4]. Let A and B be two real n × n symmetric matrices. Then

k∑
i=1

λi(A + B) ≤
k∑

i=1

λi(A) +
k∑

i=1

λi(B)

for 1 ≤ k ≤ n.

For a graph G with E′ ⊆ E(G), let G − E′ be the graph obtained from G by deleting the edges in E′.
If E′ = {e}, then we write G − e for G − {e}.

Let G ∪ H be the vertex-disjoint union of the graphs G and H. For integer k ≥ 1, let kG be the

vertex-disjoint union of k copies of the graph G.

Let Kn be the complete graph with n vertices. Let K1,s be the star on s + 1 vertices, in particular,

K1,0 = K1.

Lemma 2.2. Let H be a subgraph of graph G, and |V(H)| = n1 ≥ 2. Then

Sk(G) ≤ Sk(H) + 2(e(G) − e(H))

for 1 ≤ k ≤ n1.

Proof. IfG=H, then the result is obvious. Suppose in the following thatH is a proper subgraphofG. Let

1≤ k≤ n1 and E(G)\E(H)= {e1, e2, . . . , er}, where r = e(G) − e(H). Let |V(G)| = n. By Lemma 2.1,

Sk(G) ≤ Sk(G − e1) + Sk(K2 ∪ (n − 2)K1)

= Sk(G − e1) + 2

≤ Sk(G − e1 − e2) + 2 + 2

≤ · · ·
≤ Sk(G − e1 − e2 − · · · − er) + 2r

= Sk(H ∪ (n − n1)K1) + 2(e(G) − e(H))

= Sk(H) + 2(e(G) − e(H)),

as desired. �
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Obviously, the upper bound for Sk(G) given in Lemma 2.2 is better than the trivial upper bound

2e(G) if and only if Sk(H) < 2e(H) (which implies that k ≤ n1 − 2).

Lemma 2.3 [7]. Let G be a tree with n vertices. Then Sk(G) ≤ e(G) + 2k − 1 for 1 ≤ k ≤ n.

Lemma 2.4 [7]. Let G be a graph with n ≥ 2 vertices. Then S2(G) ≤ e(G) + 3.

3. Upper bounds for Sk(G)

In this section, we give various upper bounds for Sk(G).
Recall that the clique number of a graph G is the number of vertices of a maximum complete

subgraph of G.

Proposition 3.1. Let G be a graph with clique number ω ≥ 3. Then

Sk(G) ≤ 2e(G) + ω(k − ω + 1)

for 1 ≤ k ≤ ω − 2.

Proof. Obviously, Kω is a subgraph of G. Note that the Laplacian eigenvalues of Kω are ω with multi-

plicity ω − 1, and 0. If 1 ≤ k ≤ ω − 2, then Sk(G) = kω, and thus by Lemma 2.2,

Sk(G) ≤ Sk(Kω) + 2

(
e(G) −

(
ω

2

))

= kω + 2

(
e(G) −

(
ω

2

))

= 2e(G) + ω(k − ω + 1),

as desired. �

Proposition 3.2. Let G be a graph with maximum degree � ≥ 2. Then

Sk(G) ≤ 2e(G) − � + k

for 1 ≤ k ≤ � − 1.

Proof. Obviously, K1,� is a subgraph of G. Note that the Laplacian eigenvalues of K1,� are � + 1, 1

with multiplicity � − 1, and 0. If 1 ≤ k ≤ � − 1, then Sk(G) = � + k, and thus by Lemma 2.2,

Sk(G) ≤ Sk(K1,�) + 2(e(G) − �)

= (� + k) + 2(e(G) − �)

= 2e(G) − � + k,

as desired. �

AmatchingM of the graphG is a subset of E(G) such that no two edges inM share a common vertex.

The matching number of G is the maximum number of edges of a matching in G.

Proposition 3.3. Let G be a graph with matching number m ≥ 2. Then

Sk(G) ≤ 2e(G) − 2m + 2k

for 1 ≤ k ≤ m − 1.



Z. Du, B. Zhou / Linear Algebra and its Applications 436 (2012) 3672–3683 3675

Proof. Obviously, mK2 is a subgraph of G. Note that the Laplacian eigenvalues of mK2 are 2 with

multiplicity m, and 0 with multiplicity m. If 1 ≤ k ≤ m − 1, then Sk(G) = 2k, and thus by

Lemma 2.2,

Sk(G) ≤ Sk(mK2) + 2(e(G) − m)

= 2k + 2(e(G) − m)

= 2e(G) − 2m + 2k,

as desired. �

Proposition 3.4. Let G be a graph with n vertices and without isolated vertices. Then

Sk(G) ≤ 2e(G) − n + 2k

for 1 ≤ k ≤ n.

Proof. Suppose first that G is connected. Let T be a spanning tree of G. By Lemmas 2.2 and 2.3,

Sk(G) ≤ Sk(T) + 2(e(G) − e(T))

≤ (e(T) + 2k − 1) + 2(e(G) − n + 1)

= 2e(G) − n + 2k.

Now suppose that G is not connected. Let G1, G2, . . . , Gt be all the components of G. Suppose that ki
of the first k largest Laplacian eigenvalues of G are Laplacian eigenvalues of Gi, where 0 ≤ ki ≤ k,

1 ≤ i ≤ t, and
∑t

i=1 ki = k. Suppose without loss of generality that k1, k2, . . . , kr > 0 = kr+1 =
· · · = kt , where 1 ≤ r ≤ t. Then Sk(G) = ∑r

i=1 Ski(Gi). Let H = ∪r
i=1Gi. Obviously, Sk(G) = Sk(H).

Let ni = |V(Gi)| for i = 1, 2, . . . , t. By the proof above, we have Ski(Gi) ≤ 2e(Gi) − ni + 2ki for

1 ≤ i ≤ r. Then

Sk(G) = Sk(H) =
r∑

i=1

Ski(Gi)

≤
r∑

i=1

2e(Gi) −
r∑

i=1

ni +
r∑

i=1

2ki

= 2e(H) − |V(H)| + 2k.

Note that e(Gi) ≥ 1 for r + 1 ≤ i ≤ t since G contains no isolated vertices. For r + 1 ≤ i ≤ t,

e(Gi) − ni ≥ −1, and thus 2e(Gi) − ni ≥ 0, implying that 2e(G) − n ≥ 2e(H) − |V(H)|. Then the

result follows. �

The upper bound for Sk(G) given in Proposition 3.4 is better than the trivial upper bound 2e(G) if
and only if 1 ≤ k ≤ 	 n−1

2

.

If G = n
2
K2 for even n, then equality in Proposition 3.4 holds for 1 ≤ k ≤ n

2
.

For a connected graph on n vertices with 1 ≤ k ≤ n − 2, it was shown in [9] that

Sk(G) ≤ 2e(G)k +
√
e(G)k(n − k − 1)(n2 − n − 2e(G))

n − 1

with equality if and only if G ∼= K1,n−1 or Kn when k = 1, and G ∼= Kn when 2 ≤ k ≤ n − 2.

If G = K1,n−1, then the bound in Proposition 3.4 is better than the one mentioned above in [9]

for 2 ≤ k ≤ n − 3, and if G = Kn, then the bound mentioned above in [9] is better than the one in

Proposition 3.4 for 1 ≤ k ≤ n − 2. Thus these two bounds are incomparable in general.
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For a graph G with n vertices, let G be the complement of G. Note that L(G) + L(G) = L(Kn). By
Lemma 2.1,

Sk(G) + Sk(G) ≥ kn

for 1 ≤ k ≤ n − 1, and

Sk(G) + Sk(G) ≥ n(n − 1)

for k = n. If both G and G have no isolated vertices, then since e(G) + e(G) = n(n−1)
2

, we have by

Proposition 3.4 that

Sk(G) + Sk(G) ≤ n2 − 3n + 4k

for 1 ≤ k ≤ n.

Proposition 3.5. Let G be a graph with n vertices, of which n1 are not isolated vertices. Then

Sk(G) ≤ e(G) +
(
k + 1

2

)

for 1 ≤ k ≤ n if 9 − 8(n1 − e(G)) < 0, and for

⌈
3+√

9−8(n1−e(G))
2

⌉
≤ k ≤ n if 9 − 8(n1

− e(G)) ≥ 0.

Proof. If n1 = 0, then G is an empty graph, and thus the result is obvious. Obviously, n1 
= 1.

Suppose that n1 ≥ 2. Let H be the graph obtained from G by deleting all isolated vertices. Obviously,

Sk(G) = Sk(H) for 1 ≤ k ≤ n1, and Sk(G) = Sn1(H) for n1 + 1 ≤ k ≤ n.

For 1 ≤ k ≤ n1 if 9−8(n1−e(H)) < 0, and for

⌈
3+√

9−8(n1−e(H))
2

⌉
≤ k ≤ n1 if 9−8(n1−e(H)) ≥

0, we have

2e(H) − n1 + 2k ≤ e(H) +
(
k + 1

2

)
,

and thus by Proposition 3.4,

Sk(G) = Sk(H) ≤ 2e(H) − n1 + 2k ≤ e(H) +
(
k + 1

2

)
= e(G) +

(
k + 1

2

)
.

For n1 + 1 ≤ k ≤ n, since Sn1(H) = 2e(H) < e(H) +
(
n1+1

2

)
, we have

Sk(G) = Sn1(H) < e(H) +
(
n1 + 1

2

)
< e(G) +

(
k + 1

2

)
.

The result follows. �

4. Conjecture 1.1 for unicyclic and bicyclic graphs

If G is an n-vertex unicyclic graph, then e(G) = n, and thus

⌈
3+√

9−8(n−e(G))
2

⌉
= 3. By Proposition

3.5,wehaveConjecture 1.1 is true forn-vertex unicyclic graphswhen3 ≤ k ≤ n. Recall that Conjecture

1.1 is true for k = 2, see [7]. Thus we have
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1 ( , )nU a b 2 ( , )nU a b

a

⎧
⎪
⎨
⎪
⎩

b

⎫
⎪
⎬
⎪
⎭

b

⎫
⎪
⎬
⎪
⎭

a

⎧
⎪
⎨
⎪
⎩

Fig. 1. The graphs U1
n (a, b) and U2

n (a, b).

Corollary 4.1. Conjecture 1.1 is true for unicyclic graphs.

In the rest of this paper, we show that Conjecture 1.1 is true for bicyclic graphs. If G is an n-vertex

bicyclic graph, then e(G) = n + 1, and thus

⌈
3+√

9−8(n−e(G))
2

⌉
= 4. By Proposition 3.5, we have

Conjecture 1.1 is true for n-vertex bicyclic graphs when 4 ≤ k ≤ n. By the fact that Conjecture 1.1 is

true for k = 2 (see [7]), to show Conjecture 1.1 is true for n-vertex bicyclic graphs, we need only to

show that it is true for bicyclic graphs when k = 3.

We need some lemmas.

Lemma 4.1 [2]. Let G be a graph on n vertices with degree sequence δ1 ≥ δ2 ≥ · · · ≥ δn. If G 
∼=
Ks ∪ (n − s)K1, then μs(G) ≥ δs − s + 2 for 1 ≤ s ≤ n.

Let φ(G, x) be the characteristic polynomial of L(G).
A pendent vertex is a vertex of degree one. A pendent edge is an edge incident to a pendent vertex.

LetU1
n(a, b)be the graphobtainedby attaching a and bpendent vertices to twovertices of a triangle,

respectively, where a+b = n−3, n ≥ 4, a ≥ b ≥ 0. LetU2
n(a, b) be the graph obtained by attaching a

and bpendent vertices to twonon-adjacent vertices of a quadrangle, respectively,where a+b = n−4,

n ≥ 5, a ≥ b ≥ 0. The graphs U1
n(a, b) and U2

n(a, b) are presented in Fig. 1.

Lemma 4.2. For n ≥ 9, a ≥ b ≥ 0, μ3(U
1
n(a, b)) < 2 and μ3(U

2
n(a, b)) = 2.

Proof. By direct calculation, we have

φ(U1
n(a, b), x) = x(x − 1)n−5f (x),

φ(U2
n(a, b), x) = x(x − 2)(x − 1)n−6g(x),

where

f (x) = x4 − (n + 5)x3 + (5n + ab + 7)x2 − (7n + 2ab + 3)x + 3n,

g(x) = x4 − (n + 4)x3 + (5n + ab + 1)x2 − (6n + 2ab − 2)x + 2n.

Let x1 ≥ x2 ≥ x3 ≥ x4 be the roots of f (x) = 0, and y1 ≥ y2 ≥ y3 ≥ y4 be the roots of g(x) = 0.

ByLemma4.1,wehaveμ2(U
1
n(a, b)) ≥ 2 > 1, and thusμ2(U

1
n(a, b)) = x2, andμ3(U

1
n(a, b)) = x3

or 1. Note that f (2) = n − 2 > 0 and f (1) = −ab ≤ 0. Then x3 < 2, and thus μ3(U
1
n(a, b)) < 2.

By Lemma 4.1, we have μ1(U
2
n(a, b)) ≥ 3, and thus μ1(U

2
n(a, b)) = y1, μ2(U

2
n(a, b)) = y2 or 2.

Note that g(2) = 2n − 8 > 0 and g(1) = −ab ≤ 0. Then y3 < 2 < y2, and thus μ2(U
2
n(a, b)) = y2

and μ3(U
2
n(a, b)) = 2. �

Lemma 4.3. Let G be a graph with n ≥ 11 vertices. Suppose that there are two edges e1, e2 ∈ E(G) such
that G−{e1, e2} = H∪K2, where H = Ui

n(a, b) for some integers a, bwith a+b = n−2− i, a ≥ b ≥ 0

and i = 1, 2. Then S3(G) ≤ e(G) + 6.

Proof. By Lemma 4.2, the first three largest Laplacian eigenvalues of H ∪ K2 are μ1(H), μ2(H) and 2,

i.e., S3(H ∪ K2) = S2(H) + 2. By Lemmas 2.2 and 2.4,
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Fig. 2. The structures of graphs in U
1
n , U

2
n , U

3
n , and U

4
n , and graphs U5

n , U
6
n , and U7

n .

Fig. 3. The tree Ti
n with i = 0, 1, 2, 3.

S3(G) ≤ S3(H ∪ K2) + 2 · 2
= S2(H) + 6

≤ (e(H) + 3) + 6

= e(G) + 6,

as desired. �

For n ≥ 11, we define four classes of n-vertex bicyclic graphs, denoted by U
1
n, U

2
n, U

3
n, and U

4
n, for

which the structures of graphs in them are given in Fig. 2. We also need three n-vertex bicyclic graphs,

denoted by U5
n , U

6
n , and U7

n for n ≥ 11, see also Fig. 2.

Lemma 4.4. Let G ∈ ∪4
i=1U

i
n, or G = Ui

n with i = 5, 6, 7, where n ≥ 11. Then S3(G) ≤ e(G) + 6.

Proof. For each graphG, let e1, e2 be the edges as labeled in Fig. 2. Then the result follows from Lemma

4.3. �

Lemma4.5 [8]. Let G be a graph. Thenμ1(G) ≤ max{du+mu : u ∈ V(G)}, wheremu = 1
du

∑
uv∈E(G) dv.

For i = 0, 1, 2, 3, let Ti
n be the tree obtained by attaching i paths with two vertices to the central

vertex of K1,n−2i−1, where n ≥ 2i + 1, see Fig. 3. In particular, T0
n = K1,n−1.

Lemma 4.6. (i) For n ≥ 6, we have 1 < μ2(T
2
n ) < 2.7, S2(T

2
n ) < e(T2

n ) + 2. (ii) For n ≥ 7, we have

1 < μ2(T
3
n ) < 2.7, S2(T

3
n ) < e(T3

n ) + 2.
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Proof. By Lemma 4.1, μ2(T
2
n ), μ2(T

3
n ) ≥ 2 > 1.

By direct calculation, we have

φ(T2
n , x) = x(x − 1)n−6f (x),

φ(T3
n , x) = x(x − 1)n−8g(x),

where

f (x) = x5 − (n + 4)x4 + (6n − 1)x3 − (11n − 14)x2 + (6n − 5)x − n,

g(x) = x7 − (n + 6)x6 + (9n + 3)x5 − (30n − 42)x4 + (45n − 87)x3

−(30n − 48)x2 + (9n − 8)x − n.

Let x1 ≥ x2 ≥ x3 ≥ x4 ≥ x5 be the roots of f (x) = 0, and y1 ≥ y2 ≥ y3 ≥ y4 ≥ y5 ≥ y6 ≥ y7 be the

roots of g(x) = 0. Obviously,
∑5

i=1 xi = n + 4 and
∑7

i=1 yi = n + 6.

By Lemma 4.1,μ1(T
2
n ) ≥ n−2,μ2(T

2
n ) ≥ 2, andμ1(T

3
n ) ≥ n−3,μ2(T

3
n ) ≥ 2. Thusμ1(T

2
n ) = x1,

μ2(T
2
n ) = x2, andμ1(T

3
n ) = y1,μ2(T

3
n ) = y2. It is easily checked that both f (x) and g(x) are increasing

for x ≤ 0.38, and thus f (x) ≤ f (0.38) < 0 and g(x) ≤ g(0.38) < 0, implying that x5 > 0.38 and

y7 > 0.38.
(i) Note that f (2.7) < 0. Thus x2 < 2.7 < x1, x4 < 2.7 < x3, or x5 > 2.7. If x5 > 2.7, then

n + 4 = x1 + x2 + x3 + x4 + x5

> (n − 2) + 2.7 + 2.7 + 2.7 + 2.7 = n + 8.8,

a contradiction. If x4 < 2.7 < x3, then

n + 4 = x1 + x2 + x3 + x4 + x5

> (n − 2) + 2.7 + 2.7 + 0.38 + 0.38 = n + 4.16,

a contradiction. Thus μ2(T
2
n ) = x2 < 2.7.

By direct calculation, S2(T
2
n ) < e(T2

n ) + 2 for 6 ≤ n ≤ 9. If n ≥ 10, then by Lemma 4.5, μ1(T
2
n ) ≤

n − 2 + 2
n−3

, and thus

S2(T
2
n ) = μ1(T

2
n ) + μ2(T

2
n )

<

(
n − 2 + 2

n − 3

)
+ 2.7

= n + 0.7 + 2

n − 3

≤ n + 0.7 + 2

10 − 3

< n + 1 = e(T2
n ) + 2.

(ii) Note that g(2.7) < 0. Thus y2 < 2.7 < y1, y4 < 2.7 < y3, y6 < 2.7 < y5, or y7 > 2.7. If
y7 > 2.7, then

n + 6 = y1 + y2 + y3 + y4 + y5 + y6 + y7

> (n − 3) + 2.7 + 2.7 + 2.7 + 2.7 + 2.7 + 2.7 = n + 13.2,
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a contradiction. If y6 < 2.7 < y5, then

n + 6 = y1 + y2 + y3 + y4 + y5 + y6 + y7

> (n − 3) + 2.7 + 2.7 + 2.7 + 2.7 + 0.38 + 0.38 = n + 8.56,

a contradiction. If y4 < 2.7 < y3 for n ≥ 18, then since g(2.5) > 0, we have y4 > 2.5, and thus

n + 6 = y1 + y2 + y3 + y4 + y5 + y6 + y7

> (n − 3) + 2.7 + 2.7 + 2.5 + 0.38 + 0.38 + 0.38 = n + 6.04,

a contradiction. By direct calculation, y2 < 2.7 < y1 for 7 ≤ n ≤ 17. Thus μ2(T
3
n ) = y2 < 2.7.

By Lemma 4.5, μ1(T
3
n ) ≤ n − 3 + 3

n−4
, and thus

S2(T
3
n ) = μ1(T

3
n ) + μ2(T

3
n )

<

(
n − 3 + 3

n − 4

)
+ 2.7

= n − 0.3 + 3

n − 4

≤ n − 0.3 + 3

7 − 4

< n + 1 = e(T3
n ) + 2.

The result follows. �

Lemma 4.7. Let G be a bicyclic graph with e1, e2, e3 ∈ E(G). Suppose that each bicyclic graph H with

|V(H)| < |V(G)| satisfies S3(H) ≤ e(H) + 6.

(i) If G − e1 consists of two nontrivial components, then S3(G) ≤ e(G) + 6.

(ii) If G − {e2, e3} consists of two components with at least three vertices, then S3(G) ≤ e(G) + 6.

Proof. (i) Let G1 and G2 be the two components of G−e1. Then G−e1=G1 ∪ G2. It is easily seen that ei-

ther one of them is a tree and the other one is a bicyclic graph, or both of themareunicyclic graphs. Note

that Conjecture1.1 is true for trees (see [7]) andunicyclic graphs (seeCorollary 4.1), and |V(Gi)|<|V(G)|
for i= 1, 2. We have S3(Gi)≤ e(Gi)+6 for i= 1, 2. If S3(G1 ∪ G2)= S3(G1), then by Lemma 2.2,

S3(G) ≤ S3(G1 ∪ G2) + 2

= S3(G1) + 2

≤ (e(G1) + 6) + 2

= e(G1) + 8 ≤ e(G) + 6.

If S3(G1 ∪ G2) = S3(G2), then as above, we have S3(G) ≤ e(G) + 6. Suppose that S3(G1 ∪ G2) 
=
S3(G1), S3(G2). Suppose without loss of generality that the first three largest Laplacian eigenvalues of

G1 ∪ G2 areμ1(G1),μ2(G1), andμ1(G2), i.e., S3(G1 ∪ G2) = S2(G1) + S1(G2). By Lemmas 2.2 and 2.4,

S3(G) ≤ S3(G1 ∪ G2) + 2

= S2(G1) + S1(G2) + 2

≤ (e(G1) + 3) + |V(G2)| + 2

≤ (e(G1) + 3) + (e(G2) + 1) + 2

= e(G) + 5.

Thus (i) follows.
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(ii) Let G3 and G4 be the two components of G − {e2, e3}. Then G − {e2, e3} = G3 ∪ G4. It is easily

seen that one of them is a tree and the other one is a unicyclic graph. Since Conjecture 1.1 is true for

trees and unicyclic graphs, we have S3(Gi) ≤ e(Gi) + 6 for i = 3, 4. If S3(G3 ∪ G4) = S3(G3), then by

Lemma 2.2,

S3(G) ≤ S3(G3 ∪ G4) + 2 · 2
= S3(G3) + 4

≤ (e(G3) + 6) + 4

= e(G3) + 10 ≤ e(G) + 6.

If S3(G3 ∪ G4) = S3(G4), then as above, we have S3(G) ≤ e(G) + 6. Suppose that S3(G3 ∪ G4) 
=
S3(G3), S3(G4). Suppose without loss of generality that the first three largest Laplacian eigenvalues of

G3 ∪ G4 areμ1(G3),μ2(G3), andμ1(G4), i.e., S3(G3 ∪ G4) = S2(G3) + S1(G4). By Lemmas 2.2 and 2.4,

S3(G) ≤ S3(G3 ∪ G4) + 2 · 2
= S2(G3) + S1(G4) + 4

≤ (e(G3) + 3) + |V(G4)| + 4

≤ (e(G3) + 3) + (e(G4) + 1) + 4

= e(G) + 6.

Then (ii) follows. �

Lemma 4.8. Let G be a bicyclic graph. Then S3(G) ≤ e(G) + 6.

Proof. Let n = |V(G)|. Recall that Conjecture 1.1 is true for all graphs with at most ten vertices (see

[7]). Thus the result holds for n ≤ 10. Suppose that the result is not true. Let G be a counterexample

with the minimum number of vertices, i.e., S3(G) > e(G) + 6 with n ≥ 11.

Case 1. There are two vertex-disjoint cycles in G. Note that each edge, say e1, lying on the unique path

joining the two cycles is a cut edge. Obviously, the two components of G− e1 are both unicyclic graphs

(which are nontrivial). By Lemma 4.7 (i), we have S3(G) ≤ e(G) + 6, a contradiction.

Case 2. There are two cycles in G with a common vertex. Let C(1) and C(2) be the two cycles of G with

a unique common vertex u.

If there is a non-pendent edge, say e2, outside the cycles in G, then G− e2 consists of two nontrivial

components, and thus by Lemma 4.7 (i), we have S3(G) ≤ e(G) + 6, a contradiction. Thus every edge

outside the cycles of G is a pendent edge.

Denote by u1 and u2 the twoneighbors of u in C(1). ThenG−{uu1, uu2} consists of two components,

one ofwhich containing u1, denoted byG1, is a tree, and the other one containing u is a unicyclic graph.

If e(G1) ≥ 2, then there are at least three vertices in each component of G − {uu1, uu2}, and thus by

Lemma 4.7 (ii), we have S3(G) ≤ e(G)+6, a contradiction. Thus e(G1) < 2. Note that e(G1) ≥ 1. Then

e(G1) = 1, i.e., C(1) is a triangle and the two vertices on C(1) different from u are both of degree two in

G. Similarly, C(2) is a triangle and the two vertices on C(2) different from u are both of degree two in G.

Thus G is the bicyclic graph obtained by identifying a vertex of two triangles, and attaching n − 5

pendent vertices to the common vertex. By direct calculation, μ1(G) = n and μ2(G) = μ3(G) = 3,

i.e., S3(G) = n + 6 = e(G) + 5, a contradiction.

Case 3. There are two cycles sharing common edge(s) in G. Note that there are three cycles in G. Let

C(1) and C(2) be the two cycles of G such that the remaining one has the maximum length. Let A be

the set of the common vertices of C(1) and C(2). Let v1 and v2 be the two vertices in A such that the

distance from v1 to v2 is as large as possible. If there is a non-pendent edge outside the cycles in G,

then by Lemma 4.7 (i), S3(G) ≤ e(G) + 6, a contradiction, and thus every edge outside the cycles of G

is a pendent edge.
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Denote by v3 and v4 the neighbor of v1 and v2 in C(1) different from the vertices in A, respectively.

Let G1 be the component of G − {v1v3, v2v4} containing v3. If e(G1) ≥ 2, then by Lemma 4.7 (ii),

S3(G) ≤ e(G) + 6, a contradiction. Thus e(G1) ≤ 1. Denote by v5 and v6 the neighbor of v1 and

v2 in C(2) different from the vertices in A, respectively. Let G2 be the component of G − {v1v5, v2v6}
containing v5. As above, we have e(G2) ≤ 1. If |A| ≥ 3, then denote by v7 and v8 the neighbor of v1
and v2 in A, respectively (v7 = v8 if |A| = 3), let G3 be the component of G − {v1v7, v2v8} containing
v7, and as above, we have e(G3) ≤ 1.

Let nj = |V(Gj)| for j = 1, 2 and n3 = |V(G3)| if |A| ≥ 3 and n3 = 0 if |A| = 2. Then n1 = 1, 2,

n2 = 1, 2, and n3 = 0, 1, 2. By the choice of C(1) and C(2), we have n3 ≤ min{n1, n2}. Suppose
without loss of generality that n1 ≤ n2 and dv1 ≥ dv2 . If dv1 ≤ 4, then n ≤ 10, a contradiction. Thus

dv1 ≥ 5. Let G′ = G − {v1v3, v1v5, v1v7} if |A| ≥ 3 and G′ = G − {v1v3, v1v5, v1v2} if |A| = 2. It is

easily seen that G′ consists of two components, one of which containing v1, denoted by G4, is a tree,

and the other one containing v3, denoted by G5, is also a tree. Let nj = |V(Gj)| for j = 4, 5. Obviously,

G4
∼= T0

n4
with n4 ≥ 3, implying that μ1(G4) = n4 ≥ 3, μ2(G4) = 1. For G5, we have

G5
∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T0
n5

if (n1, n2, n3) = (1, 1, 0), (1, 1, 1),

T1
n5

if (n1, n2, n3) = (1, 2, 0), (1, 2, 1),

T2
n5

if (n1, n2, n3) = (2, 2, 0), (2, 2, 1),

T3
n5

if (n1, n2, n3) = (2, 2, 2).

IfG5
∼= T0

n5
, then the first three largest Laplacian eigenvalues of G4 ∪G5 are n4, n5, 1, i.e., S3(G4 ∪G5) =

n + 1, and thus by Lemma 2.2,

S3(G) ≤ S3(G4 ∪ G5) + 2 · 3
= (n + 1) + 6 = e(G) + 6,

a contradiction. If G5
∼= T1

n5
, then G ∈ ∪4

i=1U
i
n, and thus by Lemma 4.4, S3(G) ≤ e(G) + 6, a con-

tradiction. If G5
∼= T2

n5
with n5 = 5, then (n1, n2, n3) = (2, 2, 0), implying that G ∼= U5

n , U
6
n , or U

7
n ,

and thus by Lemma 4.4, S3(G) ≤ e(G) + 6, a contradiction. Suppose that G5
∼= T2

n5
with n5 ≥ 6,

or G5
∼= T3

n5
with n5 ≥ 7. By Lemma 4.6, we have 1 < μ2(G5) < 2.7 < 3 ≤ μ1(G4), implying

that the first three largest Laplacian eigenvalues of G4 ∪ G5 are μ1(G4) = n4, μ1(G5), μ2(G5), i.e.,
S3(G4 ∪ G5) = n4 + S2(G5). By Lemma 4.6, S2(G5) < e(G5) + 2. Now it follows from Lemma 2.2 that

S3(G) ≤ S3(G4 ∪ G5) + 2 · 3
= (n4 + S2(G5)) + 6

< (n4 + e(G5) + 2) + 6 = e(G) + 6,

a contradiction.

Combining Cases 1–3, there is no counterexample, and thus the result follows. �

By Lemmas 2.4 and 4.8, Proposition 3.5, we have

Corollary 4.2. Conjecture 1.1 is true for bicyclic graphs.
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