Linear Algebra and its Applications 436 (2012) 3672–3683
Contents lists available at SciVerse ScienceDirect
Linear Algebra and its Applications
journal homepage: www.elsevier.com/locate/laa

Upper bounds for the sum of Laplacian eigenvalues of graphs Zhibin Du^a, Bo Zhou^{b,*}

^a Department of Mathematics, Tongji University, Shanghai 200092, PR China

^b Department of Mathematics, South China Normal University, Guangzhou 510631, PR China

ARTICLEINFO

Article history: Received 16 December 2010 Accepted 7 January 2012 Available online 7 February 2012

Submitted by S. Fallat

AMS classification: 05C50 15A42

Keywords: Laplacian eigenvalues Trees Unicyclic graphs Bicyclic graphs

ABSTRACT

Let *G* be a graph with *n* vertices and e(G) edges, and let $\mu_1(G) \ge \mu_2(G) \ge \cdots \ge \mu_n(G) = 0$ be the Laplacian eigenvalues of *G*. Let $S_k(G) = \sum_{i=1}^k \mu_i(G)$, where $1 \le k \le n$. Brouwer conjectured that $S_k(G) \le e(G) + \binom{k+1}{2}$ for $1 \le k \le n$. It has been shown in Haemers et al. [7] that the conjecture is true for trees. We give upper bounds for $S_k(G)$, and in particular, we show that the conjecture is true for unicyclic and bicyclic graphs.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let *G* be a simple graph with vertex set *V*(*G*) and edge set *E*(*G*). The Laplacian matrix of *G* is defined as $\mathbf{L}(G) = \mathbf{D}(G) - \mathbf{A}(G)$, where $\mathbf{D}(G)$ is the diagonal matrix of vertex degrees of the graph *G*, and $\mathbf{A}(G)$ is the adjacency matrix of *G*. Let $\mu_1(G) \ge \mu_2(G) \ge \cdots \ge \mu_n(G) = 0$ be the Laplacian eigenvalues of *G*, i.e., the eigenvalues of $\mathbf{L}(G)$, where n = |V(G)|. Let $S_k(G) = \sum_{i=1}^k \mu_i(G)$, where $1 \le k \le n$.

Let d_v be the degree of v in G. Let $d_i^*(G) = |\{v \in V(G) : d_v \ge i\}|$ for i = 1, 2, ..., n. Obviously $d_1^*(G) \ge d_2^*(G) \ge \cdots \ge d_n^*(G)$. If G is a graph with n vertices, then the Grone–Merris conjecture states that [6]

$$S_k(G) \le \sum_{i=1}^k d_i^*(G)$$

for $1 \le k \le n$. Very recently, it was proven by Bai [1].

* Corresponding author. E-mail address: zhoubo@scnu.edu.cn (B. Zhou).

^{0024-3795/\$ -} see front matter © 2012 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2012.01.007

Let e(G) = |E(G)| for the graph *G*. As a variation of the Grone–Merris conjecture, Brouwer proposed the following conjecture, see [3,7].

Conjecture 1.1. Let G be a graph with n vertices. Then

$$S_k(G) \le e(G) + \binom{k+1}{2}$$

for $1 \leq k \leq n$.

Brouwer verified Conjecture 1.1 by computer for all graphs with at most 10 vertices, see [7]. For k = n - 1 or n, Conjecture 1.1 follows trivially because $S_k(G) = 2e(G)$. For k = 1, Conjecture 1.1 follows from the well-known inequality $\mu_1(G) \le n$, see [5]. Haemers et al. [7] showed that Conjecture 1.1 is true for all graphs when k = 2 and is true for trees. See [3] for progress of Conjecture 1.1.

Recall that an *n*-vertex connected graph *G* is unicyclic (bicyclic, respectively) if e(G) = n(e(G) = n + 1, respectively).

In this paper, we give various upper bounds for $S_k(G)$, and in particular, we show that Conjecture 1.1 is true for unicyclic and bicyclic graphs.

2. Preliminaries

Let $\lambda_1(\mathbf{A}) \geq \lambda_2(\mathbf{A}) \geq \cdots \geq \lambda_n(\mathbf{A})$ be the eigenvalues of the $n \times n$ symmetric matrix \mathbf{A} .

Lemma 2.1 [4]. Let **A** and **B** be two real $n \times n$ symmetric matrices. Then

$$\sum_{i=1}^{k} \lambda_i(\mathbf{A} + \mathbf{B}) \le \sum_{i=1}^{k} \lambda_i(\mathbf{A}) + \sum_{i=1}^{k} \lambda_i(\mathbf{B})$$

for $1 \leq k \leq n$.

For a graph *G* with $E' \subseteq E(G)$, let G - E' be the graph obtained from *G* by deleting the edges in E'. If $E' = \{e\}$, then we write G - e for $G - \{e\}$.

Let $G \cup H$ be the vertex-disjoint union of the graphs G and H. For integer $k \ge 1$, let kG be the vertex-disjoint union of k copies of the graph G.

Let K_n be the complete graph with *n* vertices. Let $K_{1,s}$ be the star on s + 1 vertices, in particular, $K_{1,0} = K_1$.

Lemma 2.2. Let *H* be a subgraph of graph *G*, and $|V(H)| = n_1 \ge 2$. Then

$$S_k(G) \le S_k(H) + 2(e(G) - e(H))$$

for $1 \leq k \leq n_1$.

Proof. If G = H, then the result is obvious. Suppose in the following that H is a proper subgraph of G. Let $1 \le k \le n_1$ and $E(G) \setminus E(H) = \{e_1, e_2, \dots, e_r\}$, where r = e(G) - e(H). Let |V(G)| = n. By Lemma 2.1,

$$S_k(G) \le S_k(G - e_1) + S_k(K_2 \cup (n - 2)K_1)$$

= $S_k(G - e_1) + 2$
 $\le S_k(G - e_1 - e_2) + 2 + 2$
 $\le \cdots$
 $\le S_k(G - e_1 - e_2 - \cdots - e_r) + 2r$
= $S_k(H \cup (n - n_1)K_1) + 2(e(G) - e(H))$
= $S_k(H) + 2(e(G) - e(H)),$

as desired. \Box

Obviously, the upper bound for $S_k(G)$ given in Lemma 2.2 is better than the trivial upper bound 2e(G) if and only if $S_k(H) < 2e(H)$ (which implies that $k \le n_1 - 2$).

Lemma 2.3 [7]. Let G be a tree with n vertices. Then $S_k(G) \le e(G) + 2k - 1$ for $1 \le k \le n$.

Lemma 2.4 [7]. Let *G* be a graph with $n \ge 2$ vertices. Then $S_2(G) \le e(G) + 3$.

3. Upper bounds for $S_k(G)$

In this section, we give various upper bounds for $S_k(G)$.

Recall that the clique number of a graph G is the number of vertices of a maximum complete subgraph of G.

Proposition 3.1. Let G be a graph with clique number $\omega \geq 3$. Then

$$S_k(G) \le 2e(G) + \omega(k - \omega + 1)$$

for $1 \leq k \leq \omega - 2$.

Proof. Obviously, K_{ω} is a subgraph of *G*. Note that the Laplacian eigenvalues of K_{ω} are ω with multiplicity $\omega - 1$, and 0. If $1 \le k \le \omega - 2$, then $S_k(G) = k\omega$, and thus by Lemma 2.2,

$$S_k(G) \le S_k(K_{\omega}) + 2\left(e(G) - \binom{\omega}{2}\right)$$
$$= k\omega + 2\left(e(G) - \binom{\omega}{2}\right)$$
$$= 2e(G) + \omega(k - \omega + 1),$$

as desired. \Box

Proposition 3.2. Let G be a graph with maximum degree $\Delta \geq 2$. Then

$$S_k(G) \leq 2e(G) - \Delta + k$$

for $1 \leq k \leq \Delta - 1$.

Proof. Obviously, $K_{1,\Delta}$ is a subgraph of *G*. Note that the Laplacian eigenvalues of $K_{1,\Delta}$ are $\Delta + 1$, 1 with multiplicity $\Delta - 1$, and 0. If $1 \le k \le \Delta - 1$, then $S_k(G) = \Delta + k$, and thus by Lemma 2.2,

$$S_k(G) \le S_k(K_{1,\Delta}) + 2(e(G) - \Delta)$$
$$= (\Delta + k) + 2(e(G) - \Delta)$$
$$= 2e(G) - \Delta + k,$$

as desired.

A matching M of the graph G is a subset of E(G) such that no two edges in M share a common vertex. The matching number of G is the maximum number of edges of a matching in G.

Proposition 3.3. Let G be a graph with matching number $m \ge 2$. Then

$$S_k(G) \le 2e(G) - 2m + 2k$$

for $1 \le k \le m - 1$.

Proof. Obviously, mK_2 is a subgraph of *G*. Note that the Laplacian eigenvalues of mK_2 are 2 with multiplicity *m*, and 0 with multiplicity *m*. If $1 \le k \le m - 1$, then $S_k(G) = 2k$, and thus by Lemma 2.2,

$$S_k(G) \le S_k(mK_2) + 2(e(G) - m)$$

= $2k + 2(e(G) - m)$
= $2e(G) - 2m + 2k$,

as desired. \Box

Proposition 3.4. Let G be a graph with n vertices and without isolated vertices. Then

$$S_k(G) \le 2e(G) - n + 2k$$

for $1 \leq k \leq n$.

Proof. Suppose first that *G* is connected. Let *T* be a spanning tree of *G*. By Lemmas 2.2 and 2.3,

$$S_k(G) \le S_k(T) + 2(e(G) - e(T))$$

$$\le (e(T) + 2k - 1) + 2(e(G) - n + 1)$$

$$= 2e(G) - n + 2k.$$

Now suppose that *G* is not connected. Let G_1, G_2, \ldots, G_t be all the components of *G*. Suppose that k_i of the first *k* largest Laplacian eigenvalues of *G* are Laplacian eigenvalues of G_i , where $0 \le k_i \le k$, $1 \le i \le t$, and $\sum_{i=1}^{t} k_i = k$. Suppose without loss of generality that $k_1, k_2, \ldots, k_r > 0 = k_{r+1} = \cdots = k_t$, where $1 \le r \le t$. Then $S_k(G) = \sum_{i=1}^r S_{k_i}(G_i)$. Let $H = \bigcup_{i=1}^r G_i$. Obviously, $S_k(G) = S_k(H)$. Let $n_i = |V(G_i)|$ for $i = 1, 2, \ldots, t$. By the proof above, we have $S_{k_i}(G_i) \le 2e(G_i) - n_i + 2k_i$ for $1 \le i \le r$. Then

$$S_k(G) = S_k(H) = \sum_{i=1}^r S_{k_i}(G_i)$$

$$\leq \sum_{i=1}^r 2e(G_i) - \sum_{i=1}^r n_i + \sum_{i=1}^r 2k_i$$

$$= 2e(H) - |V(H)| + 2k.$$

Note that $e(G_i) \ge 1$ for $r + 1 \le i \le t$ since *G* contains no isolated vertices. For $r + 1 \le i \le t$, $e(G_i) - n_i \ge -1$, and thus $2e(G_i) - n_i \ge 0$, implying that $2e(G) - n \ge 2e(H) - |V(H)|$. Then the result follows. \Box

The upper bound for $S_k(G)$ given in Proposition 3.4 is better than the trivial upper bound 2e(G) if and only if $1 \le k \le \lfloor \frac{n-1}{2} \rfloor$.

If $G = \frac{n}{2}K_2$ for even *n*, then equality in Proposition 3.4 holds for $1 \le k \le \frac{n}{2}$. For a connected graph on *n* vertices with $1 \le k \le n - 2$, it was shown in [9] that

$$S_k(G) \le \frac{2e(G)k + \sqrt{e(G)k(n-k-1)(n^2 - n - 2e(G))}}{n-1}$$

with equality if and only if $G \cong K_{1,n-1}$ or K_n when k = 1, and $G \cong K_n$ when $2 \le k \le n-2$.

If $G = K_{1,n-1}$, then the bound in Proposition 3.4 is better than the one mentioned above in [9] for $2 \le k \le n-3$, and if $G = K_n$, then the bound mentioned above in [9] is better than the one in Proposition 3.4 for $1 \le k \le n-2$. Thus these two bounds are incomparable in general.

For a graph *G* with *n* vertices, let \overline{G} be the complement of *G*. Note that $L(G) + L(\overline{G}) = L(K_n)$. By Lemma 2.1,

$$S_k(G) + S_k(\overline{G}) \ge kn$$

for $1 \le k \le n - 1$, and

$$S_k(G) + S_k(G) \ge n(n-1)$$

for k = n. If both *G* and \overline{G} have no isolated vertices, then since $e(G) + e(\overline{G}) = \frac{n(n-1)}{2}$, we have by Proposition 3.4 that

$$S_k(G) + S_k(\overline{G}) \le n^2 - 3n + 4k$$

for $1 \leq k \leq n$.

Proposition 3.5. Let G be a graph with n vertices, of which n_1 are not isolated vertices. Then

$$S_k(G) \le e(G) + \binom{k+1}{2}$$

for $1 \le k \le n$ if $9 - 8(n_1 - e(G)) < 0$, and for $\left\lceil \frac{3 + \sqrt{9 - 8(n_1 - e(G))}}{2} \right\rceil \le k \le n$ if $9 - 8(n_1 - e(G)) \ge 0$.

Proof. If $n_1 = 0$, then *G* is an empty graph, and thus the result is obvious. Obviously, $n_1 \neq 1$. Suppose that $n_1 \ge 2$. Let *H* be the graph obtained from *G* by deleting all isolated vertices. Obviously, $S_k(G) = S_k(H)$ for $1 \le k \le n_1$, and $S_k(G) = S_{n_1}(H)$ for $n_1 + 1 \le k \le n$.

 $S_k(G) = S_k(H)$ for $1 \le k \le n_1$, and $S_k(G) = S_{n_1}(H)$ for $n_1 + 1 \le k \le n$. For $1 \le k \le n_1$ if $9 - 8(n_1 - e(H)) < 0$, and for $\left\lceil \frac{3 + \sqrt{9 - 8(n_1 - e(H))}}{2} \right\rceil \le k \le n_1$ if $9 - 8(n_1 - e(H)) \ge 0$, we have

$$2e(H) - n_1 + 2k \le e(H) + {\binom{k+1}{2}},$$

and thus by Proposition 3.4,

$$S_k(G) = S_k(H) \le 2e(H) - n_1 + 2k \le e(H) + \binom{k+1}{2} = e(G) + \binom{k+1}{2}.$$

For $n_1 + 1 \le k \le n$, since $S_{n_1}(H) = 2e(H) < e(H) + \binom{n_1+1}{2}$, we have

$$S_k(G) = S_{n_1}(H) < e(H) + {n_1 + 1 \choose 2} < e(G) + {k + 1 \choose 2}$$

The result follows. \Box

4. Conjecture 1.1 for unicyclic and bicyclic graphs

If *G* is an *n*-vertex unicyclic graph, then e(G) = n, and thus $\left\lceil \frac{3+\sqrt{9-8(n-e(G))}}{2} \right\rceil = 3$. By Proposition 3.5, we have Conjecture 1.1 is true for *n*-vertex unicyclic graphs when $3 \le k \le n$. Recall that Conjecture 1.1 is true for k = 2, see [7]. Thus we have

3676

Fig. 1. The graphs $U_n^1(a, b)$ and $U_n^2(a, b)$.

Corollary 4.1. Conjecture 1.1 is true for unicyclic graphs.

In the rest of this paper, we show that Conjecture 1.1 is true for bicyclic graphs. If G is an n-vertex bicyclic graph, then e(G) = n + 1, and thus $\left[\frac{3+\sqrt{9-8(n-e(G))}}{2}\right]$ = 4. By Proposition 3.5, we have Conjecture 1.1 is true for *n*-vertex bicyclic graphs when $4 \le k \le n$. By the fact that Conjecture 1.1 is true for k = 2 (see [7]), to show Conjecture 1.1 is true for *n*-vertex bicyclic graphs, we need only to show that it is true for bicyclic graphs when k = 3.

We need some lemmas.

Lemma 4.1 [2]. Let G be a graph on n vertices with degree sequence $\delta_1 \geq \delta_2 \geq \cdots \geq \delta_n$. If $G \cong$ $K_s \cup (n-s)K_1$, then $\mu_s(G) \ge \delta_s - s + 2$ for $1 \le s \le n$.

Let $\phi(G, x)$ be the characteristic polynomial of L(G).

A pendent vertex is a vertex of degree one. A pendent edge is an edge incident to a pendent vertex. Let $U_n^1(a, b)$ be the graph obtained by attaching a and b pendent vertices to two vertices of a triangle, respectively, where a + b = n - 3, $n \ge 4$, $a \ge b \ge 0$. Let $U_n^2(a, b)$ be the graph obtained by attaching a and b pendent vertices to two non-adjacent vertices of a quadrangle, respectively, where a + b = n - 4, $n \ge 5$, $a \ge b \ge 0$. The graphs $U_n^1(a, b)$ and $U_n^2(a, b)$ are presented in Fig. 1.

Lemma 4.2. For $n \ge 9$, $a \ge b \ge 0$, $\mu_3(U_n^1(a, b)) < 2$ and $\mu_3(U_n^2(a, b)) = 2$.

Proof. By direct calculation, we have

$$\phi(U_n^1(a, b), x) = x(x - 1)^{n-5} f(x),$$

$$\phi(U_n^2(a,b),x) = x(x-2)(x-1)^{n-6}g(x),$$

where

$$f(x) = x^4 - (n+5)x^3 + (5n+ab+7)x^2 - (7n+2ab+3)x + 3n,$$

$$g(x) = x^4 - (n+4)x^3 + (5n+ab+1)x^2 - (6n+2ab-2)x + 2n.$$

Let $x_1 \ge x_2 \ge x_3 \ge x_4$ be the roots of f(x) = 0, and $y_1 \ge y_2 \ge y_3 \ge y_4$ be the roots of g(x) = 0. By Lemma 4.1, we have $\mu_2(U_n^1(a, b)) \ge 2 > 1$, and thus $\mu_2(U_n^1(a, b)) = x_2$, and $\mu_3(U_n^1(a, b)) = x_3$ or 1. Note that f(2) = n - 2 > 0 and $f(1) = -ab \le 0$. Then $x_3 < 2$, and thus $\mu_3(U_n^1(a, b)) < 2$.

By Lemma 4.1, we have $\mu_1(U_n^2(a, b)) \ge 3$, and thus $\mu_1(U_n^2(a, b)) = y_1, \mu_2(U_n^2(a, b)) = y_2$ or 2. Note that g(2) = 2n - 8 > 0 and $g(1) = -ab \le 0$. Then $y_3 < 2 < y_2$, and thus $\mu_2(U_n^2(a, b)) = y_2$ and $\mu_3(U_n^2(a, b)) = 2.$

Lemma 4.3. Let G be a graph with $n \ge 11$ vertices. Suppose that there are two edges $e_1, e_2 \in E(G)$ such that $G - \{e_1, e_2\} = H \cup K_2$, where $H = U_n^i(a, b)$ for some integers a, b with $a + b = n - 2 - i, a \ge b \ge 0$ and i = 1, 2. Then $S_3(G) \le e(G) + 6$.

Proof. By Lemma 4.2, the first three largest Laplacian eigenvalues of $H \cup K_2$ are $\mu_1(H)$, $\mu_2(H)$ and 2, i.e., $S_3(H \cup K_2) = S_2(H) + 2$. By Lemmas 2.2 and 2.4,

Fig. 2. The structures of graphs in \mathbb{U}_n^1 , \mathbb{U}_n^2 , \mathbb{U}_n^3 , and \mathbb{U}_n^4 , and graphs U_n^5 , U_n^6 , and U_n^7 .

Fig. 3. The tree T_n^i with i = 0, 1, 2, 3.

$$S_3(G) \le S_3(H \cup K_2) + 2 \cdot 2$$

= $S_2(H) + 6$
 $\le (e(H) + 3) + 6$
= $e(G) + 6$,

as desired. \Box

For $n \ge 11$, we define four classes of *n*-vertex bicyclic graphs, denoted by \mathbb{U}_n^1 , \mathbb{U}_n^2 , \mathbb{U}_n^3 , and \mathbb{U}_n^4 , for which the structures of graphs in them are given in Fig. 2. We also need three *n*-vertex bicyclic graphs, denoted by U_n^5 , U_n^6 , and U_n^7 for $n \ge 11$, see also Fig. 2.

Lemma 4.4. Let $G \in \bigcup_{i=1}^{4} \bigcup_{n=1}^{i} \bigcup_{n=1}^{i} with i = 5, 6, 7$, where $n \ge 11$. Then $S_3(G) \le e(G) + 6$.

Proof. For each graph *G*, let e_1 , e_2 be the edges as labeled in Fig. 2. Then the result follows from Lemma 4.3. \Box

Lemma 4.5[8]. Let G be a graph. Then $\mu_1(G) \leq \max\{d_u + m_u : u \in V(G)\}$, where $m_u = \frac{1}{d_u} \sum_{uv \in E(G)} d_v$.

For i = 0, 1, 2, 3, let T_n^i be the tree obtained by attaching *i* paths with two vertices to the central vertex of $K_{1,n-2i-1}$, where $n \ge 2i + 1$, see Fig. 3. In particular, $T_n^0 = K_{1,n-1}$.

Lemma 4.6. (i) For $n \ge 6$, we have $1 < \mu_2(T_n^2) < 2.7$, $S_2(T_n^2) < e(T_n^2) + 2$. (ii) For $n \ge 7$, we have $1 < \mu_2(T_n^3) < 2.7$, $S_2(T_n^3) < e(T_n^3) + 2$.

Proof. By Lemma 4.1, $\mu_2(T_n^2)$, $\mu_2(T_n^3) \ge 2 > 1$. By direct calculation, we have

$$\phi(T_n^2, x) = x(x-1)^{n-6} f(x),$$

$$\phi(T_n^3, x) = x(x-1)^{n-8} g(x),$$

where

$$f(x) = x^{5} - (n+4)x^{4} + (6n-1)x^{3} - (11n-14)x^{2} + (6n-5)x - n,$$

$$g(x) = x^{7} - (n+6)x^{6} + (9n+3)x^{5} - (30n-42)x^{4} + (45n-87)x^{3}$$
$$-(30n-48)x^{2} + (9n-8)x - n.$$

Let $x_1 \ge x_2 \ge x_3 \ge x_4 \ge x_5$ be the roots of f(x) = 0, and $y_1 \ge y_2 \ge y_3 \ge y_4 \ge y_5 \ge y_6 \ge y_7$ be the roots of g(x) = 0. Obviously, $\sum_{i=1}^5 x_i = n + 4$ and $\sum_{i=1}^7 y_i = n + 6$. By Lemma 4.1, $\mu_1(T_n^2) \ge n - 2$, $\mu_2(T_n^2) \ge 2$, and $\mu_1(T_n^3) \ge n - 3$, $\mu_2(T_n^3) \ge 2$. Thus $\mu_1(T_n^2) = x_1$, $\mu_2(T_n^2) = x_2$, and $\mu_1(T_n^3) = y_1$, $\mu_2(T_n^3) = y_2$. It is easily checked that both f(x) and g(x) are increasing for $x \le 0.38$, and thus $f(x) \le f(0.38) < 0$ and $g(x) \le g(0.38) < 0$, implying that $x_5 > 0.38$ and $v_7 > 0.38$.

(i) Note that f(2.7) < 0. Thus $x_2 < 2.7 < x_1, x_4 < 2.7 < x_3$, or $x_5 > 2.7$. If $x_5 > 2.7$, then

$$n + 4 = x_1 + x_2 + x_3 + x_4 + x_5$$

> (n - 2) + 2.7 + 2.7 + 2.7 + 2.7 = n + 8.8

a contradiction. If $x_4 < 2.7 < x_3$, then

$$n + 4 = x_1 + x_2 + x_3 + x_4 + x_5$$

> $(n - 2) + 2.7 + 2.7 + 0.38 + 0.38 = n + 4.16,$

a contradiction. Thus $\mu_2(T_n^2) = x_2 < 2.7$. By direct calculation, $S_2(T_n^2) < e(T_n^2) + 2$ for $6 \le n \le 9$. If $n \ge 10$, then by Lemma 4.5, $\mu_1(T_n^2) \le 10^{-3}$. $n-2+\frac{2}{n-3}$, and thus

$$S_2(T_n^2) = \mu_1(T_n^2) + \mu_2(T_n^2)$$

$$< \left(n - 2 + \frac{2}{n - 3}\right) + 2.7$$

$$= n + 0.7 + \frac{2}{n - 3}$$

$$\le n + 0.7 + \frac{2}{10 - 3}$$

$$< n + 1 = e(T_n^2) + 2.$$

(ii) Note that g(2.7) < 0. Thus $y_2 < 2.7 < y_1$, $y_4 < 2.7 < y_3$, $y_6 < 2.7 < y_5$, or $y_7 > 2.7$. If $y_7 > 2.7$, then

$$n + 6 = y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7$$

> (n - 3) + 2.7 + 2.7 + 2.7 + 2.7 + 2.7 + 2.7 = n + 13.2,

a contradiction. If $y_6 < 2.7 < y_5$, then

$$n+6 = y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7$$

> (n-3) + 2.7 + 2.7 + 2.7 + 2.7 + 0.38 + 0.38 = n + 8.56,

a contradiction. If $y_4 < 2.7 < y_3$ for $n \ge 18$, then since g(2.5) > 0, we have $y_4 > 2.5$, and thus

$$n + 6 = y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7$$

> (n - 3) + 2.7 + 2.7 + 2.5 + 0.38 + 0.38 + 0.38 = n + 6.04,

a contradiction. By direct calculation, $y_2 < 2.7 < y_1$ for $7 \le n \le 17$. Thus $\mu_2(T_n^3) = y_2 < 2.7$. By Lemma 4.5, $\mu_1(T_n^3) \le n - 3 + \frac{3}{n-4}$, and thus

$$S_{2}(T_{n}^{3}) = \mu_{1}(T_{n}^{3}) + \mu_{2}(T_{n}^{3})$$

$$< \left(n - 3 + \frac{3}{n - 4}\right) + 2.7$$

$$= n - 0.3 + \frac{3}{n - 4}$$

$$\leq n - 0.3 + \frac{3}{7 - 4}$$

$$< n + 1 = e(T_{n}^{3}) + 2.$$

The result follows. \Box

Lemma 4.7. Let *G* be a bicyclic graph with $e_1, e_2, e_3 \in E(G)$. Suppose that each bicyclic graph *H* with |V(H)| < |V(G)| satisfies $S_3(H) \le e(H) + 6$.

(i) If $G - e_1$ consists of two nontrivial components, then $S_3(G) \le e(G) + 6$. (ii) If $G - \{e_2, e_3\}$ consists of two components with at least three vertices, then $S_3(G) \le e(G) + 6$.

Proof. (i) Let G_1 and G_2 be the two components of $G-e_1$. Then $G-e_1=G_1 \cup G_2$. It is easily seen that either one of them is a tree and the other one is a bicyclic graph, or both of them are unicyclic graphs. Note that Conjecture 1.1 is true for trees (see [7]) and unicyclic graphs (see Corollary 4.1), and $|V(G_i)| < |V(G)|$ for i = 1, 2. We have $S_3(G_i) \le e(G_i) + 6$ for i = 1, 2. If $S_3(G_1 \cup G_2) = S_3(G_1)$, then by Lemma 2.2,

$$S_3(G) \le S_3(G_1 \cup G_2) + 2$$

= $S_3(G_1) + 2$
 $\le (e(G_1) + 6) + 2$
= $e(G_1) + 8 \le e(G) + 6.$

If $S_3(G_1 \cup G_2) = S_3(G_2)$, then as above, we have $S_3(G) \le e(G) + 6$. Suppose that $S_3(G_1 \cup G_2) \ne S_3(G_1)$, $S_3(G_2)$. Suppose without loss of generality that the first three largest Laplacian eigenvalues of $G_1 \cup G_2$ are $\mu_1(G_1)$, $\mu_2(G_1)$, and $\mu_1(G_2)$, i.e., $S_3(G_1 \cup G_2) = S_2(G_1) + S_1(G_2)$. By Lemmas 2.2 and 2.4,

$$S_3(G) \le S_3(G_1 \cup G_2) + 2$$

= $S_2(G_1) + S_1(G_2) + 2$
 $\le (e(G_1) + 3) + |V(G_2)| + 2$
 $\le (e(G_1) + 3) + (e(G_2) + 1) + 2$
= $e(G) + 5$.

Thus (i) follows.

3680

(ii) Let G_3 and G_4 be the two components of $G - \{e_2, e_3\}$. Then $G - \{e_2, e_3\} = G_3 \cup G_4$. It is easily seen that one of them is a tree and the other one is a unicyclic graph. Since Conjecture 1.1 is true for trees and unicyclic graphs, we have $S_3(G_i) \le e(G_i) + 6$ for i = 3, 4. If $S_3(G_3 \cup G_4) = S_3(G_3)$, then by Lemma 2.2,

$$S_3(G) \le S_3(G_3 \cup G_4) + 2 \cdot 2$$

= $S_3(G_3) + 4$
 $\le (e(G_3) + 6) + 4$
= $e(G_3) + 10 \le e(G) + 6$.

If $S_3(G_3 \cup G_4) = S_3(G_4)$, then as above, we have $S_3(G) \le e(G) + 6$. Suppose that $S_3(G_3 \cup G_4) \ne S_3(G_3)$, $S_3(G_4)$. Suppose without loss of generality that the first three largest Laplacian eigenvalues of $G_3 \cup G_4$ are $\mu_1(G_3)$, $\mu_2(G_3)$, and $\mu_1(G_4)$, i.e., $S_3(G_3 \cup G_4) = S_2(G_3) + S_1(G_4)$. By Lemmas 2.2 and 2.4,

$$S_{3}(G) \leq S_{3}(G_{3} \cup G_{4}) + 2 \cdot 2$$

= $S_{2}(G_{3}) + S_{1}(G_{4}) + 4$
 $\leq (e(G_{3}) + 3) + |V(G_{4})| + 4$
 $\leq (e(G_{3}) + 3) + (e(G_{4}) + 1) + 4$
= $e(G) + 6$.

Then (ii) follows. \Box

Lemma 4.8. Let G be a bicyclic graph. Then $S_3(G) \le e(G) + 6$.

Proof. Let n = |V(G)|. Recall that Conjecture 1.1 is true for all graphs with at most ten vertices (see [7]). Thus the result holds for $n \le 10$. Suppose that the result is not true. Let *G* be a counterexample with the minimum number of vertices, i.e., $S_3(G) > e(G) + 6$ with $n \ge 11$.

Case 1. There are two vertex-disjoint cycles in *G*. Note that each edge, say e_1 , lying on the unique path joining the two cycles is a cut edge. Obviously, the two components of $G - e_1$ are both unicyclic graphs (which are nontrivial). By Lemma 4.7 (i), we have $S_3(G) \le e(G) + 6$, a contradiction.

Case 2. There are two cycles in *G* with a common vertex. Let $C^{(1)}$ and $C^{(2)}$ be the two cycles of *G* with a unique common vertex *u*.

If there is a non-pendent edge, say e_2 , outside the cycles in G, then $G - e_2$ consists of two nontrivial components, and thus by Lemma 4.7 (i), we have $S_3(G) \le e(G) + 6$, a contradiction. Thus every edge outside the cycles of G is a pendent edge.

Denote by u_1 and u_2 the two neighbors of u in $C^{(1)}$. Then $G - \{uu_1, uu_2\}$ consists of two components, one of which containing u_1 , denoted by G_1 , is a tree, and the other one containing u is a unicyclic graph. If $e(G_1) \ge 2$, then there are at least three vertices in each component of $G - \{uu_1, uu_2\}$, and thus by Lemma 4.7 (ii), we have $S_3(G) \le e(G) + 6$, a contradiction. Thus $e(G_1) < 2$. Note that $e(G_1) \ge 1$. Then $e(G_1) = 1$, i.e., $C^{(1)}$ is a triangle and the two vertices on $C^{(1)}$ different from u are both of degree two in G. Similarly, $C^{(2)}$ is a triangle and the two vertices on $C^{(2)}$ different from u are both of degree two in G.

Thus *G* is the bicyclic graph obtained by identifying a vertex of two triangles, and attaching n - 5 pendent vertices to the common vertex. By direct calculation, $\mu_1(G) = n$ and $\mu_2(G) = \mu_3(G) = 3$, i.e., $S_3(G) = n + 6 = e(G) + 5$, a contradiction.

Case 3. There are two cycles sharing common edge(s) in *G*. Note that there are three cycles in *G*. Let $C^{(1)}$ and $C^{(2)}$ be the two cycles of *G* such that the remaining one has the maximum length. Let *A* be the set of the common vertices of $C^{(1)}$ and $C^{(2)}$. Let v_1 and v_2 be the two vertices in *A* such that the distance from v_1 to v_2 is as large as possible. If there is a non-pendent edge outside the cycles of *G*, then by Lemma 4.7 (i), $S_3(G) \le e(G) + 6$, a contradiction, and thus every edge outside the cycles of *G* is a pendent edge.

Denote by v_3 and v_4 the neighbor of v_1 and v_2 in $C^{(1)}$ different from the vertices in A, respectively. Let G_1 be the component of $G - \{v_1v_3, v_2v_4\}$ containing v_3 . If $e(G_1) \ge 2$, then by Lemma 4.7 (ii), $S_3(G) \le e(G) + 6$, a contradiction. Thus $e(G_1) \le 1$. Denote by v_5 and v_6 the neighbor of v_1 and v_2 in $C^{(2)}$ different from the vertices in A, respectively. Let G_2 be the component of $G - \{v_1v_5, v_2v_6\}$ containing v_5 . As above, we have $e(G_2) \le 1$. If $|A| \ge 3$, then denote by v_7 and v_8 the neighbor of v_1 and v_2 in A, respectively ($v_7 = v_8$ if |A| = 3), let G_3 be the component of $G - \{v_1v_7, v_2v_8\}$ containing v_7 , and as above, we have $e(G_3) \le 1$.

Let $n_j = |V(G_j)|$ for j = 1, 2 and $n_3 = |V(G_3)|$ if $|A| \ge 3$ and $n_3 = 0$ if |A| = 2. Then $n_1 = 1, 2$, $n_2 = 1, 2$, and $n_3 = 0, 1, 2$. By the choice of $C^{(1)}$ and $C^{(2)}$, we have $n_3 \le \min\{n_1, n_2\}$. Suppose without loss of generality that $n_1 \le n_2$ and $d_{v_1} \ge d_{v_2}$. If $d_{v_1} \le 4$, then $n \le 10$, a contradiction. Thus $d_{v_1} \ge 5$. Let $G' = G - \{v_1v_3, v_1v_5, v_1v_7\}$ if $|A| \ge 3$ and $G' = G - \{v_1v_3, v_1v_5, v_1v_2\}$ if |A| = 2. It is easily seen that G' consists of two components, one of which containing v_1 , denoted by G_4 , is a tree, and the other one containing v_3 , denoted by G_5 , is also a tree. Let $n_j = |V(G_j)|$ for j = 4, 5. Obviously, $G_4 \cong T_{n_4}^0$ with $n_4 \ge 3$, implying that $\mu_1(G_4) = n_4 \ge 3, \mu_2(G_4) = 1$. For G_5 , we have

$$G_5 \cong \begin{cases} T_{n_5}^0 & \text{if } (n_1, n_2, n_3) = (1, 1, 0), (1, 1, 1), \\ T_{n_5}^1 & \text{if } (n_1, n_2, n_3) = (1, 2, 0), (1, 2, 1), \\ T_{n_5}^2 & \text{if } (n_1, n_2, n_3) = (2, 2, 0), (2, 2, 1), \\ T_{n_5}^3 & \text{if } (n_1, n_2, n_3) = (2, 2, 2). \end{cases}$$

If $G_5 \cong T_{n_5}^0$, then the first three largest Laplacian eigenvalues of $G_4 \cup G_5$ are $n_4, n_5, 1, \text{ i.e., } S_3(G_4 \cup G_5) = n + 1$, and thus by Lemma 2.2,

$$S_3(G) \le S_3(G_4 \cup G_5) + 2 \cdot 3$$

= $(n+1) + 6 = e(G) + 6$,

a contradiction. If $G_5 \cong T_{n_5}^1$, then $G \in \bigcup_{i=1}^4 \bigcup_n^i$, and thus by Lemma 4.4, $S_3(G) \le e(G) + 6$, a contradiction. If $G_5 \cong T_{n_5}^2$ with $n_5 = 5$, then $(n_1, n_2, n_3) = (2, 2, 0)$, implying that $G \cong U_n^5$, U_n^6 , or U_n^7 , and thus by Lemma 4.4, $S_3(G) \le e(G) + 6$, a contradiction. Suppose that $G_5 \cong T_{n_5}^2$ with $n_5 \ge 6$, or $G_5 \cong T_{n_5}^3$ with $n_5 \ge 7$. By Lemma 4.6, we have $1 < \mu_2(G_5) < 2.7 < 3 \le \mu_1(G_4)$, implying that the first three largest Laplacian eigenvalues of $G_4 \cup G_5$ are $\mu_1(G_4) = n_4$, $\mu_1(G_5)$, $\mu_2(G_5)$, i.e., $S_3(G_4 \cup G_5) = n_4 + S_2(G_5)$. By Lemma 4.6, $S_2(G_5) < e(G_5) + 2$. Now it follows from Lemma 2.2 that

$$S_3(G) \le S_3(G_4 \cup G_5) + 2 \cdot 3$$

= $(n_4 + S_2(G_5)) + 6$
< $(n_4 + e(G_5) + 2) + 6 = e(G) + 6.$

a contradiction.

Combining Cases 1–3, there is no counterexample, and thus the result follows. \Box

By Lemmas 2.4 and 4.8, Proposition 3.5, we have

Corollary 4.2. Conjecture 1.1 is true for bicyclic graphs.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11071089). We are grateful to the referees for helpful suggestions.

References

- [1] H. Bai, The Grone-Merris conjecture, Trans. Amer. Math. Soc. 363 (2011) 4463-4474.
- [2] A.E. Brouwer, W.H. Haemers, A lower bound for Laplacian eigenvalues of a graph-proof of a conjecture by Guo, Linear Algebra Appl. 429 (2008) 2131-2135.
- [3] A.E. Brouwer, W.H. Haemers, Spectra of graphs. Available from: http://homepages.cwi.nl/~aeb/math/ipm.pdf>.
- [4] K. Fan, On a theorem of Weyl concerning eigenvalues of linear transformations I, Proc. Natl. Acad. Sci. USA 35 (1949) 652–655.
- [5] C. Godsil, G. Royle, Algebraic Graph Theory, Springer-Verlag, New York, 2001.
- [6] R. Grone, R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discrete Math. 7 (1994) 221-229.
- [7] W.H. Haemers, A. Mohammadian, B. Tayfeh-Rezaie, On the sum of Laplacian eigenvalues of graphs, Linear Algebra Appl. 432 (2010) 2214-2221.
- [8] R. Merris, A note on Laplacian graph eigenvalues, Linear Algebra Appl. 285 (1988) 33-35.
- [9] B. Zhou, On Laplacian eigenvalues of a graph, Z. Naturforsch. 59a (2004) 181–184.